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Abstract: Winemaking depends on several elaborate biochemical processes that see as protagonist ei-
ther yeasts or lactic acid bacteria (LAB) of oenological interest. In particular, LAB have a fundamental
role in determining the quality chemical and aromatic properties of wine. They are essential not only
for malic acid conversion, but also for producing several desired by-products due to their important
enzymatic activities that can release volatile aromatic compounds during malolactic fermentation
(e.g., esters, carbonyl compounds, thiols, monoterpenes). In addition, LAB in oenology can act as
bioprotectors and reduce the content of undesired compounds. On the other hand, LAB can affect
wine consumers’ health, as they can produce harmful compounds such as biogenic amines and ethyl
carbamate under certain conditions during fermentation. Several of these positive and negative
properties are species- and strain-dependent characteristics. This review focuses on these aspects,
summarising the current state of knowledge on LAB’s oenological diversity, and highlighting their
influence on the final product’s quality and safety. All our reported information is of high interest in
searching new candidate strains to design starter cultures, microbial resources for traditional/typical
products, and green solutions in winemaking. Due to the continuous interest in LAB as oenological
bioresources, we also underline the importance of inoculation timing. The considerable variability
among LAB species/strains associated with spontaneous consortia and the continuous advances in
the characterisation of new species/strains of interest for applications in the wine sector suggest that
the exploitation of biodiversity belonging to this heterogeneous group of bacteria is still rising.

Keywords: malolactic fermentation; lactic acid bacteria; malolactic bacteria; Oenococcus oeni;
Lactiplantibacillus plantarum; wine; aroma; biogenic amines; lactobacilli; biocontrol

1. LAB in Oenology: Introductory Aspects and Biodiversity

During the winemaking process, lactic acid bacteria (LAB) promote the decarboxyla-
tion of L-malic acid to L-lactic acid, which is denoted as malolactic fermentation (MLF) [1].
This biological process occurs at the end of the alcoholic fermentation (AF), the principal
phase in winemaking, which is conducted by yeasts (mainly belonging to the Saccharomyces
genus, but together, in some cases, with selected non-Saccharomyces strains) [2–4]. MLF is
required for aged red wines and some young red, white, and base sparkling wines, since
it supplies microbiological stabilisation by reducing the nutrients in wine and lowers the
acidity of the final product [5,6]. Specific management of microbial resources inoculated to
promote desired biochemisms (e.g., co-inoculation), can favour a simultaneous progression
of AF and MLF [7,8].
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MLF enhances wine flavour and aroma complexity by freeing relevant amounts of
carbonyl compounds, such as diacetyl (2,3-butanedione), which contributes to a wine’s
buttery flavour [9]. Moreover, LAB species have demonstrated an ability to promote
several biochemical modifications of wine able to enhance its aroma, such as the release
of volatile thiols from precursor compounds, methionine metabolism, glycosidases, and
esterase activities [10–12]. However, during winemaking, the MLF dynamics are often
unpredictable, and it is problematic to monitor or manage. Spontaneous MLF may affect
wine quality, since the production of bacteria-derived off-flavour molecules (such as volatile
phenols and acetic acid) and compounds dangerous to consumer health, i.e., biogenic
amines (BAs) and ethyl carbamate. Thus, it is necessary to exert the microbiological control
of this biochemical process throughout the winemaking process to guarantee the final
product’s quality and safety [13]. A composite microbial consortium is implicated in the
winemaking process, comprising yeast, bacteria, fungi, and viruses [14–16]. Concerning
LAB, they are indeed present on both grape skins and cellar environment equipment [17],
but the operators can directly inoculate them by the addition of selected starter cultures [18].

LAB, microaerophiles, and Gram-positive bacteria specifically produce lactic acid as
a primary metabolite of glucose catabolism [19]. Consistent with their glucose catabolic
activity, they can be distributed into two groups: bacteria that ferment glucose with lactic
acid as the main by-product (homofermentative), and the others that produce ethanol,
carbon dioxide, and lactic and acetic acid after glucose fermentation (heterofermentative).
The most common LAB isolated from musts and wine are oenoccocci, lactobacilli and
pediococci (Table 1).

Table 1. Species of selected lactic acid bacteria found in association with raw materials in representative phases of winemaking
(grape harvest, must alcoholic fermentation, wine malolactic fermentation), according to selected studies [20–25].

Grape and Harvest Must and AF Wine and MLF

Oenococcus oeni (0–10%)
Limosilactobacillus alvi
Levilactobacillus brevis

Limosilactobacillus frumenti
Liquorilactobacillus mali
Apilactobacillus kunkeei

Fructilactobacillus lindneri
Fructilactobacillus sanfranciscensis

Lentilactobacillus kefiri
Lactococcus lactis

Enterococcus faecium
Enterococcus avium
Enterococcus durans

Enterococcus hermanniensis
Leuconostoc mesenteroides

Pediococcus damnosus
Pediococcus parvalus

Weissella paramesenteroides

Oenococcus oeni (80–100%)
Lactiplantibacillus plantarum

Lentilactobacillus hilgardii
Lentilactobacillus buchneri

Lentilactobacillus diolivorans
Lacticaseibacillus casei

Latilactobacillus curvatus
Limosilactobacillus alvi
Levilactobacillus brevis

Limosilactobacillus frumenti
Secundilactobacillus collinoides

Lacticaseibacillus paracasei
Lactiplantibacillus pentosus

Liquorilactobacillus mali
Fructilactobacillus lindneri

Fructilactobacillus fructivorans
Lactobacillus delbrueckii

Lactococcus lactis
Leuconostoc citreum

Leuconostoc fructosum
Leuconostoc mesenteroides

Enterococcus faecium
Pediococcus damnosus
Pediococcus parvalus

Weissella paramesenteroides

Oenococcus oeni
Lactiplantibacillus plantarum

Lentilactobacillus hilgardii
Levilactobacillus brevis

Fructilactobacillus lindneri
Limosilactobacillus frumenti

Lactococcus sp.
Pediococcus parvalus

Note: AF, alcoholic fermentation; MLF, malolactic fermentation.

The O. oeni species has ellipsoidal-to-spherical cells typically present in pairs or short
chains. It is an asporogenous and nonmotile bacteria with an optimal growth range between
pH 4.8–5.5 and 20–30 ◦C. The O. oeni population typically raises during the AF, and it often
becomes the only species found in wine at the end of MLF [26,27]. O. oeni is the principal
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LAB species of choice for winemakers because it can tolerate the harsh environment for
bacterial survival after the completion of the AF [28]. Three different decarboxylation
pathways are responsible for the conversion of L-malic acid to L-lactic acid (Figure 1).
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decarboxylase; LDH, lactate dehydrogenase.

Lactobacilli have elongated shapes with rod-like forms, and they are facultative het-
erofermentative. These bacteria’s taxonomy has been recently rewritten using a holistic
approach that considered ecological, genetic, metabolic, and physiological criteria [30]. The
previously genus denoted as Lactobacillus has been reorganised into 25 novel genera, and
the previous Lactobacillaceae and Leuconostocaceae families have been merged to form the
new Lactobacillaceae family [30]. Lactobacilli have shown that they successfully withstand
winemaking conditions and possess many advantageous properties that make them ap-
propriate for MLF management [31,32]. Besides their malolactic activity, these LAB detain
complex secondary metabolisms that can positively influence a wine’s final aroma and
flavour, including synthesis or catalysis of citrates, amino acids, polysaccharides, aldehy-
des, and esters [33,34]. In particular, Lactiplantibacillus plantarum strains can promote MLF
under high pH conditions, avoiding acetic acid synthesis due to their facultative heterofer-
mentative features, and modifying wine aromas because of a more composite enzymatic
profile when compared to O. oeni [31,32]. Together with the properties mentioned above,
the significant oenological features of L. plantarum, i.e., the elevated tolerance to high both
ethanol and SO2 concentration and to pH conditions, make strains belonging to this species
the source of the novel generation of MLF starter cultures [18,25,31].

Pediococcus damnosus, P. parvulus, P. pentosaceus, and P. inopinatus belong to the genus
Pediococcus that has oenological importance [35]. They have a spherical or ellipsoidal form
and possess a homofermentative glucose metabolism. Pediococcus spp. are commonly
considered spoilage bacteria in wine because some strains can cause viscosity in wine
due to their production of exopolysaccharides, produce a high amount of acetic acid, and
synthesise biogenic amines [36]. However, species/strains belonging to the Pediococcus
genus can positively influence the production of volatile compounds by synthesising a
large number of secreted enzymes [36,37].

The huge microbial diversity of LAB associated with natural consortia (Table 1),
together with the evolution of L. plantarum and pediococci significance in oenology, un-
derlines the continuous interest in exploring the potential role of bacterial biodiversity
in wine.

It is interesting to point out that for numerous LAB strains worldwide that are isolated
from the oenological environment, their complete genome has been already sequenced
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(Table 2), promoting knowledge improvements, molecular advances, and the application
of “omics” approaches.

Table 2. Information about literature on the complete genome sequences of wine LAB strains.

Strains Place of isolation Reference

Oenococcus oeni PSU-1 United States of America [38]

11 O. oeni strains (6 commercial and
5 environmental isolates)

Commercial starter cultures
and Australia [39]

Oenococcus oeni OM27 Italy [40]

5 O. oeni strains isolated from the same terroir Italy [41]

14 O. oeni strains isolated from different wines France [42]

28 O. oeni strains isolated from different wines Several countries (mainly
from France and Australia) [43]

Oenococcus oeni X2L Argentina [44]

About 135 O. oeni wine strains Several countries (mainly
from France and Australia) [45]

Oenococcus oeni UNQOe19 Patagonia [46]

Lactiplantibacillus plantarum Lp90 Italy [47]

Lactiplantibacillus plantarum XJ25 China [48]

Lactiplantibacillus plantarum UNQLp 11 Patagonia [49]

2. Impact of Wine Environment on LAB Metabolisms

After the ending of the AF, the concentration of LAB populations does not usually
change for 10 to 15 days, since bacterial multiplication is likely to be impaired by the
residual yeast metabolic activity. Then, the LAB initiate to grow, and MLF occurs when
the bacterial concentration in wine roughly corresponds to 106 CFU/mL. However, the
physical and chemical factors of wine that can affect LAB’s malolactic performances are
numerous [28]. Indeed, bacterial multiplication is enhanced by sulfur dioxide and ethanol
concentrations lower than 20 mg/L and 14% (v/100 mL), respectively, relatively high
pH values (>3.5), and a wine temperature ranging from 19 to 26 ◦C. The above stress factors
possess different cellular targets, and they can affect different bacterial metabolisms, and
thus are able to exert strong effects on cellular growth and viability [50]. Sulfur dioxide
(SO2) is routinely added to must and wines during the winemaking process because its
antimicrobial and antioxidant action preserves the chemical and microbiological quality of
wine. SO2 is detectable in wine in both a free and bonded form: the former is available and
able to carry out its protective action, whereas the latter cannot play an active role since
it is bonded to several wine-related compounds (acids, anthocyanins and acetaldehyde).
Even though LAB can exert cellular mechanisms for adaptation to SO2 [51], high additions
(>20 mg/mL) of SO2 can inhibit the bacterial malolactic performances, thus suggesting
that a strict monitoring of the additive concentration is required during the MLF. Ethanol
concentrations over 14% (v/100 mL) can affect growth and metabolism of LABs and
this toxic action is enhanced by the increase of temperature and lowering of pH [52,53].
Indeed, pH and alcohol content of wine have demonstrated that they are fundamental
oenological factors to regulate bacterial viability and, subsequently, their malate-degrading
ability [53,54]. High ethanol concentrations also impair cellular mechanisms devoted to
maintaining pH homeostasis, increasing the passive proton flux into bacteria [55]. However,
LAB’s capacity to survive at elevated ethanol concentrations is a strain-dependent property
among different species [25]. Temperature is a parameter that disturbs the growth rate and,
in particular, the length of the lag phase of LAB [56]. Previous microbiological observation
emphasised the stress exercised by high temperatures on LAB metabolism [57]. The authors
indicated that temperatures above 30 ◦C prejudiced bacteria’s capacity (in particular, O. oeni)
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to degrade the malic acid and potentially enhanced acetic acid production. These findings
have been recently confirmed by Guzzon and coworkers [58]. They showed that the
L. plantarum strain more efficiently carried out the MLF compared to O. oeni, since the latter
species was inhibited by a high fermentation temperature with subsequent incomplete
malic acid degradation.

3. Plus Effects: Influence of MLF on Wine Organoleptic Properties, Bioprotection and
the Removal of Undesired Compounds

In recent years, the metabolism of lactic bacteria that carry out MLF has been thor-
oughly investigated [25,59,60]. In addition to the decarboxylation of malic in lactic acid,
which is the principal outcome of MLF, this biological process also produces a significant
number of metabolic by-products. Most of these compounds are strain-specific, and they
can positively modulate the volatile aroma profile and aroma perception of a wine [61,62].
In addition to the benefits for sensory quality, other important targets regarding the inno-
vative use of LAB in oenology, are the biocontrol of undesired microbes (e.g., spoilers) and
the degradation of toxic compounds. In fact, LAB have been proposed as part of potential
sustainable solutions to enhance wine safety and reduce relevant economic losses.

3.1. Esters

Esters are secondary or tertiary compounds that considerably contribute to a wine’s
aromatic profile. They can be synthesised by yeast and bacteria throughout the AF and MLF,
and their qualitative and quantitative profile can be modified by wine ageing [63,64]. Esters
are formed through the esterification process or via ester hydrolysis [64]. LAB’s contribu-
tion to the ester detectable in wine has been underlined by several investigations [12,63].
LAB’s ability to affect or enhance the amount of esters in wine is strain-specific, and it is
modulated by the MLF inoculation procedure [9,65,66]. In general, MLF is associated with
increases in ethyl fatty acid esters’ concentration, such as ethyl acetate, ethyl lactate, ethyl
octanoate, and ethyl hexanoate [61,67]. This class of volatile molecules is responsible for the
desired fruity aroma of wines. The LAB esterases have been recently investigated [17,68].
Costello and coworkers [69] have shown that O. oeni is able to produce relevant amounts
of ethyl octanoate, propyl octanoate, and ethyl hexanoate due to the significant activity
of intracellular esterases throughout the fermentation process. L. plantarum strains have
been recently proposed as malolactic starters, since this species is a significant source of
esterase enzymes [70]. In fact, Lerm et al. [18] highlighted that L. plantarum strains, due to
their enzymatic activity, can modulate wines’ volatile profiles more efficiently than O. oeni.
These results have been further confirmed by investigating lactobacilli isolated from South
African wines [33].

3.2. Carbonyl Compounds

Acetaldehyde is the main carbonyl compound present in wine that can add to
wines’ aromatic profile, such as notes of “nutty” and “bruised apple.” Lactic bacteria
can metabolise acetaldehyde when linked to sulfur dioxide, thus increasing the final con-
centration of this inhibitory compound [71]. However, the decrease in the acetaldehyde
concentration caused by LAB can influence the colour and modulate the final wine’s senso-
rial impression [72]. One of the major aroma compounds associated with LAB is diacetyl
(2,3-butanedione), which originates from citrate fermentation and gives buttery and nutty
notes to wines [59]. The citric acid is enzymatically transformed into pyruvate that can
be converted to acetolactic acid. The decarboxylation of this last compound produces 2,3-
butanediol and acetoin and their the oxidation gives rise to diacetyl during the occurrence
of the MLF. When found in the range of 1–4 mg/L, diacetyl usually gives a wine positive
aromatic notes, whereas when it is detected at concentrations higher than 5–7 mg/L, it is
considered an undesired spoilage feature. Consequently, winemakers modulate diacetyl
concentrations in order to enhance a wine’s aroma through microbiological management
during the winemaking process [73,74]. However, a number of other different factors, such
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as the wine type, as well as oxygen and sulfur dioxide concentrations, determines the final
concentration of diacetyl in wine.

3.3. Thiols

Volatile thiols are compounds of specific relevance to the composition of the varietal
character [75]. In fact, they give tropical fruit notes to wine obtained from Sauvignon Blanc,
Riesling, Cabernet Sauvignon, and Merlot grapes [76]. These molecules do not exist in
grape juice, and are released during fermentative processes. However, wine yeasts do
not synthesise volatile thiols de novo, but they promote thiol release from its precursor.
Recently, Takase and coworkers [11] demonstrated that L. plantarum carry out the cleavage
of 3-Sulfanylhexan-1-ol (3SH) from its precursor 3SH from S-3-(hexan-1-ol)-l-cysteine
(3SH-S-cys) and S-3-(hexan-1-ol)-l-cysteinylglycine (3SH-S-cysgly), which contribute to
varietal aromatic profiles, with notes of grapefruit and passionfruit. Even though the
enzymes for the pathway and the specific enzyme in charge of this conversion have not yet
been characterized, the above findings indicate that MLF guided by enzymatically active
lactobacilli can improve the varietal aroma of produced wines. However, other volatile
sulfur compounds, such as methanethiol, methionol, and dimethyl disulfide, when present
in the opportune amounts, can enhance a wine’s bouquet and sensorial quality [77].

3.4. Monoterpenes

The varietal compounds specific to each grape variety have great importance in
the composition of the wine’s aromatic profile. They can be present in the berry as free
volatile molecules or mainly linked to sugars, these being the aroma precursors. The
glycol-conjugates are not odorous and volatile, but they are a source of odorant molecules
in wines, with a varietal, microbial, or technological origin. Volatile monoterpenes are
released at the early stage of winemaking, directly or after the adding of oenological
enzymes [78]. The microbial conversion from the precursors of free volatile monoterpenes
necessitate the secretion of active β-glucosidase (in the case of monoglycosides) or exo-
glycosydases (active on disaccharides) [79]. Numerous investigations have demonstrated
that O. oeni possesses a detectable β-glucosidase activity [80,81]. Recently, Michlmayr
and coworkers [82] identified numerous LAB glycosidases with potential in the release of
grape-derived aroma precursors. The authors described a glucosidase and an arabinosidase
from O. oeni able to produce high concentrations of monoterpenes. The above evidence
highlights that these bacterial enzymes can play an important role in the hydrolysis of
aroma precursors during malolactic fermentation, since they were active in grape must
and displayed wide substrate specificities. Hydrolytic enzymatic activity has also been
detected in other oenological LAB genera, i.e., lactobacilli and pediococci [83]. Other
authors have compared several malolactic starter cultures’ performances in the releasing of
specific volatile odorant molecules [84]. Levilactobacillus brevis and Lacticaseibacillus casei
strains demonstrated that they were differentially capable of enhancing the amount of C13-
norisoprenoides and monoterpenes in wine after completing the MLF. Recent investigations
have indicated that several L. plantarum strains show a peculiar enzymatic profile when
compared to other LAB, thus proposing that this species can perform a significant action in
contributing to a wine’s aromatic profile [10,18].

3.5. Degradation of Toxic Compounds

Two main classes of contaminants of microbial origin can affect wine safety: mycotox-
ins (mainly ochratoxin A, OTA) and BAs [85].

Mycotoxins are secondary metabolites produced by filamentous fungi, with relevant
carcinogenic, teratogenic, nephrotoxic, and hepatotoxic properties [86]. Ochratoxin A, pro-
duced on grape berries by several Aspergillus and Penicillium species, is the most frequently
mycotoxin found in wine samples [87]. Several phases in winemaking can influence OTA
reduction, including microbes. Both alcoholic and malolactic fermentation can reduce
OTA in wine [88]. In effect, selected yeasts and LAB demonstrated this capability [89,90].
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Del Prete et al. [91] showed OTA removal by five LAB species of interest in wines, sug-
gesting a cell-binding activity [91]. In O. oeni, heat-inactivated cells also were capable
of removing OTA in synthetic media [92]. Abrunhosa et al. [93] highlighted the OTA
biodegradation by P. parvulus strains isolated from Douro wines, as well as in grape must.

BAs are low molecular weight, organic bases, frequently occurring in wine, in which
up to 25 different amines could be detected [94]. Although they can be found in wine in
very low amounts compared to other fermented foods, BAs can exert a dangerous effect
on consumer health because the ethanol can strengthen their noxious action by affecting
human action on amine-oxidases accountable for their inactivation [95]. Enzymatic removal
of BAs may represent a functional and cost-effective method to eliminate these harmful
compounds in wine production. Capozzi and coworkers [96], during the physiological
characterization of a L. plantarum population, selected two strains capable of degrading
tyramine and putrescine. Callejón and collaborators [97] also identified new BAs-degrading
activities of LAB in wine. The authors studied the enzymatic activities in charge of BAs
degradation in 76 lactobacilli, pediococci, and enterococci strains isolated from wine. The
enzymes accountable for BAs conversion were identified as multicopper oxidases, were
isolated and purified from L. plantarum and P. acidilactici strains. Other lactobacilli were
recently described as capable of BAs degradation, such as Latilactobacillus curvatus G-1,
L. plantarum CAU3823, and L. plantarum PP02 [98,99]. Taken together, the above results
indicate the possible use of wine L. plantarum strains as candidates for the design of starter
cultures that can degrade biogenic amines during MLF.

3.6. Bioprotection

One emerging trait of lactic acid bacteria on grapes and wine is their potential in
bioprotection [100]. The reduction of the chemical intake in wine, from the farm to the fork
(from grape cultivation up to winemaking) is rising due to increasing consumer concerns
about the toxicological problems of its residues [101] and the emerging evidence of unde-
sired side-effects associated with fermentative performances [102]. This has led producers
and researchers to orientate toward more sustainable and eco-friendly approaches. In this
light, the selection of microbial strains with potential as bioprotective cultures and/or
biological control agents is an emerging trait that is still poorly explored among lactic acid
bacteria isolated from grapevine and wine environments [103]. In fact, LAB were already
described as promising bioprotective cultures in other food supplies [104,105]. They pro-
duce a wide range of active antimicrobial compounds, such as organic acids, hydrogen
peroxide, fatty acids, acetoin, diacetyl, cyclic dipeptides, and bacteriocins [106–108]. In
the grape sector, these microbes could be used for in-field applications and post-harvest
diseases, as well as during wine fermentation. In particular, L. plantarum strains have
been proposed for the biocontrol of the filamentous fungus Botrytis cinerea, the microor-
ganism responsible for grey mold formation and the main grape spoiler in both pre- and
post-harvest conditions [109], as several strains have shown a strong competition and a
rapid colonisation of wound space in other fruit crops [110–112]. In winemaking, LAB
ensure a rapid implantation of malolactic fermentations when used as starter cultures, thus
limiting the residual nutrients for the microorganisms that cause wine spoilage, such as
Brettanomyces bruxellensis [113], which produce detrimental volatile compounds that affect
the organoleptic quality of the final product, leading to important economic losses [114].
Besides, malolactic strains (belonging to both O. oeni and L. plantarum species) co-inoculated
with yeasts demonstrated a potential in enhancing bioprotection [115,116]. In this light,
LAB could be a concrete alternative to synthetic protectants, including sulfur dioxide [116].

4. Minus Effects: Production of Off-Flavours and Other Undesired Compounds

As described in the last paragraph, selected LAB can enhance global quality in oenolog-
ical production. However, some species/strains belonging to the heterogeneous group of
LAB can also depreciate wines, with substantial economic losses and/or possible undesired
consequences for human health.
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4.1. Production of Off-Flavours by Lactic Acid Bacteria

Numerous secondary compounds synthesised by lactic acid bacteria can affect a
wine’s sensorial profile, such as volatile phenols, and N- heterocyclic and sulfur volatile
compounds [72]. Several phenolic compounds are present in wine; in particular, hydrox-
ycinnamic acids (caffeic, ferulic, and p-coumaric acids) can be a substrate for LAB-mediated
enzymatic conversions [117]. The fertaric, cutaric, and caftaric esterified forms of hydrox-
ycinnamic acids can be released into wine due to the cinnamoyl esterase activities promoted
by bacterial enzymes. Phenolic acids can be decarboxylated into 4-vinyl derivatives and
then converted to 4-ethyl derivatives, two classes associated with undesired odorous
properties described as “wet dog,” “sweaty horse,” and “band-aid” [113]. Different inves-
tigations have described numerous LAB species’ ability to synthesise these detrimental
volatile phenols during the vinification process. Couto and collaborators [118] tested the
ability of 35 strains of lactic acid bacteria belonging to 20 different species in converting
phenolic acids into the corresponding volatile phenols. The reduction stage of the above
pathway was detected in L. brevis, L. collinoides and L. plantarum. In contrast, strains be-
longing to the genus Pediococcus demonstrated the production of 4-vinylphenol but not
4-ethylphenol from p-coumaric acid. O. oeni and L. mesenteroides strains were unable to
produce p-coumaric acid derivatives. LAB’s capacity to carry out the conversion of volatile
phenols in wine has been investigated by applying a novel molecular method able to
identify strains that have this ability. The obtained data indicated that L. plantarum strains
produced the corresponding vinyl and ethyl derivatives from hydroxycinnamic acids,
whereas L. brevis and P. pentosaceus strains only produced the vinyl ones. A recent study
confirmed the above results, indicating that all the species belonging to the L. plantarum
group are genetically able to produce ethylphenol from vinylphenol [119]. Indeed, the au-
thors highlighted the possible significance of lactic acid bacteria in volatile-phenol spoilage
of wine after showing a faster ethylphenol synthesis by these bacteria than by yeasts.

The production of detrimental flavours in wine has been associated with the LAB
catabolism of lysine and ornithine, which implicates the formation of numerous very
strong and smelly nitrogen-heterocycle “mousy” compounds [120]. These compounds
are detected on the back portion of the buccal region as a persistent aftertaste reminiscent
of a mouse cage. O. oeni, Leuconostoc mesenteroides, and some lactobacilli can produce three
nitrogen-heterocycle compounds relevant at the sensorial level, i.e., 2-ethyltetrahydropyridine
(ETPY), 2-acetyl-1-pyrroline (ACPY), and 2-acetyltetrahydropyridine (ACTPY) [120]. High
pH levels (>3.5) or low sulfur dioxide concentration during the winemaking process are
likely to promote the growth of heterofermentative lactobacilli and pediococci strains
capable of synthesizing the above-mentioned nitrogen-heterocycle compounds. However,
very little is known about this defect’s physiological basis and its effective consequence on
wine quality [121].

Volatile sulfur compounds are produced during the MLF by the bacterial metabolism
that utilises cysteine and methionine as substrate, these being the two sulfur-containing
amino acids. O. oeni and lactobacilli can convert methionine to dimethyl sulfide, 3-
(methylsulfanyl) propan-1-ol, methanethiol, and 3-(methylsulfanyl)-propanoic acid; whereas
O. oeni strains can use cysteine to produce thiazoles, thus resulting in aroma descriptors
such as “sulfury,” “roasted,” or “toasted” [122]. Investigations have recently examined the
potential enzymes in depth, and codified the genes for the catabolic pathway of methionine
in LAB during the MLF process [122,123]

4.2. Production of By-products Harmful to Consumer Health (i.e., BAs, EC)

Even though LAB are considered fundamental to the completion of wine fermentation,
they also can represent a cause of alarm for human health, since they can synthesise harmful
compounds such as BAs and ethyl carbamate (EC) [124,125].

Histamine, putrescine, and tyramine are the BAs most frequently detected in contami-
nated wine. They are formed after enzymatic decarboxylation of their respective amino
acid precursors, histidine, ornithine, and tyramine [126]. Tyramine and histamine are the
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most harmful to human health. The concomitant presence of other BAs, such as putrescine
and cadaverine, can enhance this dangerous action [127]. LAB’s role in biogenic amines’
biosynthesis has been widely reported [125], with relevant cases also in the oenological
field (Table 3).

Table 3. A nonexhaustive list of biogenic amine (BAs)-producing LAB species in wine.

Microbial Species Produced BAs References

Enterococcus faecium tyramine [128]
Levilactobacillus brevis tyramine, putrescine, phenylethylamine [129–132]

Lentilactobacillus hilgardii histamine, tyramine, putrescine, phenylethylamine [130,131,133,134]
Lactiplantibacillus plantarum tyramine [135]
Lacticaseibacillus rhamnosus histamine [136]

Oenococcus oeni histamine, putrescine [137,138]
Pediococcus parvulus histamine [139]

Note: BAs, biogenic amines.

The ability to synthesise BAs is likely to be strain-dependent and not a species-specific
property, and it is enhanced by favourable conditions for bacterial growth (availability
of nutrients) and decarboxylating activity (low pH of wine) [140,141]. Several studies
have documented O. oeni strains’ contribution to the histamine content in wines and the
presence of putrescine and cadaverine contaminated grape musts [142,143]. Strains of the
genus Pediococcus can also be responsible for producing BAs in wines [144]. Concerning
lactobacilli, strains belonging to different species demonstrated the ability to synthesise
histamine and tyramine [138,145]. The lack of BAs production should thus be considered a
pivotal parameter for the oenological selection of LAB, as demonstrated by recent inves-
tigations regarding the identification of autochthonous bacterial strains unable to form
BAs during MLF [74,146]. Microorganisms capable of amino acid decarboxylation can be
identified by applying a plate test with specific growth media [147], as well as specific
molecular PCR-based approaches, including multiplex amplification or sensitive on-chip
approaches [148]. To control BAs contamination in wine, the microbial management of
MLF has been proposed by adopting starter cultures unable to produce BAs and able to
dominate the indigenous microbiota that constitute the wine ecological niche [74,144]. No
technological approaches are available to lower the amount of BAs in contaminated wine.

Ethyl carbamate (EC) is a carcinogenic molecule produced throughout the fermenta-
tion process by a non-enzymatic reaction between ethanol and a compound containing a car-
bamyl group. The principal carbamyl group implicated in EC synthesis is urea derived by
the yeast metabolism of arginine, citrulline, and carbamyl phosphate [149]. Arginine deim-
inase promotes, by arginine deamination, the formation of citrulline, one of the main pre-
cursors for EC formation [124]. Heterofermentative LAB, such as L. hilgardii, L. plantarum,
L. buchneri, and O. oeni, can actively catabolise arginine [150–152]. Several abiotic factors
can enhance ethyl carbamate production, i.e., needless nitrogen adding in the vineyard,
low wine pH, high storage temperature, elevated ethanol concentrations and relevant
malic acid concentrations [31]. Moreover, EC’s presence can be lowered by impairing the
synthesis of its precursors, and this goal can be achieved through the employment of a
LAB starter culture that produces low concentrations of citrulline [124].

5. Novel Inoculation Approaches to Enhance LAB Impact on Wine Quality

The simultaneous inoculation of selected strains of LAB species together with starter
yeast directly into the must at the beginning of the alcoholic fermentation is considered
a promising practice for improving the quality and safety of wine production [153,154].
This approach allows the simultaneous promotion of alcoholic fermentations (AF) and
malolactic (MLF) fermentations [155] to avoid possible MLF arrests, generally caused
by high ethanol concentrations, high acidity, and nutrient scarcity that characterize the
wine at the end of AF [156]. Moreover, LAB and yeast co-inoculation demonstrated an
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ability to reduce production time, improving the quality and the safety of the produced
wine [156]. However, despite the above advantages, the yeast/lactic bacteria co-inoculation
approach can be applied, subject to the preliminary study of the mutual influence and
coexistence capacity between specific strains of S. cerevisiae and lactic acid bacteria when
inoculated together [157]. Specific compatibilities have been observed between commer-
cial yeasts and LAB strains, suggesting the importance of estimating different starters’
microbial compatibility before their use in large-scale winemaking [157]. Recent studies
have been conducted that investigated the interactions between yeast and commercial
LAB strains after their inoculation into must [13]. All the evidence indicated that the
two starters’ simultaneous inoculation allowed for the rapid development of bacterial
populations, resulting in a drastic reduction in the time required for MLF to take place and
in the volatile acidity values in the wine produced. Another important advantage of the
simultaneous yeast/bacteria inoculation is the reduction of the content of biogenic amines
in wines produced in this way, compared to those obtained with the bacterium inoculation
at the end of AF [158,159]. The co-inoculation approach was recently presented using
selected strains of Latiplantibacillus plantarum as a malolactic starter [25]. Co-inoculation
of S. cerevisiae and L. plantarum in grape must implemented the levels of adaptation of
the bacterium to the harsh conditions of the wine, again reducing the time required for
completion of MLF [18,32,160]. Increasing interest has been directed toward understanding
the interactions between S. cerevisiae and non-Saccharomyces strains with different LAB
species [161,162]. The species-specific impact in wineries has been recently assessed by
studies that carried out vinification tests at the industrial scale [8,163]. The obtained results
highlighted the impact of the different combinations of the strains on the “volatome” of
produced wine, with specific attention paid to the effects of the concurrent inoculation of
the LAB species, thus confirming that the aromatic complexity of the wine reflected the
formulation of the starter cultures [164]. Increasing interest has been directed toward the
use of immobilised cells for the production of fermented beverages. This strategy offers
numerous technical and economic advantages and it can positively influence bacterial
metabolism, affecting wine quality and aroma [165]. Immobilisation systems also benefit
from recycling the biocatalysts numerous times, thus maintaining the fermentation activ-
ity [166]. Starter strains of O. oeni have also been immobilised with good results [167].
Malolactic starters included in plant waste (cobs, grape skins, and stems) have been used to
promote MLF in white wine, showing a positive protective effect of immobilisation against
stress caused by ethanol concentration and the presence of SO2 on bacterial cells [168].
S. cerevisiae and LAB cells can be included on residues of vegetable origin or in calcium
alginate spheres allowed the promotion of FA and MLF simultaneously. Recently, Bleve
et al. [169] produced the co-immobilisation of S. cerevisiae and O. oeni cells in alginate drops,
and they have used them in microvinifications. This mixed starter allowed for efficient
AF and MLF fermentation processes, producing wines enhanced in their organoleptic
properties compared with wines produced by the traditional sequential inoculation free
cell starters.

6. Conclusions

The achievement of MLF depends on either the viability or metabolic performances
of the LAB starter culture and the management of several physicochemical parameters of
the fermentation process. MLF represents a fundamental step in winemaking that ensures
microbial stability, reduced total acidity, and enhancement of aroma and flavour profiles in
wines [5,59]. The continuous characterisation of the biodiversity associated with sponta-
neous fermentation will have, in the near future, a fundamental importance in selecting
new starter cultures, designing tailored microbial resources for traditional/typical wines,
and conceiving sustainable innovations in winemaking, including biotechnological solu-
tions to the negative impact of climate change [18,27,62,101,170]. This up-to-date literature
review summarises both the positive and negative influences of malolactic bacteria on wine
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quality and safety, underlining species- and strain-dependent characteristics, and looking
toward a more competitive and resilient wine industry.
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