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Abstract: Early detection of beer faults is an important assessment in the brewing process to secure a
high-quality product and consumer acceptability. This study proposed an integrated AI system for
smart detection of beer faults based on the comparison of near-infrared spectroscopy (NIR) and a
newly developed electronic nose (e-nose) using machine learning modelling. For these purposes,
a commercial larger beer was used as a base prototype, which was spiked with 18 common beer
faults plus the control aroma. The 19 aroma profiles were used as targets for classification ma-chine
learning (ML) modelling. Six different ML models were developed; Model 1 (M1) and M2 were
developed using the NIR absorbance values (100 inputs from 1596–2396 nm) and e-nose (nine sensor
readings) as inputs, respectively, to classify the samples into control, low and high concentration
of faults. Model 3 (M3) and M4 were based on NIR and M5 and M6 based on the e-nose readings
as inputs with 19 aroma profiles as targets for all models. A customized code tested 17 artificial
neural network (ANN) algorithms automatically testing performance and neu-ron trimming. Results
showed that the Bayesian regularization algorithm was the most adequate for classification rendering
precisions of M1 = 95.6%, M2 = 95.3%, M3 = 98.9%, M4 = 98.3%, M5 = 96.8%, and M6 = 96.2% without
statistical signs of under- or overfitting. The proposed system can be added to robotic pourers and
the brewing process at low cost, which can benefit craft and larger brewing companies.

Keywords: machine learning; off aromas; gas sensors; robotic pourer; aroma thresholds

1. Introduction

In commercial settings, the assessment of beer faults is mainly the responsibility of the
head brewer. They are usually determined from simple aroma profile assessment, sensitiv-
ity sensory tests such as absolute, recognition, differential, and/or terminal threshold using
a trained panel [1–3] or utilizing specialized instrumentation such as gas chromatography-
mass spectroscopy (GC-MS) [4]. Several types of faults (off-flavors/aromas) can develop in
beers and with diverse origins and sensory perception thresholds, as shown in Table 1.

The drawbacks of common beer fault assessments are that they could be subjective. In
the case of instrumentation or sensory sessions, they may require expensive equipment and
special skills for usage, data handling, and analysis. Regarding sensory analysis, it requires
a trained panel, which can also be cost-prohibitive and can assess only a few samples at
any time to avoid increasing bias due to fatigue.
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Table 1. Description and concentrations of typical beer faults (off-aromas/flavors).

Common
Name

Chemical
Compound Aroma/Flavor Origin Contamination

Stage

Detection
Threshold in

Water
(mg L−1)

Typical
Concentration

in Beer
(mg L−1)

Spoilage
Concentra-
tion in Beer

(mg L−1)

References

Diacetyl 2,3-
butanediole Butter

Low levels of
valine in wort

Microbial
contamination

Wort 5 × 10−4 8 × 10−3–0.60 0.25 [5–8]

TCA * 2,4,6-
trichloroanisole

Must taint/
Moldy

Contaminated
ingredients or
other material
(packaging)

Ageing
Storage

3 × 10−8–200
× 10−8 Absent 0.02 [5,7,9]

Acetic acid Acetic acid Sour/Vinegar/
Tangy

Spoilage bacteria
Wild yeast

Fermentation
Conditioning 0.10 30–200 60.0–120.0 [7,8,10]

Lactic acid Lactic acid Sour/Sour
milk/Tart Spoilage bacteria

Mashing
Secondary

fermentation
0.04 0.20–1.50 140 [8,10]

H2S Hydrogen
sulfide Rotten eggs

Raw material
Yeast

contamination
Fermentation 1 × 10−5–10

× 10−5 ≤1 × 10−3 4 × 10−3 [8,10–12]

DMS Dimethyl
sulfide

Sweet corn/
Onion/Rotten

vegetables

Microbial
contamination

Wort
boiling/cooling 3.3 × 10−7 0.01–0.15 0.40 [8,10]

Papery Trans-2-
nonenal

Cardboard/
Oxidized

Oxidation
Staling

Fermentation
Storage 8 × 10−8 < 5 × 10−5 4 × 10−4 [8,10]

Isovaleric acid Isovaleric acid Cheesy/Rancid/
Sweaty feet

Old/Oxidized
hops

Process faults

Boiling
Ageing 4.9 × 10−4 ≤ 0.20 1.00 [7,8,10]

Earthy 2-Ethyl
fenchol

Soil/Compost/
Moldy

Microbial
contamination Packaging 5 × 10−3 ** Absent 5 × 10−3 [8]

Acetaldehyde Acetaldehyde Green apple/
Bready/Grass

Staling
Microbial

contamination
Poor yeast health

Fermentation
Storage

2.5 ×
10−5–6.5 ×

10−5
2.00–15.0 20.0 [7,8]

Butyric Butyric acid
Baby vomit/

Putrid/Rancid
butter

Microbial
contamination

Ageing

Wort production
Packaging/

Storage
2.4 × 10−3 0.50–1.50 3.00 [7,8]

Caprylic Caprylic acid Goat/Soap/
Sweaty

Microbial
contamination

Yeast breakdown
Maturation 0.013 ** 2.00–8.00 10.0 [7,8]

Mercaptan Ethanethiol Drains/Sewer Autolysis
Poor yeast health

Fermentation
Ageing 1.7 × 10−6 ** 0.00–5 × 10−3 1 × 10−3 [7,8]

Spicy Eugenol Clove

Microbial
contamination

Wild yeast
Oxidation

Ageing 7.1 × 10−7 0.01–0.03 0.40 [7,8]

Metallic Ferrous sulfate Metal/Blood/
Coin/Iron

Water sources
Non-passivated

vessels

Any brewing
stage 1.00–1.50 ** ≤ 0.50 1.00 [8]

Grainy Isobutyraldehyde
Cereal husks/
Green malt/
Raw grain

Excessive run-off
Insufficient

boiling
Wort boiling 4.9 × 10−7 1 × 10−3–0.02 1.00–2.50 [7,8]

Indole Indole Farm/Barnyard/
Fecal/Pig-like

Microbial
contamination Fermentation 5 × 10−3 ** < 5 × 10−3 0.01–0.02 [8]

Light-struck 2-Methyl-2-
butene-1-thiol

Fecal/Skunky/
Sulfury

Clear or green
bottles Storage 4 × 10−6 ** 1 × 10−6–5 ×

10−6 5.00–30.00 [8]

Bromophenol * Bromophenol
Inky/

Museum-like/
Old electronics

Process/
Equipment faults

Contaminated
raw material

Any brewing
stage 3 × 10−9 Absent 1.3 × 10−3 [7,8]

Catty * p-Methane-8-
thiol-3-one

Oxidized/tomcat
urine

Hops
Contaminated
raw material

Ageing
Packaging 1.5 × 10−5 ** Absent 1.5 × 10−5 [8]

Plastic * Styrene Burning plastic/
Chemical

Brewing
equipment and

packaging
material

contamination

Any brewing
stage 0.02 Absent 0.02 [8,13]

* Compounds not studied in this research. ** Detection threshold in beer as it has not been reported in water.
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The implementation of new and emerging technologies for beer analysis [14], such as
artificial intelligence (AI) [15–17] using robotics [18], near-infrared spectroscopy
(NIR) [19–21], integrated gas sensors or low-cost electronic noses (e-noses) [22–24], and
machine learning [25] is gaining traction recently for research and practical application
purposes. One of those applications is the early detection of beer faults using e-noses [26,27]
or beer classification [28].

This research focuses on implementing NIR spectroscopy and a recently developed
low-cost e-nose using machine learning to create an integrated system for the smart de-
tection of faults in beer. The integrated system proposed can become a big aid to brewing
companies for the early assessment of faults in different manufacturing and processing
stages to secure a high-quality product. These techniques can also be implemented for
commercialization and authentication purposes to secure the provenance and consistency
of quality for different markets.

2. Materials and Methods
2.1. Samples Description

A commercial Asahi Super Dry lager beer (Asahi Breweries, Sumida City, Tokyo,
Japan) with 5% alcohol in 500 mL cans was used as the base samples for this study. This
beer was selected because lager beers are less hoppy and less complex in aromas than other
styles such as ales and lambics, which can be used as a prototype for testing purposes.
The samples were spiked with 18 different flavor/aroma faults (Siebel Institute, Chicago,
IL, USA) that are commonly found in beer (Table 2). A total of 1 L of beer (two cans)
was used for each fault and was spiked with two different concentrations, as shown in
Table 2. Besides the spiked samples, 1 L of the original beer was measured as a control,
as two batches of beer were used, the control was taken as two samples (one per batch).
All samples were measured in triplicates (replicates = 3), giving a total of n = 36 per
concentration (n = 108) for the spiked samples, plus n = 6 control samples (n = 3 control per
batch). Hence, giving a total of n = 114.

2.2. Near-Infrared Measurements

All samples were measured in triplicate for each of the three replicates (n = 9) using a
handheld near-infrared (NIR) spectroscopy device (MicroPHAZIR™ RX Analyzer; Thermo
Fisher Scientific, Waltham, MA, USA). This is able to measure the chemical fingerprinting
within the 1596–2396 nm range. Samples were measured using the method described
by Gonzalez Viejo et al. [19], which consists of using a filter paper Whatman® Grade
3 (Whatman plc., Maidstone, UK). The filter paper was first measured dry and then
soaked in the sample using the white reference as background to avoid any noise from
the environment. Then the absorbance values from the dry filter paper were subtracted
from those with the sample to remove the paper components. For this study, both the
raw absorbance values and the first derivative were used; the latter were obtained with
the Savitzky-Golay method using the Unscrambler X ver. 10.3 (CAMO Software, Oslo,
Norway) using the second polynomial order with the following smoothing parameters:
number of left side points: 1, number of right-side points: 1, number of smoothing points:
3, and with symmetric kernel.
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Table 2. Compounds used as off-flavors/aromas (faults) to spike beer samples and the concentrations used for training
purposes according to human detection thresholds.

Number Fault Flavor/Aroma * Concentration
(Low; mg L−1)

Concentration
(High; mg L−1)

1 Acetaldehyde Green apple, cut grass 19.5 45.0

2 Acetic Acid Vinegar 156 360

3 Butyric Acid Putrid, baby vomit 3.25 7.50

4 Caprylic Acid Soapy, wax, fatty 13.7 31.5

5 Contamination
(Acetic Acid + Diacetyl) Sour, buttery 156 361

6 Dimethyl Sulfide Cooked vegetables 0.17 0.40

7 Diacetyl
(2,3-Butanediol) Butter, butterscotch 0.26 0.60

8 Earthy
(2-Ethyl fenchol) Soil 6.5 × 10−3 0.02

9 Isobutyraldehyde Grainy, husk, nut 1.63 3.75

10 Indole Farm, barnyard 0.24 0.55

11 Isovaleric Acid Cheese, sweaty socks, old hops 2.60 6.00

12 Lactic Acid Sour milk 173.33 400

13 Light-struck
(3-Methyl-2-butene-1-thiol) Skunky, toffee, coffee 2.6 × 10−4 6x10−4

14 Mercaptan
(Ethanethiol) Sewer, drains 1.6 × 10−3 3.8 × 10−3

15 Ferrous Sulfate Metallic, blood 1.63 3.75

16 Trans-2-nonenal Papery, cardboard, oxidized 8.7 × 10−4 2 × 10−3

17 Eugenol Cloves, spicy 0.05 0.12

18 Hydrogen Sulfide Rotten Eggs 0.03 0.07

* As described by the beer faults kit supplier (Siebel Institute, Chicago, IL, USA).

2.3. Electronic Nose Measurements

A portable and low-cost electronic nose (e-nose) was used to measure the volatile
compounds found in the samples. As described by Gonzalez Viejo et al. [29], the electronic
nose consists of an array of nine different gas sensors (i) MQ3: alcohol, (ii) MQ4: methane
(CH4), (iii) MQ7: carbon monoxide (CO), (iv) MQ8: hydrogen (H2), (v) MQ135, (vi) MQ136,
(vii) MQ137, (viii) MQ138 and ix) MG811: carbon dioxide (CO2). To measure the samples,
the full amount of beer was poured into a clean 2 L jar, and the e-nose was placed on the top
to acquire the volatile compound readings; all measurements were carried out in triplicates.
The outputs were then analyzed using a supervised automatic code written in Matlab®

R2020b (Mathworks, Inc., Natick, MA, USA). This code is able to automatically recognize
features of curves (starting and end of stable signals) and create 10 subdivisions of each
curve from the e-nose sensors from the stable signals to calculate 10 mean values [30]. This
is done to increase variability of the data to further develop the ML models.

2.4. Alcohol and pH Measurements

Samples were analyzed for basic chemometrics in triplicates for pH and alcohol. The
pH was measured in 50 mL samples of each replicate using a pH-meter (QM-1670, DigiTech,
Sandy, UT, USA), the device was calibrated using a buffer solution (pH 7). Furthermore, an
Alcolyzer Wine M with accuracy: <0.1% vv-1 (Anton Paar GmbH, Graz, Austria) was used
to measure the alcohol content in 60 mL from each replicate.
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2.5. Statistical Analysis and Machine Learning Modelling

The e-nose data were analyzed through ANOVA to assess significant differences
(p < 0.05) among the samples with a Tukey honest significant difference (HSD) post hoc
test (α = 0.05) using XLSTAT 2020.3.1 (Addinsoft, New York, NY, USA). Furthermore, a
code developed in Matlab® R2021a was used to conduct a correlation analysis and plot it
in a matrix to assess only the significant correlations (p < 0.05) between the e-nose sensor
outputs and the different faults.

Six supervised classification machine learning (ML) models were developed using
artificial neural networks (ANN). All models were constructed using a customized code
developed by the Digital Agriculture Food and Wine group from the University of Mel-
bourne (DAFW; UoM) in Matlab® R2021a, which is able to test automatically 17 different
ANN algorithms in a loop. The best models were selected based on the accuracy and
performance, the Bayesian Regularization algorithm being the best for all four models.

The first two models were developed using the NIR absorbance raw values in the
entire spectra (1596–2396 nm) (Model 1) and the 10 means (samples) from each sensor
(inputs) of the e-nose outputs (Model 2) as inputs to classify the samples into (i) control,
(ii) low concentration, and (iii) high concentration. Data were divided randomly as 70%
of the samples used for training and 30% for testing. The performance was assessed from
the means squared error (MSE), and a neuron trimming test was conducted to select the
models with no under- or overfitting, being 10 the most optimal number for both models
(Figure 1a).

For Models 3 and 4, the NIR absorbance raw values in the entire spectra (1596–2396 nm)
were taken as inputs to predict the faults found in the sample for the low concentration
(Model 3) and high concentration (Model 4). Data were divided using interleaved indices,
which consists of cycling samples between the training (70%) and testing (30%) stages [31].
Performance was based on MSE; a neuron trimming test was conducted to select the
models with no under- or overfitting, being 10 the most optimal number for both models
(Figure 1b).

For the NIR models, the number of samples used was the number of beers with added
faults plus control beers (n = 19), times the number of replicates (reps = 3; n = 57), multiplied
by the number of measurements per replicate (measurements = 3; n = 171), giving a total of
180 samples considering the control as six replicates (+9).

The other two models were developed using the e-nose outputs as inputs to predict
the fault found in the sample for the low concentration (Model 5) and high concentration
(Model 6). Data were divided randomly into training (70%) and testing (30%) stages.
Similar to Models 1 and 2, the performance was based on MSE, and 10 neurons (Figure 1c)
were used for both models as they provided the best models with no under- or overfitting
after conducting a neuron trimming test.

For the e-nose models, the number of samples used was the number of beer faults plus
control (n = 19), times the number of replicates (reps = 3; n = 57), multiplied by the number
of mean values obtained from the e-nose curves per beer sample (values = 10; n = 570),
giving a total of 600 considering the control as six replicates (+30).
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Figure 1. Diagrams of the two-layer feedforward models with a tan-sigmoid function in the hidden 
layer and a Softmax function in the output layer for (a) Models 1 (Near-infrared inputs), and 2 (elec-
tronic nose inputs), (b) Models 3 (low concentration) and 4 (high concentration), and (c) Models 5 
(low concentration) and 6 (high concentration). Abbreviations: W: weights; b: bias. 

Figure 1. Diagrams of the two-layer feedforward models with a tan-sigmoid function in the hidden
layer and a Softmax function in the output layer for (a) Models 1 (Near-infrared inputs), and
2 (electronic nose inputs), (b) Models 3 (low concentration) and 4 (high concentration), and (c) Models
5 (low concentration) and 6 (high concentration). Abbreviations: W: weights; b: bias.

3. Results

Figure 2 shows the curves of the NIR raw values for the control and each fault tested
for low and high concentrations. It can be observed that the overtones were similar for both
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low and high concentrations; however, the absorbance values were different. The overtones
found for all samples are within the 1900 and 2000 nm and >2250 nm. On the other hand,
in Figure 3, which shows the absorbance values for the first derivative transformation, the
overtones were enhanced within the 1850–1905 nm and 1950–2140 nm ranges. In both
Figures, it could be observed that the sample with hydrogen sulfide at low concentration
had higher absorbance values than with the high concentration.
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Figure 3. Near-infrared curves for all beer samples using the first derivative of the absorbance values
at (a) low and (b) high concentrations.

Figure 4 shows the stacked bar graphs depicting the ANOVA results, mean values, and
error bars based on the standard error of each e-nose sensor and each beer sample for low
and high concentrations. It can be observed that there were significant differences (p < 0.05)
between samples for all sensors. The MQ3 (alcohol) presented the highest voltage values
for all samples, followed by the MQ4 (CH4). The Mercaptan sample was the highest in
alcohol gas release for the low concentration, while acetic acid presented the lowest signal.
Lactic acid and light-struck had the highest signal for MQ4 (CH4) and MQ137 (ammonia).
On the other hand, for the high concentration samples, Eugenol was the highest in voltage
for MQ3, MQ4, MQ135, and MQ137, while Indole was the lowest for MQ3. Even though
a beer sample with H2S was evaluated, it did not have the highest signal for the MQ136
sensor (H2S) in both concentrations.
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Figure 4. Stacked bar graphs for (a) low and (b) high concentrations showing the mean voltage
values obtained from the electronic nose sensors. Error bars are based on standard error. Different
letters depict significant differences (p < 0.05) between samples for each sensor based on the Tukey
honest significant difference (HSD) post-hoc test.

Figure 5 shows the correlation matrix for the e-nose outputs and beer spiked with
faults. It can be observed that MQ3 had positive and low but significant (p < 0.05) dif-
ferences with caprylic acid (r = 0.16), mercaptan (r = 0.11), trans-2-nonenal and Eugenol
(r = 0.14), and negative correlations with acetaldehyde (r = −0.23) and indole (r = −0.10).
The MQ136 (H2S) sensor had a positive correlation with trans-2-nonenla (r = 0.23), eugenol
(r = 0.28), and hydrogen sulfide (r = 0.10), and a negative correlation with acetaldehyde
(r = −0.28). Furthermore, Eugenol presented positive correlations with MQ4 (r = 0.35),
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MQ8 (r = 0.33), MQ135 (r = 0.34), and MQ137 (r = 0.18). The sample with contamination
fault had positive correlations with acetic acid (r = 0.69) and diacetyl (r = 0.69).
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side.

Figure 6 shows significant differences (p < 0.05) between samples for pH and alcohol
content for low and high concentration treatments. It can be observed that at both low and
high concentrations, the beer with eugenol had the highest pH (Low: 4.22; High: 4.33),
while the sample with lactic acid presented the lowest pH (Low: 4.03; High: 3.90), which
differed from the control (4.13). On the other hand, the sample with Eugenol and low
and high concentration had the highest alcohol content (Low: 4.73; High: 4.77), while
the light-stuck sample had the lowest alcohol content (Low and High: 4.71%), which was
similar to the control (4.71%).

Table 3 shows that both Model 1 (NIR inputs) and Model 2 (e-nose inputs) had
high overall accuracy (>95%) to classify the beer samples into control, low and high
concentrations of faulty aromas. None of these models was under- or overfitted because
their training MSE values were lower than the testing stage, which indicates they gave a
high performance. Furthermore, in their receiver operating characteristic (ROC) curves
(Figure 7), it can be seen that the three classifications in the two models had very high
sensitivity (true positive rate; >0.94). It can be observed that the lowest sensitivity for
Models 1 and 2 was the low concentration (0.94 and 0.95, respectively).
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Figure 6. Bar graphs of the pH and alcohol mean values for (a) low and (b) high concentration
treatment. Error bars are based on standard error. Different letters depict significant differences
(p < 0.05) between samples for each sensor based on the Tukey honest significant difference (HSD)
post-hoc test.

Table 3. Statistical results of the artificial neural network classification models developed using the
near-infrared absorbance values Model 1 and electronic nose outputs (Model 2) as inputs to predict
the concentration level. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error Performance
(MSE)

Model 1: Near-infrared inputs

Training 239 100% 0.0% <0.001

Testing 103 85.4% 14.6% 0.08

Overall 342 95.6% 4.4% -

Model 2: Electronic nose inputs

Training 239 98.5% 1.5% 0.01

Testing 103 87.7% 12.3% 0.08

Overall 342 95.3% 4.7% -
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the concentration of faults present in them (control, low and high concentration).

Table 4 shows that Models 3 (low concentration) and 4 (high concentration) developed
using the NIR absorbance values as inputs had high overall accuracy with 99% and 98%,
respectively. None of the models presented any signs of under- or overfitting as the
training performance (Models 3 and 4: MSE < 0.001) was lower than the testing (Model 3:
MSE = 0.003; Model 4: MSE = 0.005). Figure 8 depicts the ROC curves for Models 3 and
4, in which it can be observed that all of the classification categories had high sensitivity
(>0.89). In Model 3, acetic acid and H2S were the lowest in sensitivity (0.89), while in Model
4, the lowest were samples earthy, light-struck, and H2S (0.89).
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Table 4. Statistical results of the artificial neural network classification models developed using the
near-infrared absorbance values as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error Performance
(MSE)

Model 3: Near-infrared inputs—Low concentration

Training 126 100% 0.0% <0.001

Testing 54 96.3% 3.7% 0.003

Overall 180 98.9% 1.1% -

Model 4: Near-infrared inputs—High concentration

Training 126 100% 0.0% <0.001

Testing 54 94.4% 5.6% 0.005

Overall 180 98.3% 1.7% -
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Table 5 shows that Models 5 (low concentration) and 6 (high concentration) developed
using the e-nose outputs as inputs had high overall accuracy (97% and 96%, respectively).
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In both, Models 5 and 6, the training performance (Models 5 and 6: MSE < 0.001) was lower
than the testing (Model 5: MSE = 0.009; Model 6: MSE = 0.011). Based on the ROC curves
(Figure 9), all classification categories had high sensitivity (>0.87), with caprylic acid being
the lowest sensitivity in Model 5 (0.90) and diacetyl and ferrous sulfate in Model 6 (0.87).

Table 5. Statistical results of the artificial neural network classification models developed using the
electronic nose outputs as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error Performance
(MSE)

Model 5: Electronic nose inputs—Low concentration

Training 420 99.8% 0.2% <0.001

Testing 180 90.0% 10.0% 0.009

Overall 600 96.8% 3.2% -

Model 6: Electronic nose inputs—High concentration

Training 420 100% 0.0% <0.001

Testing 180 87.2% 12.8% 0.011

Overall 600 96.2% 3.8% -
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4. Discussion
4.1. Near-Infrared Spectroscopy (NIR)

The NIR range used in this study includes the aromatic overtones, which corresponded
to 1596–2396 nm. This NIR range has been used in previous studies to characterize and
model different volatile aromatic compounds in beers [19,25,32] and wine [33,34]. The
major raw NIR peaks shown for all samples were in 1900–2000 nm and >2300 nm (Figure 2),
which correspond to overtones of compounds such as carboxylic acid, pOH, water, amides,
alcohol, proteins, and carbohydrates [35]. After a first derivative transformation (Figure 3),
several other peaks and valleys were enhanced, such as other water overtones, thiols, and
starch, all of which are found in beer [35]. The major differences in the latter case were
observed between 1600 and 1700 nm, where aromatic compounds and alkyls can be found,
at 1890 nm as the major peak, which corresponds to carboxylic acid, which may be present
in beer samples in the form of different compounds such as acetic and lactic acids, and
may derivate into esters, which are responsible for different aromas in beer [29,35], and
between 1950 and 2150 nm, where proteins, amides, alcohol, and sucrose are found [35,36].
Interestingly, one off-aroma addition was significantly different compared to the rest
(hydrogen sulfide) for low concentrations (Figure 3a) but not for high concentrations
used (Figure 3b). The latter effect may be related to the initial interaction between the
H2S compound and other minerals in the beer, increasing the chemical fingerprint in the
specific overtones, which decrease at higher H2S concentrations [37]. These patterns and
differences between the chemical fingerprint for samples with different fault additions are
assessed using machine learning for discrimination purposes and potential identification
and classification using ANN modeling techniques.

4.2. Low-Cost e-Nose and Beer Chemometrics

The low-cost e-nose used was preliminarily tested on different commercial beers
for ML classification purposes and determination of aroma profiles compared to gas
chromatography [29]. The same e-nose was successfully used to assess and quantify
smoke taint compounds in wine [38]. The variation of the e-nose sensors response after
the addition of fault compounds is significant for most of the sensors (Figure 4) and
with differences between variations for low concentrations (Figure 4a) compared to high
concentrations (Figure 4b) of faults, which helps to justify the classifications performed by
the machine learning modeling techniques.

The latter is also supported by the general correlation matrix analysis (Figure 5) be-
tween all the fault compound additions and the different e-nose sensors. More negative
and statistically significant correlations (p < 0.05) were found between acetaldehyde and
most sensors except for MQ7 and with a positive correlation with MG811. The negative
correlations between acetaldehyde and sensors sensitive to alcohol may be associated with
the fact that acetaldehyde is often produced from the oxidation of ethanol [8,39]. The
same trends were shown for sensor MQ4 (CH4) and acetic acid; this negative correlation
was found in breweries, where CH4 production decreased acetic acid formation [40]. As
expected, contamination was positively correlated with diacetyl, and butyric acid was
formed when the latter two are mixed. Furthermore, Indole was negatively correlated
to MQ3, MQ137, MQ8, and MQ135. The negative correlation between Indole and the
sensors sensitive to alcohol may be since Indole is formed by coliform bacteria, which is
eliminated with the presence of alcohol; therefore, at higher alcohol, lower indole produc-
tion [8]. Furthermore, as expected, hydrogen sulfide was positively correlated with MQ136
(H2S) sensor; however, the correlation, although positive, was weak due to the sensitivity
(1–100 mg L−1) of the sensor [29], which is higher than the concentrations used in the
samples for this study (0.03 and 0.07 mg L−1). The rest of the fault compounds were
positively correlated at different levels with most of the sensors.

There are fewer variations concerning basic chemometrics, such as pH and alcohol
levels, which can be explained through the interactions of fault compounds (Figure 6),
especially at high concentrations (Figure 6b), which were more significant for the case of
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pH compared to alcohol concentration. As expected, an increase in alcohol and a decrease
in pH can be observed in samples with compounds that have an alcohol group and acidic
faults, respectively.

4.3. Supervised Machine Learning Classification Models and Deployment

Models 1 and 2 were developed to determine whether the beers are a control (no
faults), low, or high concentration of faults. This will indicate which model should be used
to further predict the specific fault present in the sample: Models 3 (low concentration) or
4 (high concentration) for NIR and Models 5 (low concentration) or 6 (high concentration)
for e-nose.

All six models based on NIR and e-nose resulted in high accuracies (>95% for NIR
and e-nose, Models 1 and 2; >98% for NIR Models 3 and 4, and >96% for e-nose, Models 5
and 6). These accuracies and performances are consistent with those presented in previous
studies using NIR and e-nose for beer to assess aroma compounds and for the classification
of commercial beers [22,29].

In terms of practicality, even though the e-nose models have lower performance than
the NIR models, the low-cost and integrability nature of the e-nose makes it more flexible for
deployment to be added to different brewing processes with automated data acquisition
and interpretation through AI. The e-nose processed data can be readily available to
brewers for decision-making using wireless data transmission through the Internet of
Things (IoT) [41,42]. On the contrary, the commercial NIR instrument used in this study
cannot be integrated with AI as it can only incorporate models based on partial least
squares (PLS), which have the limitation of assessing regression levels of single compounds
per model for manual and punctual measurements, also requiring a trained operator for the
instrument usage, data acquisition, handling, and interpretation. Furthermore, additional
software is required for PLS modeling and integration with the NIR at a considerable cost.

Another advantage of the e-nose and AI method proposed compared to NIR is the
implementation and deployment costs using the beforementioned data transmission and
cloud processing using AI since it is based on numeric data transmission from the different
voltage readings of sensors. The NIR instrument can be cost-prohibitive for craft brewing
companies compared to the cost of the e-nose hardware, which corresponds to 2.5% of the
NIR instrument.

5. Conclusions

The comparative accuracies of ML models developed for NIR and e-nose make the
latter method cost-effective, reliable, and easy to deploy for craft, medium, and big brewing
companies. The latter also allows the implementation and deployment of this method with
the option of replication to assess multiple batches simultaneously. Due to the portability
of new versions of e-noses considering local data storage and analysis using local and
inexpensive microprocessors (i.e., Jetson® from NVIDIA, Arduino® or Raspberry Pi ®),
these could be added to robots such as the RoboBEER for quality traits and consumer
perception assessment using AI. Further studies are required to model fault assessment on
different beer styles with more complex aroma profiles, such as lambic and within different
stages of the brewing process. The results presented here are from a preliminary study
on the integration of low-cost sensor technology and AI, and the models developed can
be enriched with further data making the most of the learning capabilities of the ANN
models considered.
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