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Abstract: Cultivation process (CP) modeling and optimization are ambitious tasks due to the non-
linear nature of the models and interdependent parameters. The identification procedures for such
models are challenging. Metaheuristic algorithms exhibit promising performance for such complex
problems since a near-optimal solution can be found in an acceptable time. The present research ex-
plores a new hybrid metaheuristic algorithm built upon the good exploration of the genetic algorithm
(GA) and the exploitation of the crow search algorithm (CSA). The efficiency of the proposed GA-CSA
hybrid is studied with the model parameter identification procedure of the E. coli BL21(DE3)pPhyt109
fed-batch cultivation process. The results are compared with those of the pure GA and pure CSA
applied to the same problem. A comparison with two deterministic algorithms, i.e., sequential
quadratic programming (SQP) and the Quasi-Newton (Q-N) method, is also provided. A more
accurate model is obtained by the GA-CSA hybrid with fewer computational resources. Although
SQP and Q-N find a solution for a smaller number of function evaluations, the resulting models are
not as accurate as the models generated by the three metaheuristic algorithms. The InterCriteria
analysis, a mathematical approach to revealing certain relations between given criteria, and a series
of statistical tests are employed to prove that there is a statistically significant difference between the
results of the three stochastic algorithms. The obtained mathematical models are then successfully
verified with a different set of experimental data, in which, again, the closest one is the GA-CSA
model. The GA-CSA hybrid proposed in this paper is proven to be successful in the collaborative
hybridization of GA and CSA with outstanding performance.

Keywords: model identification; E. coli BL21(DE3)pPhyt109; crow search algorithm; genetic algorithm;
sequential quadratic programming; Quasi-Newton method

1. Introduction

The conventional methods of optimization (parameter identification), such as the
steepest descent, sequential quadratic programming (SQP) and Newton methods (Quasi-
Newton (Q-N)), rely on the restrictions of the initial solution. These methods perform well
for simple problems. Challenges emerge when dealing with complex tasks characterized by
nonlinearity, high dimensionality, multimodality, prohibited regions induced by constraints,
etc. [1]. Solutions to highly nonlinear problems usually require sophisticated optimization
algorithms, as conventional algorithms may struggle to deal with such problems [2]. A
current trend is to use nature-inspired algorithms due to their flexibility and effectiveness.

Metaheuristic algorithms have shown promising performance on such complicated
tasks [3]. Both single and population-based metaheuristics stand out as effective alterna-
tives to traditional optimization methods [4,5]. They tackle various optimization problems
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successfully [6,7]. Several published studies have compared optimization methods from
different categories (classical/traditional vs. metaheuristic) to determine their effectiveness
in solving different problems. The authors in [8] compared the traditional and metaheuristic
methods when optimizing robot motion planning. The implementation of metaheuristic
methods resulted in superior performance compared to the traditional methods. In [9],
it was discussed that classical optimization methods such as Newton’s approach, lin-
ear programming and quadratic programming, for problems with high nonlinearity and
nonconvexity issues, cannot reach a global solution but only obtain local solutions.

Cultivation process (CP) modeling and optimization are demanding and ambitious
tasks due to the nonlinear nature of the models and their mutually dependent parame-
ters [10]. The challenging identification procedures for such models are usually handled by
metaheuristic techniques, relying on the fact that they lead to a near-optimal solution in a
tolerable amount of time [11].

Several metaheuristic algorithms, such as the genetic algorithm (GA) [12], cuckoo
search algorithm (CS) [13] and ant colony optimization [14], have been effectively employed
to identify parameters in CP models. Meanwhile, others, like the crow search algorithm
(CSA) [15], have not yet been explored for this specific problem.

Multiple GA and CS [16] and GA-CS hybrid [17] methods have been proposed for
CP modeling. The CS algorithm has been also used in [18] to model the process of biogas
production. The sparrow search algorithm, whale optimization algorithm and African
vulture optimization algorithm have been applied in [19] for the modeling of kombucha
fermentation. The water cycle algorithm has been utilized for the modeling of two CPs,
E. coli and S. cerevisiae cultivation, in [20].

The above-mentioned studies have shown that even though each of these metaheuris-
tics is effective, the future belongs to a newer generation of algorithms known as hybrids.
These hybrids combine and improve upon the strengths of several algorithms, while also
overcoming their weaknesses [21,22].

Based on the results available so far, in this research, the authors seek a convenient
metaheuristic algorithm to be hybridized with GA. An appropriate algorithm is the crow
search algorithm (CSA) [15]. CSA is a metaheuristic algorithm based on bird swarm intelli-
gence in searching for and hiding food. Because of its simplicity and ease of use, it has been
widely adopted in various fields, such as image processing [23], task scheduling in cloud
computing [24], economic load dispatch tasks [25] and other engineering problems [26].
The published results suggest that CSA is suitable for optimization problems and applicable
for the identification of the model parameters of cultivation processes.

Since 2016, when Askarzadeh proposed CSA [15], many hybridizations, modifications
and improvements to the algorithm have been developed to enhance its effectiveness and
efficiency. The main parameters that influence the algorithm’s performance and its search
abilities have been studied recently in [27,28]. CSA has been reported to have a slow
convergence speed and to fall prematurely into a local optimum, leading to numerous
studies on CSA hybridization and modification. Some of the CSA improvements proposed
lately are listed in Table 1, in addition to the utilized values of the CSA parameters, fl and
AP. The parameters’ values will be discussed later in the paper.

Algorithm improvement can be achieved by (1) integrative hybridization, combining
the ideas of different metaheuristic principles or different optimization strategies, such
as local search techniques; (2) collaborative hybridization, i.e., the sequential or parallel
execution of different metaheuristic algorithms; and combinations of (1) and (2). Some
examples of CSA modifications are discussed below.
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Table 1. Recently proposed CSA hybridizations, modifications and improvements.

Algorithm Reference,
Year

Algorithm Parameters

Flight Length,
fl

Awareness Probability,
AP

Crow search algorithm (original) [15], 2016 1.5, 2, 2.5 0, 0.05, 0.2

RCSA—CSA with the rough searching scheme [2], 2018 dynamic 0.1

HCSA—CSA with Nawaz–Enscore–Ham
heuristic technique and SA combined with the
variable neighborhood search

[29], 2019 10 0.25

IFCSA—CSA based on improved flower
pollination algorithm [30], 2021 2 0.1

ImCSOA—CSA with chaotic maps [31], 2021 1.8 0.1

MCSA—CSA with the innovative selection of
the crows and adaptive adjustment of the
flight length

[25], 2018 1.9, 2 0.1

CSA with modified awareness probability and
random perturbation [32], 2018 2 dynamic

CSA with dynamic fl and AP [33], 2023 dynamic dynamic

Improved CSA with dynamic AP [34], 2020 2, 2.5 dynamic

ICSA—CSA improved by introducing
experience factor, adaptive adjustment
operator and Lévy flight distribution in
position updating mechanism of crows

[35], 2017 2 0.1

ICSA—improved CSA with a new
update mechanism [36], 2021 1.2–1.6 0.1

Classical CSA using the VSA evolution
mechanism to revise and exploit the
solution space

[37], 2021 2 0.1, 0.5

Improved CSA with multi-strategy disturbance [38], 2022 2 0.1

CSA with an improved objective function [39], 2022 0.7 0.5

CSA with a cosine function and incorporating
the opposition-based learning concept [40], 2020 2 0.1

CSA with chaos and multiple opposition-based
learning techniques [41], 2023 2 0.1

Enhanced CSA with a free-fly mechanism and
the personal upper-bound strategy [42], 2019 1.5, 2, 2.5, 3 0, 0.1, 0.2

Chaotic CSA (CCSA) [43], 2019 2 0.1

GWOCSA—hybrid grey wolf optimization
with CSA [44], 2019 2 0.1

HCSUC—hybrid CSA and uniform crossover
algorithm [45], 2021 2 0.1

CFCSA—hybrid CSA algorithm integrated
with chaos theory and fuzzy c-means
algorithm

[46], 2020 2 0.1

CCSA—hybrid cuckoo CSA [47], 2021 2 0.1

Hybrid support vector regression and CSA [48], 2022 2 0.1

Improved CSA based on arithmetic crossover [49], 2022 2 0.1
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Table 1. Cont.

Algorithm Reference,
Year

Algorithm Parameters

Flight Length,
fl

Awareness Probability,
AP

CSA with a particle swarm algorithm search
strategy [50], 2021 2 0.1

Crow search algorithm for efficient feature
selection [51], 2018 0.2 0.1

BCSA—hybrid binary CSA based on
quasi-oppositional method [52], 2023 1–1.8 0.2

MHCSA—memory-based hybrid CSA with
particle swarm optimization algorithm [53], 2023 - -

CSA with implemented multi-strategy
approach with a selection mechanism [54], 2022 2 0.1

Enhanced chaotic crow search and particle
swarm optimization algorithm [55], 2021 2 0.2

Hassanien et al. [2] proposed a hybrid metaheuristic approach, RCSA, integrating CSA
with the rough searching scheme (RSS). Combining the strengths of the two algorithms
resulted in the enhanced exploration of auspicious regions. The work [29] presented
a hybrid CSA (HCSA) using a Nawaz–Enscore–Ham approach to generate a diverse
population with high quality. The problem of the premature convergence of the algorithm
was tackled by simulated annealing, used additionally to improve the local search and
the quality of the solutions. The paper [25] introduced a modified CSA (MCSA) with the
innovative selection (priority-based selection) of the crows and the adaptive adjustment of
the flight length. The superiority of the algorithms proposed in [2,25,29] was confirmed
based on different well-known test systems and a set of benchmark test functions (BTFs).
The arithmetic crossover concept in GA was incorporated into CSA to classify stages of brain
tumors in [49]. Compared with the classical particle swarm optimization (PSO) and GA,
CSA was found to be robust for standard BTFs. Clusters of similar users in recommendation
systems were traced by a hybrid crow and a uniform crossover algorithm in [45]. The
genetic crossover operator was built once again in CSA to increase the population diversity
and to prevent the algorithm from trapping into a local optimum. A new update mechanism
that increases CSA’s convergence and improves its local search ability was proposed by
Gholami et al. [36]. The advanced CSA was reported to have more stable convergence
when optimizing the objective functions in terms of the solution accuracy and efficiency,
thus having better results than the conventional algorithm and other metaheuristics. A
different approach was found to improve the convergence accuracy and search ability of
the algorithm in [38], by combining CSA with multi-strategy disturbance. The anticipated
overall good performance was shown by testing the hybrid on twenty well-known BTFs.
Durgut and Aydin [54] proposed a multi-strategy search for CSA. An improved CSA
objective function combining the branch and predicate distance was used by Sharma and
Pathik [39]. The time efficiency and better performance of the approach were shown
for a test case generation problem. Hamed Alnaish and Algamal [52] developed a CSA
based on a quasi-oppositional method. The presented results, such as high classification
accuracy, a small number of selected features, and short computational time, confirmed
the applicability of this novel algorithm in feature selection with classification. A cosine
function and the opposition-based learning concept were incorporated into CSA in [40]. A
free-fly mechanism in CSA was suggested for constraint handling [42]. The comparative
performance of the above-mentioned algorithms over a large set of BTFs demonstrated that
the enhanced approaches outperformed well-known competing methods.
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Recently, chaos theory has emerged as a promising approach to enhance the perfor-
mance of metaheuristic algorithms [31,46]. In [43], a chaotic crow search algorithm was
presented to overcome CSA’s low convergence rate and trapping in local optima. The sine
chaotic map significantly improved CSA’s performance. Gupta et al. [51] introduced a
novel improved chaotic CSA. The performance of the algorithm, measured on 20 BTFs and
compared with the original chaotic CSA, proved it to be more stable and accurate. A hy-
bridization between chaotic CSA and PSO, capable of converging to the best global solution
in the search field, was introduced by [55]. The comparison between the obtained fitness
value and the standard deviation showed that the hybrid outperformed state-of-the-art
methods. An enhanced CSA with chaos and multiple opposition-based learning techniques
for global optimization problems was presented in [41]. The modification offered three
levels of balancing global exploration and local exploitation.

Several collaborative CSA hybrids have been proposed in the last three years. Braik
et al. [53] developed a memory-based hybrid of CSA and the PSO algorithm to reinforce
the diversity of the population and to achieve robust search performance. A particle swarm
search strategy built up the CSA global search capability to optimize the hidden layer
neurons and connection weights of extreme learning machines in [50]. A new CSA hybrid
scheme based on the flower pollination algorithm (FPA) was proposed by Cheng et al. [30]
to tackle CSA’s reported disadvantages. An improved FPA with a cross-pollination strategy
and Cauchy mutation was exploited to hybridize CSA. A hybrid of the grey wolf optimizer
(GWO) and CSA was presented in [44]. The strengths of both algorithms were merged
in the GWOCSA hybrid to achieve global optima. A cuckoo CSA hybrid was introduced
in [47] to optimize the task scheduling process in cloud computing. As in the cuckoo search
algorithm, the crows grew capable of looking for a better food source among the neighbors
and subsequently stealing the neighbors’ food. Cortés-Caicedo et al. [37] used the evolution
process of the vortex search algorithm to improve CSA. Applying a Gaussian probability
distribution, they achieved better repeatability and a more effective algorithm. In [48], a
hybrid between the support vector regression (SVR) technique and CSA was proposed.
The statistically confirmed superior performance of the collaborative CSA hybrids was
shown in their applicability to solve real-world complex problems using a set of BTFs.

Finally, to improve CSA’s performance, some authors have applied dynamic algorithm
parameters. In [33], the authors proposed dynamic AP and fl, whose values change at
each iteration of the algorithm. These dynamic parameters improved the exploitation and
exploration performance of the algorithm compared to a set of competing metaheuristic
algorithms, not only in the case of both unimodal and multimodal BTFs but also for five
real engineering problems. Wijayaningrum and Putriwijaya [34] also applied dynamic AP.
The search agents’ awareness probability was updated based on their most recent fitness
value, balancing exploration and exploitation. Díaz et al. [32] presented an improved CSA
with dynamically adjusted AP based on the current fitness value and Lévy flight movement
incorporated to enhance the search process. Jain et al. [35] introduced a CSA with an
improved balance between exploitation and exploration, including an experience factor,
an adaptive adjustment operator, and a Lévy flight distribution when updating the crows’
positions. The algorithm’s performance, validated on high-dimensional nonlinear BTFs,
was found superior to that of other well-established optimization algorithms.

While many improvements of the algorithm have been pointed out, there is still room
for enhancements in terms of population diversity, balancing the local and global search
abilities, and improving the convergence speed.

The present research discusses a hybrid metaheuristic algorithm that combines GA
and CSA. CSA has not been studied and applied yet for parameter identification prob-
lems for nonlinear models of CPs. GA, on the other hand, is a metaheuristic algorithm
highly applicable in solving such a complex problem. Thus far, it has been considered to
adjust the position of the crows after a flight with the help of only one genetic operator—
crossover [45,49]. The proposed GA-CSA hybrid fully integrates GA into CSA’s initial
group strategy, aiming to distribute the initial crows’ population more uniformly and in a
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more focused manner. GA-CSA employs the good exploration abilities of GA to improve
the convergence of the pure CSA. The expectation is that GA-CSA requires significantly
fewer computational resources to obtain a more accurate model. The proposed hybrid
is applied for the parameter identification procedure of a nonlinear model of the E. coli
BL21(DE3)pPhyt109 fed-batch cultivation process [56–58].

The GA-CSA results are compared in terms of model accuracy with the results of
the pure CSA and GA, applied to the same problem, along with the two deterministic
algorithms, SQP and the Q-N method. A mathematical approach designed to discover
certain relationships between given criteria, namely InterCriteria analysis (ICrA) [59], is
employed to confirm that there is a statistically significant difference between the obtained
models. The ICrA approach has been extensively employed in a wide range of problems. Its
applicability and correctness have been validated by the obtained results [60–64]. The ICrA
results are further confirmed by performing parametric statistical tests, such as one-way
analysis of variance (ANOVA) [65], and nonparametric test, such as Friedman [66] and
Wilcoxon [67].

The main contributions of this study are as follows.

(1) A hybrid technique, GA-CSA, that combines the exploration abilities of GA and the
exploitation of CSA is proposed.

(2) The GA-CSA hybrid is applied for the model parameter identification of the E. coli
BL21(DE3)pPhyt109 fed-batch cultivation process. The obtained mathematical model
is successfully verified.

(3) The proposed hybrid model outperforms the pure GA and CSA methods in terms of
accuracy while utilizing significantly fewer computational resources, such as compu-
tational time and memory. The resource usage is reduced by 8 to 10 times.

(4) The improved performance of the newly proposed hybrid GA-CSA, when compared
to the pure CSA and GA in terms of model accuracy, is approved by applying ICrA
and several classical statistical tests.

The rest of the paper is organized in the following manner. The mathematical model
of the E. coli BL21(DE3)pPhyt109 fed-batch cultivation process and the metaheuristic algo-
rithms engaged in the parameter identification procedure are described in Section 2. The
essence of the proposed GA-CSA hybrid algorithm is presented in Section 3. Section 4
presents and discusses the observed numerical results, obtained models, and additional
investigations. Some concluding remarks are given in Section 5.

2. Materials and Methods
2.1. Escherichia coli BL21(DE3)pPhyt109 Fed-Batch Cultivation Process
2.1.1. Fed-Batch Cultivation Process

Fed-batch cultivation experiments for the extracellular production of bacterial phytases
used the E. coli strain BL21(DE3)pPhyt109. Details of the experimental conditions and
experimental data can be found in [56,58]. Only a brief description is provided below.

The experiments were performed in the Department of Fermentation Engineering,
Faculty of Technology, University of Bielefeld. The gene of the E. coli phytase is contained in
the plasmid pPhyt109, derived from the multi-copy plasmid pUC19 under the constitutive
promoter of the bglA gene of Bacillus amyloliquefaciens [57].

The present research considers two experimental data sets from two fed-batch cultiva-
tion processes. The cultivation conditions are presented in Table 2.

The first set of experimental data has been used for the identification of the model
parameters (Figure 1a), while the second data set has been employed for the verification of
the obtained mathematical model (Figure 1b).
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Table 2. Escherichia coli BL21(DE3)pPhyt109 fed-batch cultivation process conditions.

Condition Cultivation Process 1 Cultivation Process 2

growth medium glucose mineral salt medium
bioreactor working volume 5 L

bioreactor total volume 7 L
temperature 37 ◦C

airflow 10 L·min−1

stirrer speed 500 rpm
pH 6.9 #

t0 4.30 h 3.10 h
V(t0) 2.70 L
γX(t0) 3.20 g/L
γS(t0) 0.78 g/L 0.50 g/L

γSin 500 g/L
γSsp 0.2 g/L 0.1 g/L

# by controlled addition of 4 N NaOH antifoam (PE8100, BASF, Germany).

Fermentation 2024, 10, x FOR PEER REVIEW 6 of 22 
 

 

2. Materials and Methods 

2.1. Escherichia coli BL21(DE3)pPhyt109 Fed-Batch Cultivation Process 

2.1.1. Fed-Batch Cultivation Process 

Fed-batch cultivation experiments for the extracellular production of bacterial 

phytases used the E. coli strain BL21(DE3)pPhyt109. Details of the experimental conditions 

and experimental data can be found in [56,58]. Only a brief description is provided below. 

The experiments were performed in the Department of Fermentation Engineering, 

Faculty of Technology, University of Bielefeld. The gene of the E. coli phytase is contained 

in the plasmid pPhyt109, derived from the multi-copy plasmid pUC19 under the consti-

tutive promoter of the bglA gene of Bacillus amyloliquefaciens [57].  

The present research considers two experimental data sets from two fed-batch culti-

vation processes. The cultivation conditions are presented in Table 2. 

Table 2. Escherichia coli BL21(DE3)pPhyt109 fed-batch cultivation process conditions. 

Condition Cultivation Process 1 Cultivation Process 2 

growth medium glucose mineral salt medium 

bioreactor working volume 5 L 

bioreactor total volume 7 L 

temperature 37 °C 

airflow 10 L·min−1 

stirrer speed 500 rpm 

pH 6.9 # 

𝑡0 4.30 h 3.10 h 

𝑉(𝑡0) 2.70 L 

𝛾𝑋(𝑡0) 3.20 g/L 

𝛾𝑆(𝑡0) 0.78 g/L 0.50 g/L 
𝛾𝑆𝑖𝑛

 500 g/L 
𝛾𝑆𝑠𝑝

 0.2 g/L 0.1 g/L 
# by controlled addition of 4 N NaOH antifoam (PE8100, BASF, Germany). 

The first set of experimental data has been used for the identification of the model 

parameters (Figure 1a), while the second data set has been employed for the verification 

of the obtained mathematical model (Figure 1b).  

  
(a) (b) 

Figure 1. Time profiles of the process variables—real experimental data: (a) data used for modeling; 

(b) data used for model verification. 
Figure 1. Time profiles of the process variables—real experimental data: (a) data used for modeling;
(b) data used for model verification.

2.1.2. Mathematical Model of E. coli BL21(DE3)pPhyt109 Fed-Batch Cultivation Process

The mathematical model is based on the following assumptions.

• To simplify the model, all possible effects of mixing the highly concentrated feeds with
the cultivation medium are ignored. The bioreactor is completely mixed.

• Throughout the experiment, the viscosity of the suspension in the reactor
remains constant.

• Biomass, phytase, and water are the main products of E. coli cultivation.
• The substrate (glucose) is consumed mainly oxidatively.
• The growth conditions are balanced.
• Balanced growth conditions are assumed, meaning that any deviation in the growth

rate, substrate consumption, or phytase production is not expected to have a significant
impact on the elemental composition of the biomass.

• The production of phytase, for simplicity, is considered to be a one-step
enzymatic reaction.
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The fed-batch cultivation of E. coli BL21(DE3)pPhyt109 involves the measurement of
rates associated with cell growth, sugar consumption, and phytase production. These rates
are commonly evaluated through the use of a mass balance as follows [56]:

dγX
dt

= µmax
γS

kS + γS
γX −

Q
V

γX , (1)

dγS
dt

=
1

YS/X
µmax

γS
kS + γS

γX +
Q
V
(γSin − γS), (2)

dγP
dt

=
1

YP/X
µmax

γS
kS + γS

γX −
Q
V

γP, (3)

dV
dt

= Q, (4)

where γX—concentration of the biomass, g/L; γS—concentration of the substrate (glucose),
g/L; γP—concentration of the phytase, g/L; Q—influent flow rate, h−1; V—bioreactor
volume, L; γSin—influent glucose concentration, g/L; µmax—maximum specific growth
rate, h−1; YS/X and YP/X—yield coefficients, g/g; kS—saturation constant, g/L.

Four model parameters should be identified—p = [µmax kS YS/X YP/X ].
The parameter identification problem is essentially minimizing the distance measure J

between the experimental data and the values of the state variables predicted by the model.
The model parameter’s vector p was estimated based on the objective function J:

J =
n

∑
i=1

{[
γXexp(i)− γXmod(i)

]}2
+
{[

γSexp(i)− γSmod(i)
]}2

+
{[

γPexp(i)− γPmod(i)
]}2 → min, (5)

where n is the length of the data vector for the state variables γX, γS, and γP; γXexp,
γSexp, and γPexp are the existing experimental data; γXmod, γSmod, and γPmod are the model
predictions for a given set of parameters.

2.2. Metaheuristic Algorithms for Model Parameter Identification
2.2.1. Crow Search Algorithm

The crow search algorithm (CSA), introduced by Askarzadeh in 2006 [15], depicts the
intelligent behavior of crows.

Crows live in flocks. Each crow in the flock stores food in a secret place and can
retrieve it months later if necessary. The birds’ intelligence is expressed in many ways,
including how they observe and follow other crows to their hidden places and steal the
food buried there. If a crow senses that it is being followed, it tries to deceive the pursuer.

How is the crows’ behavior simulated by the algorithm for a specific problem?
The number of crows in the flock is N. The current position of each crow is presented

as a d-dimensional vector, crowi =
{

crow1
i , . . . , crowd

i

}
, i ∈ [1; N], where d is the problem

size. Each position is a feasible solution to the considered problem. Initially, all crows in
the flock are positioned randomly. Each crow has the position of the hiding place stored in
its memory, memi. This represents the best position of the crow yet.

The crows are in constant search of better food sources. At a certain point in time,
crowi may follow crowj. If crowj is unaware that it is being followed, it will lead crowi to its
hiding place. The current position of crowi is adjusted accordingly:

crowi = crowi + ri × f light_length×
(
memj − crowi

)
, (6)

where ri ∈ [0; 1] is a random number with a uniform distribution. However, if crowj is
aware of the presence of crowi, in order to protect its hiding place, it will try to deceive
the pursuer by taking it somewhere random. The position of crowi is then changed to a
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randomly generated one. The awareness of a crow is modeled by a random number and
compared to an awareness probability parameter.

CSA depends on a few parameters: the number of crows in the flock N, the maximum
number of iterations MaxIter, the flight length fl, and the awareness probability AP.

2.2.2. Genetic Algorithm

The genetic algorithm (GA), introduced by Holland [10,11], is an abstraction of Dar-
win’s evolution theory. Generation after generation, individuals try to adapt to environ-
mental changes in order to survive and reproduce.

How does the population evolve through the generations?
The size of the population is NInd. For a problem of size d, each individual is encoded

as a d-dimensional vector, an analogue of a chromosome and a possible solution. Their
ability to adapt is modeled by a fitness function. Since the population size is constant, some
individuals die and are replaced by new ones.

The next generation is formed by selected individuals on which genetic operators such
as crossover and mutation are applied. Individuals with better fitness evaluations are more
likely to reproduce. Parts from the selected individuals are combined. Therefore, the newly
generated solutions share similar characteristics with their parents. The mutation of an
individual is achieved by changing randomly selected parts.

The genetic operators aim to take advantage of the knowledge acquired over genera-
tions but also to ensure diversity in the population.

GA depends on more input parameters compared to CSA: the population size NInd,
the maximum number of generations MaxGen, the generation gap GGAP, the crossover
probability pc and the crossover operator, the mutation rate pm and the type of mutation,
and the criterion for selecting the best individuals.

3. Hybrid GA-CSA

CSA has the potential to find the optimum solution for certain configurations of the
search space [15,68]. Randomly generated initial solutions affect the convergence speed of
the algorithm and the required computational resources. The more poorly distributed in
the search space are these initial solutions and the further they are from the sought optimal
solution, the longer it takes for the algorithm to reach this optimum.

A collaboration between two algorithms, GSA and GA, is hereby investigated in
an attempt to study the algorithms’ behavior, minimize their drawbacks, and accelerate
their advantages.

GA is designed to explore a wide range of the search space. However, it converges
slowly [69,70]. In the proposed GA-CSA hybrid, GA is employed in the CSA initialization
phase to generate the crows’ initial positions. For just a few generations, these good ex-
ploration abilities of GA are exploited to guide the CSA initial population in the correct
direction. Providing a good starting point, CSA requires a significantly reduced popu-
lation size and number of iterations to reach the sought optimum (or a close enough)
solution. The computational resources necessary to improve the solution accuracy are also
essentially decreased.

The pseudo-code of the proposed GA-CSA hybrid algorithm is presented below
(Algorithm 1).
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Algorithm 1: Pseudo-code of the hybrid GA-CSA

1 Begin
2 define the GA input parameters: GA operators, NInd, MaxGen, GGAP, pc, and pm
3 define the CSA input parameters: N, MaxIter, fl, AP
4 problem initialization: number of parameters d, parameters’ bounds,

objective function f(x), process model, experimental data
5 % initialization phase of CSA
6 for i := 1 to N
7 generate randomly NInd number of individuals
8 evaluate the individuals in the population
9 for j := 1 to MaxGen
10 select individuals from the current generation
11 perform crossover on the selected individuals with a probability pc
12 perform mutation on each individual with a probability pm
13 place the offspring into the new population
14 evaluate the individuals in the new population
15 end for
16 rank the individuals in the population
17 store the best individual and its estimation
17 end for
18 % intrinsic part of CSA
19 initialize the memory of each crow
20 for iter := 1 to MaxIter
21 for i := 1 to N (all crows in the flock)
22 choose randomly a crow to follow
23 define an awareness probability ri
24 if ri ≥ AP
25 change the current position of the crowi
26 Else
27 generate a new random position of the crowi
28 end if
29 end for
30 check if all new positions are feasible
31 evaluate the new positions
32 update the memory of each crow
33 end for
34 rank the position of the crows in the flock
35 store the best position
36 End

4. Numerical Results and Discussion
4.1. Parameters’ Algorithms Tuning

GA has been applied repeatedly for the mathematical modeling of cultivation pro-
cesses [9,71,72]. Based on the thorough investigation of the parameters’ influence [8], the
parameters’ values and GA functions have been set as follows:

• the population size NInd = 100 (pure GA) and NInd = 25 (hybrid GA-CSA);
• the maximum number of generations MaxGen = 100 (pure GA) and MaxGen = 25

(hybrid GA-CSA);
• the generation gap GGAP = 0.97;
• the crossover probability pc = 0.7;
• the crossover operator—extended intermediate recombination;
• the mutation rate pm = 0.1;
• the type of mutation—real-value mutation like Breeder genetic algorithm [73];
• the selection operator—roulette wheel selection.

Since CSA has been applied for the first time for the parameter identification of the
mathematical model of the considered cultivation process, the initial algorithm’s parameters
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have been chosen based on values known in the literature (Table 1) and several pre-tests.
The investigated values are fl = [1 2 3] and AP = [0.01 0.05 0.1 0.2 0.3]. The following CSA
parameters have been selected:

• the population size N = 100 (pure CSA) and N = 25 (hybrid GA-CSA);
• the maximum number of iterations MaxIter = 100 (pure CSA) and MaxIter = 50 (hybrid

GA-CSA);
• the flight length fl = 2;
• the awareness probability AP = 0.1.

In the hybrid algorithm, a small GA population was engaged in the beginning. The
set of initial solutions for CSA was generated for only 25 iterations. The population of the
same size evolved over 50 iterations.

4.2. Parameter Identification of E. coli BL21(DE3)pPhyt109 Fed-Batch Cultivation Process

The parameter identification of the nonlinear mathematical model (Equations (1)–(4))
of the E. coli BL21(DE3)pPhyt109 fed-batch cultivation process performed using the GA-CSA
hybrid algorithm is described below.

4.2.1. Simulation Setup

The proposed mathematical model consists of a set of four ODEs (Equations (1)–(4))
with three dependent state variables x = [γX γS γP] and four unknown parameters
p = [µmax kS YS/X YP/X ].

A set of individuals that were potential solutions to the problem at hand formed
the population of the GA-CSA hybrid. The solutions were represented as vectors whose
elements corresponded to the unknown model parameters. Based on the authors’ exper-
tise [56], the ranges of these parameters were estimated as the following:

0 ≤ µmax ≤ 0.9; 0.03 ≤ kS ≤ 0.5; 0.5 ≤ YS/X ≤ 10; 0.5 ≤ YP/X ≤ 10. (7)

The numerical experiments were performed on an Intel® Core™i7-8700 CPU @
3.20 GHz, 3192 MHz, 32 GB Memory (RAM), with a Windows 10 pro (64 bit) operating
system. The considered competing algorithms were implemented in Matlab R2019a. The
implementation of the GA-CSA hybrid technique followed the above-presented pseudo-
code. The mathematical model of E. coli was created in the Simulink R2019a environ-
ment. The solver options were the fixed step size of 0.01 and ode4 (Runge–Kutta) with
TIMESPAN = [0 10].

A series of parameter identification procedures of the described model (Equations (1)–(4))
were performed using GA-CSA. Due to the stochastic characteristics of the applied algorithms,
30 runs were conducted.

4.2.2. Numerical Results

The results of the application of the proposed GA-CSA hybrid algorithm to the param-
eter identification of the E. coli BL21(DE3)pPhyt109 cultivation process model are presented
in Tables 3–5. Table 3 summarizes the mean, the best, and the worst results for the criterion
value J of the performed 30 runs and the obtained SD. The results obtained by the determin-
istic algorithms for different initial solutions are presented in Table 4. Since deterministic
methods produce the same results for a particular set of inputs, a set of different initial
solutions was tested. The results for the four best initial solutions are given in Table 4.
Table 5 presents the estimated model parameters of all algorithms and the corresponding
SD for the stochastic algorithms.
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Table 3. Comparison of the objective function values obtained by GA-CSA and GA and CSA.

Algorithm
Objective Function, J

Mean Worst Best SD

GA 121.0858 121.1001 121.0831 0.003546
CSA 120.1905 120.2070 120.1731 0.009986

GA-CSA 120.2095 120.3507 120.1724 0.032704

Table 4. Comparison of the objective function values obtained by SQP and Q-N for different
initial solutions.

Algorithm Initial Solution
[µmax; kS; YS/X; YP/X]

Objective Function, J

SQP
[0.85; 0.03; 2.5; 2.5]

225.3851
Q-N 185.2192

SQP
[0.75; 0.08; 3.5; 3.5]

122.7380
Q-N 483.1404

SQP
[0.8; 0.03; 2; 2.5]

227.5362
Q-N 860.9834

SQP
[0.6; 0.05; 3.5; 3.5]

148.5591
Q-N 378.2660

Table 5. Comparison of the obtained parameter estimates.

Algorithm
Model Parameter Estimates

µmax, [h−1] SD kS, [g·L−1] SD YS/X,
[g·g−1] SD YP/X,

[g·g−1] SD

SQP 0.729 -- 0.0156 -- 2.276 -- 1.957 --
Q-N 0.850 -- 0.0315 -- 2.588 -- 2.400 --
GA 0.900 3.76 × 10−5 0.0060 1.18E-06 2.262 0.0025 1.943 0.0025
CSA 0.888 0.0196 0.0054 0.00028 2.250 0.0029 1.943 0.0035

GA-CSA 0.892 0.0232 0.0054 0.00033 2.251 0.0036 1.944 0.0039

The results of the novel hybrid metaheuristic algorithm were compared to those
obtained by the pure CA and CSA and the two deterministic methods—SQP and Q-N.
All algorithms were applied for the considered problem with the same upper and lower
parameters’ bounds (Equation (7)).

The graphical results are presented in Figures 2 and 3. The time profiles of the process
variables obtained by the QSP and Q-N models based on the selected best four initial
solutions are presented in Figure 2. The best QSP and Q-N models are compared to the
obtained GA, CSA, and hybrid GA-CSA models in Figure 3.

The proposed hybrid metaheuristic algorithm is capable of finding the best solution
with a significantly smaller computational resource requirement. For instance, it requires a
much smaller number of iterations (only 25 in the beginning and then 50) and a smaller
population size (only 25% of the population size of GA and CSA). For example, for 100 in-
dividuals and 100 iterations, there are 100 × 100 = 10,000 objective function evaluations.
For the GA-CSA hybrid, this number is 25 × 25 + 25 × 50 = 1875. By applying the hybrid
GA-CSA, better results were obtained using 80% less computational resources. The results
of QSP and Q-N were obtained based on approximately 1000 objective function evaluations.
However, the strong dependence of the solution on the initial conditions makes it very
difficult to use these methods, especially in cases where initial estimates cannot be set with
good accuracy. As can be seen from Table 4, the initial solutions are quite close to those
achieved by the metaheuristic algorithms. Only for these particular initial conditions, QSP
and Q-N were able to yield satisfactory outcomes.
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CSA achieved the best mean value. Both the GA and CSA estimates had a better SD
compared to GA-CSA. To further improve the hybrid algorithm, additional investigations
are necessary to enhance the desired population distribution through hybridization. One
possible direction is to apply adaptive CSA parameters (fl and AP), which will affect the
exploitation and exploration performance of the algorithm [32–34].

In the next two sections, the obtained results are interpreted to show that they are
statistically different, meaning that the considered metaheuristic algorithms have produced
distinguishable models.

4.2.3. Interpretation of the Results

The next results represent the InterCriteria analysis and some statistical analyses
performed over the results of the metaheuristic algorithms due to their stochastic nature.

InterCriteria Analysis of the Results

Firstly, to assess the similarity between the developed models, the ICrA approach
was applied to evaluate the proximity of the GA, CSA, and hybrid GA-CSA results. An
intuitionistic fuzzy pair (IFP) [74,75] was obtained as an estimation of the degrees of “agree-
ment” (consonance) and “disagreement” (dissonance) between the two algorithms. The IFP
is an ordered pair of real non-negative numbers

〈
µC,C′ , νC,C′

〉
such that µC,C′ + νC,C′ ≤ 1.

The difference πC,C′ = 1− µC,C′ + νC,C′ is considered as a degree of “uncertainty” [76].
The analysis was carried out using the cross-platform software ICrAData v2.5 [77].

The calculations employed numerical data from 30 runs of each algorithm (GA, CSA, and
GA-CSA) for the model parameter estimates and the values of the objective function. The
resulting degree of agreement µC,C′ and degree of disagreement νC,C′ between the three
considered algorithms are presented as index matrices [78] in the following form:〈

µC,C′ , vC,C′
〉

GA CSA GA-CSA
GA 〈1, 0〉 〈0.49, 0.51〉 〈0.53, 0.47〉
CSA 〈0.49, 0.51〉 〈1, 0〉 〈0.71, 0.29〉

GA-CSA 〈0.53, 0.47〉 〈0.71, 0.29〉 〈1, 0〉

(8)

The obtained results are visualized in Figure 4 in the intuitionistic fuzzy interpreta-
tion triangle.
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Each IF pair in Equation (8) estimates the similarity of the observed numerical results.
The values defining the consonance and dissonance between the algorithms have been
interpreted according to the scale defined in [76]. The obtained

〈
µC,C′ , νC,C′

〉
for each pair

of algorithms show that the numerical results are distinguishable. The pairs GA vs. CSA
and GA vs. GA-CSA are in strong dissonance, i.e., the data do not show any correlation.
The pair CSA vs. GA-CSA is in weak dissonance, i.e., there is weaker independence of the
results compared to the other two pairs of algorithms. This result confirms the success of
the collaborative hybridization of GA and CSA.

The strong dissonance between the results of GA and GA-CSA shows that the pro-
posed hybrid has completely different behavior compared to GA. This indicates that the
algorithm’s exploration is substantially influenced by engaging GA in the initial group
strategy, while CSA’s exploitation is effectively maintained in the hybrid. Considering also
the best objective function value achieved by the hybrid, it can be concluded that the aim
of constructing a more uniform and focused distribution of the initial crows’ population is
fulfilled. The weaker independence between CSA and the hybrid shows that the behavior
of the new algorithm is changed compared to the pure CSA, but, at the same time, the
essential characteristics of CSA can still be found in the hybrid.

Statistical Analysis of the Results

The statistical analysis was performed on the same numerical data from 30 runs of the
three algorithms. Box plot diagrams visualizing the summary statistics of the GA, CSA,
and GA-CSA results (mean values, SD, and the median of the estimated model parameters
and the obtained objective function value J) are presented in Figure 5.

Nonparametric tests, namely the Friedman test, the Wilcoxon test, and the one-way
analysis of variance (ANOVA) test, were applied to compare the performance of the
algorithms based on the objective function J evaluations obtained by the 30 runs of each
algorithm. The results are presented in Figures 6 and 7 and Table 6.

The conducted statistical tests show that the results achieved by the pure GA and CSA
are statistically different from those of the hybrid GA-CSA. In all performed tests, p-values
substantially lower than 0.05 are observed. This indicates that the mean of the objective
function is not the same for all three algorithms, and the obtained models are statistically
distinguishable. These facts are confirmed by ICrA as well.
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Table 6. Statistical analysis—Wilcoxon test.

Wilcoxon Test

Algorithms p-Value H
STATS

Zval Ranksum

GA vs. CSA 3.0199 × 10−11 1 6.6456 1365
GA vs. GA-CSA 2.9392 × 10−11 1 5.5268 1451
CSA vs. GA-CSA 0.0047 1 −2.8244 723.5

4.3. Verification of the Obtained Mathematical Model of E. coli BL21(DE3)pPhyt109 Fed-Batch
Cultivation Process

The developed mathematical models of the E. coli BL21(DE3)pPhyt109 fed-batch cultiva-
tion process were verified with an independent set of experimental data. The characteristics
of the cultivation are presented in Table 2 and Figure 1b.

The dynamics of the main process variables (biomass γX , substrate γS, and phytase
γP) were compared to the real data set. The results are presented in Figure 8.
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To compare the quality of the proposed models, residuals, i.e., the differences between
the experimental data and model-predicted values of data, were calculated based on
Equation (5). The obtained J values (errors) are presented in Table 7.
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Table 7. Model verification comparison of the objective function values obtained by SQP and Q-N at
different initial solutions.

Algorithm Error, J

SQP 1620,2603
Q-N 1892,2863
GA 1408,1104
CSA 1408,0141

GA-CSA 1386,9798

The verification results are very positive. The developed models follow the behavior
of the CP dynamics, with slight deviations in the description of the phytase. However, the
models still exhibit the same type of behavior of the product change during the process
(Figure 8c).

The results obtained for the description of the glucose concentration indicate rather
unreliable data (noise, inaccurate analysis, wrong measurements, etc.). Some of the experi-
mental data (Figure 8b) may be incorrect.

The observed deviations can be explained by the fact that the models were developed
based on data from a CP where glucose was maintained at 0.2 g·L−1, while the verification
data came from a CP with the glucose concentration set at 0.1 g·L−1.

The behavior of the models can be distinguished most clearly from the results shown
in Figure 8b. The experimental data on glucose variation are best described by the hybrid
GA-CSA, followed by CSA and GA. Considering the deterministic algorithms, the SQP
model shows better performance than the Q-N method. The Q-N model seems to be the
only one that exhibits distinct behavior for the process variables γX and γP, while the other
five models predict these variables in an almost identical manner.

The results presented in Table 7 confirm the observation made through the graphical
results from the model verification depicted in Figure 8. The estimated model residuals
show that the GA-CSA hybrid model has the highest quality, indicated by the smallest
error. The models estimated by GA and CSA have very close residuals. Here, again, the
SQP model shows a better fit for the new data compared to the Q-N model.

5. Conclusions

A hybrid algorithm is presented that combines the exploration abilities of GA and
the exploitation of CSA. The incorporation of GA resulted in improved CSA convergence
and a reduced risk of falling into a local extremum. The hybrid GA-CSA was compared
to the pure GA and pure CSA to evaluate its performance. The algorithms were applied
for the modeling of the E. coli BL21(DE3)pPhyt109 fed-batch cultivation process. Parameter
identification procedures of a nonlinear model of the considered CP were performed. Based
on a set of experimental data, mathematical models were obtained and then successfully
verified by a second set of experimental data for the same CP. The best performance was
achieved by the proposed hybrid GA-CSA. The results were confirmed by the InterCriteria
analysis and statistical tests, both parametric and nonparametric. The analysis indicated
that the three metaheuristic algorithms, GA, CSA, and GA-CSA, achieved statistically
distinguishable numerical results. The estimated strong dissonance between the pairs
GA vs. CSA and CSA vs. GA-CSA, and the weak dissonance between GA vs. GA-CSA,
showed that an algorithm with outstanding performance was developed based on the
proposed collaborative hybridization. The results obtained by applying metaheuristic
algorithms were compared to the results from two deterministic algorithms—the SQP and
Q-N methods. The model estimated by SQP showed better quality compared to the Q-N
model. Both methods did not perform well compared to GA, CSA, and the hybrid GA-CSA;
moreover, they were highly dependent on the given initial solutions.

The proposed hybrid algorithm produced the most accurate model and best described
the dynamics of the considered CP of E. coli BL21(DE3)pPhyt109. Upon verifying the models,
again, the GA-CSA model showed the closest proximity to the available experimental data.
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Despite the obvious advantages of the hybrid metaheuristic, it also showed some
disadvantages. The resulting parameter estimates of the models had the largest SD, i.e.,
they varied widely. In the future, efforts will be focused on improving the performance of
the GA-CSA method, especially in reducing the high variability of the estimates.

A possible solution to overcome this disadvantage is to use an adaptive variation of
the flight length and awareness probability. Applying adaptive algorithm parameters will
enhance the balance between exploitation and exploration performance [32–34].
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