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Abstract: Hydrochar produced during the hydrothermal conversion of organic solid waste could
enhance the anaerobic digestion (AD) efficiency of hydrothermal pre-treated sludge. However,
there was still a lack of systematic research on the effect of hydrochar on improving the methane
production and microbial communities of the AD of hydrothermal pre-treated sludge under different
temperature conditions. This study explored the effect of hydrochar on methane production from
the mesophilic and thermophilic AD of hydrothermal pre-treated sludge and the mechanism of
microbial action based on metagenomics analysis. Hydrochar could improve the methane production
efficiency of mesophilic and thermophilic AD at different initial concentrations of hydrothermal
pre-treated sludge. However, the effect of hydrochar in promoting AD varied under different AD
temperatures. Both temperature and hydrochar were crucial factors that could influence the microbial
community. Moreover, hydrochar increased the relative abundance of archaea in the AD system,
resulting in an increment of 4.99% to 15.30% compared to the control group. Mesophilic reactors
exhibit greater microbial diversity. Hydrochar resulted in the significant enrichment of Synergistota in
the thermophilic AD system and the enrichment of Firmicutes in the mesophilic AD system, thereby
promoting the hydrolysis of proteins and polysaccharides during AD. This study has practical
significance for the resource treatment of excess activated sludge.

Keywords: anaerobic digestion; methane production; hydrochar; hydrothermal pre-treated sludge;
microbial analysis

1. Introduction

Along with the rapid urbanization and industrialization processes, a substantial
volume of water resources is being consumed, which might lead to increasing demand for
wastewater treatment and a corresponding rise in the annual generation of excess activated
sludge [1–4]. Furthermore, the associated management costs related to excess activated
sludge disposal impose a considerable economic challenge on wastewater treatment plants
(WWTPs), representing over 50% of the complete expenditures on wastewater treatment [5].

Excess activated sludge has a complex composition, containing a series of unutilized
organic constituents and substantial amounts of nutrients [6]. Furthermore, it also includes
a spectrum of detrimental substances, including heavy metals, persistent organic pollutants,
and pathogens [4,5,7,8]. In the absence of timely and appropriate treatment, it has the
potential to result in significant secondary pollution. Anaerobic digestion (AD) could
effectively transform organic solid waste into CH4 and other biofuels via a sequence
of processes, including hydrolysis and acidification, which could not only facilitate the
reduction and resource utilization of organic solid waste but also remove most pathogens
present in organic solid waste and limit the odor problems related to residual decaying
matter [9,10]. Therefore, it was considered a pivotal approach for managing organic solid
waste, such as sludge [5]. Nevertheless, the gathering of volatile fatty acids (VFAs) in the
AD process could lead to reactor instability and reduce methane production [11,12].
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The complicated structure of sludge flocs and the refractory nature of organic con-
stituents within sludge hinder their easy release and subsequent degradation, collectively
constraining the efficiency of AD processes [13]. To overcome this constraint, a range of
pre-treatment methods, including thermal, mechanical, and biological processes, have
been utilized either individually or in combination before AD [14–16]. Hydrothermal
carbonization (HTC) is the thermochemical process wherein biomass transforms into
solid products (i.e., hydrochar) and liquid products (i.e., bio-oil) under subcritical wa-
ter conditions, achieved through precise temperature and pressure control (170–350 ◦C,
4–22 MPa) [17,18]. The hydrochar, as a solid byproduct obtained from HTC, exhibited
exceptional hydrophobic characteristics, facilitating its seamless separation from the sus-
pension [19]. Hydrochar has been widely used in environmental remediation, catalyst
carriers, and other fields due to its economy and environmental friendliness [20]. Generally,
with increased reaction temperature and prolonged reaction time, the hydrochar exhibits
a trend of initially increasing and subsequently decreasing oxygen-containing functional
groups [19]. The alterations in the properties of hydrochar could correspondingly impact
the promoting performance of AD [21]. The pace at which hydrolysis occurs serves as the
bottleneck for sludge AD [13]. However, the hydrothermal process, in particular, proves
advantageous in liberating a substantial amount of readily biodegradable substances from
excess activated sludge, thereby improving the AD efficiency of sludge [22]. The lower hy-
drothermal temperature and shorter reaction time imply reduced operational costs; hence,
it is essential to explore the methane production performance of sludge using hydrothermal
treatment under lower pyrolysis temperature conditions [23]. However, excessively low
temperatures may compromise the effectiveness of the pre-treatment [24]. Previous studies
have revealed a significant enhancement in methane production from residual sludge
after treatment at 170 ◦C for 30 min [21]. Previous studies have also demonstrated that
hydrochar generated during the hydrothermal conversion of organic solid wastes could
enhance the direct interspecies electron transfer (DIET) process in AD and alleviate the
accumulation of VFAs through a mutual metabolism between microorganisms, thereby
accelerating methane production [21,25,26]. However, there remains a gap in the impact
of hydrochar on the enhancement of methane production and microbial communities in
the AD of hydrothermal pre-treated sludge at different AD temperatures. Additionally,
previous research has also indicated that AD processes could result in the enrichment of
either thermophilic or mesophilic microorganisms within reactors at different tempera-
tures and lead to the formation of distinct microbial community types that exert varying
influences on AD [27]. An adequate substrate means more available carbon sources and
more CH4 production by microorganisms during AD. However, excessively high substrate
concentrations might result in substrate inhibition and lower methane production [28].

Taking into account the aforementioned factors, this study aimed to examine how
hydrochar influences the AD process of hydrothermally pre-treated sludge under both
mesophilic and thermophilic conditions, including the influence of hydrochar on the
efficiency of mesophilic and thermophilic AD in terms of methane production, VFA con-
centration, and pH. Furthermore, metagenomic analysis was also used to elucidate the
enhancement mechanisms of AD in relation to microbial communities.

2. Materials and Methods
2.1. Inoculum and Sludge

The inoculum employed in this research was obtained from an upflow anaerobic
sludge blanket (UASB) reactor. The inoculum underwent a 5 min grinding process in a
grinder (QX-650, Qinxin, China) to achieve homogenization prior to the experiment. The
inoculated sludge exhibited the following physical and chemical properties: volatile solids
(VS) 30.1 ± 1.9 g/L, total solids (TS) 37.2 ± 2.8 g/L, and pH 7.2 ± 0.1.

The preparation process of hydrothermal pre-treated sludge used in this study was
as follows: Sludge samples were collected from the secondary sedimentation tank at a
WWTP in Shanghai. Detailed information about the WWTP can be found in Text S1.
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The samples were placed in a centrifuge (TG16-WS, Cence, Changsha, China) in batches
at a speed of 9500 rpm/min to separate water and sludge until their moisture content
reached approximately 90%. Subsequently, 6 L sludge samples were placed in a 10 L
pressurized stirred-tank reactor (JWOGF-H10L, Taikang, Xi’an, China) with agitation for
preparation. The stirring rate was set at 200 rpm, with a heating rate of 1 ◦C/min, and the
reaction temperature was maintained at 170 ◦C. After a 30 min reaction period at 170 ◦C,
cooling was initiated by introducing condensed water. Once the internal temperature of
the reaction vessel decreased to room temperature, the hydrothermal sludge was retrieved
for subsequent batch experiments. The physicochemical properties of the hydrothermal
pre-treated sludge were as follows: TS 31.75 ± 0.8 g/L, VS 25.54 ± 0.7 g/L, and pH 6.9 ± 0.1.

2.2. Hydrochar Production

Hydrochar was prepared using cornstalk (moisture content 21.4%) as the raw material.
The collected cornstalk was sieved through a 40-mesh sieve after being pulverized. The
resultant mixture of cornstalk and deionized water, with a mass ratio of 1:10, was introduced
into a 1 L pressurized stirred-tank reactor (EasyChem, Century SenLong experimental,
Beijing, China). Referring to the previous study by Shi et al., the reactor temperature was
increased to 260 ◦C with a rate of 10 ◦C/min, and the reaction was carried out at 260 ◦C
and 5 MPa pressure for 1 h [21]. The entire reaction process involved stirring at a rate
of 200 rpm. After the reaction, solid and liquid phases were separated using a suction
filter bottle with a 0.45 µm filter membrane and a circulating water vacuum pump (SHZ-
D(III), Huachen Instruments, Shanghai, China). To prevent the influence of bio-oil on
the solid surface of the AD process, multiple washes with tetrahydrofuran (THF) were
conducted as a precautionary measure. Specifically, the hydrothermal charcoal was soaked
in tetrahydrofuran (10 mL THF/g hydrochar), sonicated for 30 min, and centrifuged to
discard the THF. This process was repeated several times until the THF was clear. Given
the toxicity of THF to microorganisms, 95% ethanol was employed for a secondary rinsing
of residual tetrahydrofuran on the hydrothermal charcoal surface, continuing until the
ethanol solution was clarified after washing. Subsequently, the hydrochar was dried in a
60 ◦C oven for 24 h and ground to pass through a 100-mesh sieve for further use.

2.3. Batch Experiments

Batch experiments were conducted using 118 mL serum bottles equipped with butyl
rubber stoppers. The operational volume within each serum bottle was set at 40 mL, which
included hydrothermally treated sludge, deionized water, and inoculated sludge. The
specific dosage of the hydrothermal treatment sludge, deionized water, and inoculated
sludge in each reactor is shown in Table S1. The concentration gradient of hydrothermally
treated sludge in the serum bottles was set at 5.0 g VS/L, 10.0 g VS/L, and 20.0 g VS/L. In
addition, 10 g/L of hydrochar was introduced into the serum bottles, and a control group
without hydrochar was established. Blank groups without hydrothermally treated sludge
were established to monitor gas production from the inoculated sludge. Pre-experiments
confirmed that the hydrochar used in this study did not produce methane. The starting
pH in each serum bottle was set to 7.5 using HCl or NaOH. Nitrogen gas was purged for
5 min, and then the bottles were sealed with butyl rubber stoppers to maintain anaerobic
conditions. The sealed bottles were placed in temperature-controlled incubators at 35 ◦C
and 55 ◦C, respectively. Six parallel bottles were set up for each experimental condition,
with three bottles used for measuring methane production and the other three for assessing
parameters such as pH, VFAs, and microbial composition.

The experimental groups were named based on the following format: “Temperature
(M, mesophilic; H, thermophilic)—Presence of Hydrochar (C, no hydrochar; H, hydrochar
added)—Initial Substrate Concentration (L, initial concentration of 5.0 g VS/L; M, initial
concentration of 10.0 g VS/L; H, initial concentration of 20.0 g VS/L)”. For example, the
conditions for the MC-M group reactor were 35 ◦C with an initial sludge concentration of
10.0 g VS/L and no hydrochar added. After the experiments, samples from four groups,
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MC-M, MH-M, HC-MH, and HH-M, were selected for metagenomic analysis based on
their methane production performance.

2.4. DNA Extraction and Sequencing

The total genomic DNA was collected using the PowerMax Soil DNA Isolation Kit
(MoBio Laboratories, Carlsbad, CA, USA) [29]. The quality of the genomic DNA was
assessed using Nanodrop ND-2000c (Thermo Fisher Scientific, Waltham, MA, USA). The
construction of metagenomic libraries was performed using the Illumina Nextera DNA
Library Preparation Kit [22]. DNA sequencing was carried out on the Illumina HiSeq 2000
platform, generating 150 base pair paired-end reads. Raw sequencing data were uploaded
to the China Bioinformation Center with project number PRJCA021203.

2.5. Metagenomic Analysis Methods

The FastQC software was employed to trim the paired-end reads [30]. MEGAHIT
(v1.0) was utilized to assemble the metagenome [31]. Metagenome binning was conducted
based on the default parameters of MetaBAT2, CONCOCT, and MaxBin2. Subsequently, the
bins produced using these three binning software were amalgamated using the MetaWRAP
pipeline and subjected to redundancy removal [32]. The integrity and contamination
levels of microbial genomes (MAGs) were determined using CheckM (v1.0.4) [33], which
evaluates them by identifying and quantifying single-copy marker genes. Only those
genomes estimated to have a completeness exceeding 90% and contamination levels below
5% were retained. The MAGs taxonomic classification was executed using gtdb-tk (v0.1.3)
with the “classify_wf” function [34].

2.6. Analytical Methods

VFA concentrations in the collected liquid samples from the anaerobic reaction process
were analyzed using HPLC (Agilent Technologies, Santa Clara, CA, USA) according to
the method of He et al. [26]. The TS and VS were determined following the procedures
outlined in the Standard Methods [35].

Data analysis was performed using SPSS and Excel, and the corresponding charts
were generated using OriginPro 2019b. A Spearman correlation analysis and one-way
ANOVA were conducted using SPSS Statistics v20. A principal component analysis (PCA)
was conducted using the vegan package in R 4.1.0. Microbial abundance heatmaps were
generated using the heatmap package in R 4.1.0.

3. Results
3.1. Hydrochar Enhanced the Mesophilic AD of Hydrothermal Pre-Treated Sludge

The effect of hydrochar on the mesophilic AD process under different substrate concen-
trations was explored by controlling the initial concentration of hydrothermal pre-treated
sludge. As the concentration of hydrothermal pre-treated sludge increased, the cumulative
methane production in the MC-L, MC-M, and MC-H reactors gradually decreased in the
absence of hydrochar (Figure 1), which might be attributed to the accumulation of VFAs
resulting from the hydrolysis and fermentation of high-concentration organics within the
reactors, which subsequently inhibited the anaerobic reaction process. However, with the ad-
dition of hydrochar, there was an overall improvement in AD efficiency across reactors with
different sludge concentrations, which suggests that hydrochar could effectively enhance
the AD process of hydrothermal pre-treated sludge. At an initial hydrothermal pre-treated
sludge concentration of 5.0 g VS/L, the MC-L group achieved an actual methane production
of 190.66 ± 11.15 mL CH4/g VS on the 30th day, while the MH-L group reached a stable
methane production by the 24th day, with an actual methane production of 200.00 ± 3.75 mL
CH4/g VS on the 30th day. With an elevation in the initial concentration of hydrothermally
pre-treated sludge, the impact of hydrochar addition on augmenting the actual methane
production in reactors showed improvement. Furthermore, we observed that as the initial
hydrothermal pre-treated sludge concentration increased, the effect of hydrochar addition
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on enhancing actual methane production in reactors improved. At an initial hydrothermal
pre-treated sludge concentration of 10.0 g VS/L, the actual methane production of the
MC-M group without hydrochar added on the 30th day was 157.43 ± 4.22 mL CH4/g VS,
while the MH-M group with hydrochar addition achieved an actual methane production
of 218.88 ± 6.77 mL CH4/g VS, resulting in a 39.03% increase compared to the group
without hydrochar. When the initial concentration of hydrothermal pre-treated sludge was
20.0 g VS/L, on the 30th day, the actual methane production of the MH-H group with
hydrochar added was 149.80 ± 4.92 mL CH4/g VS, which showed a significant increase
of 339.10% compared to MC-H. It could be seen that hydrochar significantly enhanced
methane production, especially under lower substrate concentrations.
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Figure 1. Influence of hydrochar on cumulative methane production of hydrothermal pre-treated
sludge with different concentrations during mesophilic AD.

The methane production during the AD process for each group was modeled us-
ing the modified Gompertz model (Text S2), and the corresponding kinetic parameters
for the methane production process are presented in Table S2. The maximum methane
production rates (Rm) for the MC-L, MC-M, and MC-H groups were 11.29 ± 0.70 mL/d,
9.23 ± 0.49 mL/d, and 2.07 ± 0.03 mL/d, respectively. This indicated that the Rm of the reac-
tor without hydrochar addition gradually decreased with an increasing initial hydrothermal
pre-treated sludge-addition concentration. In addition, the Rm for the MH-L, MH-M, and
MH-H groups were 15.25 ± 0.86 mL/d, 14.70 ± 0.75 mL/d, and 9.93 ± 0.35 mL/d, respec-
tively. It indicated that as the initial hydrothermal pre-treated sludge-addition concentration
increased, all reactors with hydrochar exhibited a gradually decreasing trend in the Rm of
the hydrothermal pre-treated sludge AD process. Moreover, there are notable distinctions
in Rm between the reactors with hydrochar addition and those without. Compared to
the MC-L, MC-M, and MC-H groups, the Rm in the MH-L, MH-M, and MH-H groups
with hydrochar increased by 35.05%, 59.26%, and 380.13% (p < 0.05). This indicated that
hydrochar could not only enhance methane production during hydrothermal pre-treated
sludge AD but also improve the Rm of hydrothermal pre-treated sludge.

Apart from Rm, the lag time λ was also a crucial indicator to evaluate the efficiency of
the hydrothermal pre-treated sludge AD process. The increase in λ with the elevated initial
concentration of hydrothermally pre-treated sludge may be attributed to the generation of toxic
compounds during the hydrothermal carbonization process [36]. The λ of the MC-L, MC-M,
and MC-H groups were 7.71 ± 0.46, 12.68 ± 0.51, and 12.99 ± 0.20 days, respectively. When
the initial hydrothermal pre-treated sludge concentrations were 5.0 g VS/L and 10.0 g VS/L,
the addition of hydrochar could significantly shorten the λ of the AD process (p < 0.05), with a
λ of 6.10 ± 0.35 and 8.09 ± 0.33 days for the MH-L and MH-M groups, respectively.

However, under the conditions of an initial hydrothermal pre-treated sludge concen-
tration of 20.0 g VS/L, hydrochar increased the λ in the hydrothermal pre-treated sludge
AD process. The λ for the MC-H and MH-H groups were 12.99 ± 0.20 and 14.82 ± 0.45 days,
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respectively. It was noted that the Rm of the MH-H group surpassed that of the MC-H
group. This might be attributed to the gradual consumption of VFAs in the MH-H group as
the reaction progressed, while the MC-H group remained restricted by hydrolysis. To inves-
tigate the reasons further and understand the influence of hydrochar in the hydrothermal
pre-treated sludge AD process, the changes in pH and VFAs were also measured. Acetate,
propionate, and butyrate emerged as the primary VFA types in hydrothermal pre-treated
sludge AD reactions. In the initial 4–8 days of hydrothermal pre-treated sludge AD, the
concentration of VFAs in the reactor with an initial hydrothermal pre-treated sludge con-
centration of 5.0 g VS/L gradually increased (Figure 2a). The cumulative concentration of
VFAs reached the maximum on the eighth day, and the cumulative concentrations of VFAs
in the MC-L and MH-L groups reached 914.68 mg/L and 1202.96 mg/L, respectively. After
the 12th day of AD, the VFAs in the reactor were rapidly consumed. Adding hydrochar
could enhance the conversion and consumption of VFAs in the AD process of hydrothermal
pre-treated sludge, thereby reducing the accumulation of VFAs in the AD reactor. It is
worth noting that reactors with hydrochar addition exhibited higher VFA accumulation
concentrations compared to those without hydrochar on the fourth and eighth days. This
observation was likely attributed to the function of hydrochar in promoting the break-
down of organic matter in the substrate, which facilitated the acidification step of AD [21].
Reactors with initial hydrothermal pre-treated sludge concentrations of 10.0 g VS/L and
20.0 g VS/L showed a similar trend in the total VFAs concentration as the reactor with
5.0 g VS/L. VFAs initially accumulated and then decreased over time in all reactors. By the
eighth day of the experiment, the reduction in VFA concentrations was more pronounced
in the hydrochar-added groups compared to the control group without hydrochar, and this
trend became more significant with the increasing initial hydrothermal pre-treated sludge
concentration. At the end of the experiment, reactors with the lowest initial concentrations
of hydrothermal pre-treated sludge (MC-L and MH-L) exhibited VFA accumulations of
21.26 mg/L and 7.50 mg/L, respectively (Figure 2b). In contrast, reactors with the high-
est initial hydrothermal pre-treated sludge concentrations (MC-H and MH-H) had VFA
accumulations of 1835.28 mg/L and 321.59 mg/L on the 31st day, which corresponded to
the higher Rm in the hydrochar-added groups (Figure 2c). In experiments with an initial
hydrothermal pre-treated sludge concentration of 5.0 g VS/L, both the experimental and
control groups contained a substantial microbial population capable of promptly metaboliz-
ing the organic compounds and intermediate products within the hydrothermal pre-treated
sludge. These microorganisms could efficiently consume the VFAs generated during the
anaerobic process, thereby mitigating the immediate promoting effect of hydrochar addi-
tion. The results indicated that hydrochar exhibited a more pronounced capacity to facilitate
VFA utilization and degradation in anaerobic reactors operating under high organic load
conditions. In summary, this study demonstrated that hydrochar had an impact on VFA
concentrations during the AD of hydrothermal pre-treated sludge. Hydrochar could not
only promote the hydrolysis and acidification steps in the AD process of hydrothermal
pre-treated sludge, improving the degradation rates of soluble carbohydrates and soluble
proteins but also enhance the consumption of VFAs and other organic substances in reactors
operating under high organic loads.

The fluctuations in pH during the AD of hydrothermal pre-treated sludge were closely
associated with the existence of VFAs. The production and accumulation of VFAs on
the fourth and eighth days resulted in a pronounced decrease in pH across all reactors.
Specifically, on the eighth day, the pH for the MC-L, MC-M, and MC-H groups decreased to
7.17, 6.98, and 6.7, respectively (Figure 2d). Notably, the MH-L, MH-M, and MH-H groups
exhibited even lower pH values (7.13, 6.89, and 6.63, respectively) than their corresponding
control groups, aligning with the respective VFA concentrations within the reactors. And
by the 12th day, the rapid pH increase indicated the extensive consumption of VFAs. The
pH within all groups remained relatively stable after 24 days, signifying the near-complete
depletion of accumulated VFAs.
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Figure 2. Effect of hydrochar on VFAs variation (a–c) and pH variation (d) of hydrothermal pre-
treated sludge with different concentrations during mesophilic AD. In panels (a–c), the notation “C”
designates the group without hydrochar, while “SH” designates the group with hydrochar.

3.2. Hydrochar Enhanced the Thermophilic AD of Hydrothermal Pre-Treated Sludge

The methane production in the thermophilic AD of hydrothermal pre-treated sludge
at different concentrations is illustrated in Figure 3. On the 30th day of AD, the HH-L group
achieved an actual total methane production of 209.17 ± 6.76 mL CH4/g VS, representing a
28.66% increase compared to the HC-L group. Under conditions of an initial hydrothermal
pre-treated sludge concentration of 10.0 g VS/L, the HH-M group reached an actual total
methane production of 197.01 ± 10.56 mL CH4/g VS, a substantial increase of 118.13% over
the methane production without hydrochar addition. The MH-H group exhibited an actual
total methane production of 27.20 ± 1.40 mL CH4/g VS, marking a remarkable enhance-
ment of 130.89% compared to the HC-H group. Overall, the actual methane production
during the AD of hydrothermal pre-treated sludge gradually increased with increasing
sludge concentration. Moreover, at low, medium, and high hydrothermal pre-treated
sludge concentrations, the AD efficiency within the reactors showed improvement, which
suggested that hydrochar could effectively promote the thermophilic AD of hydrothermal
pre-treated sludge.

The relevant kinetic parameters of the AD process are shown in Table S3. With the
increase in the initial addition concentration of hydrothermal pre-treated sludge, the Rm
of the AD process exhibited a gradual decrease. For reactors without hydrochar addition,
at an initial hydrothermal pre-treated sludge concentration of 5.0 g VS/L, the Rm was
8.46 ± 0.28 mL/d. When the initial sludge concentration was raised to 10.0 g VS/L, the
Rm decreased to 5.76 ± 0.32 mL/d. As the initial sludge concentration further increased
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to 20.0 g VS/L, the Rm dropped to 0.86 ± 0.04 mL/d. The addition of hydrochar in
the HH-L, HH-M, and HH-H groups increased the Rm by 96.65%, 92.78%, and 104.94%,
respectively, compared to the corresponding reactors without hydrochar addition at the
initial hydrothermal pre-treated sludge concentrations (p < 0.05). Under thermophilic AD
conditions, there was a significant difference in the Rm between reactors with the hydrochar
addition and those without, indicating that hydrochar could effectively enhance Rm in the
thermophilic AD of hydrothermal pre-treated sludge.
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Figure 3. Influence of hydrochar on cumulative methane production of hydrothermal pre-treated
sludge with different concentrations during thermophilic AD.

Furthermore, under conditions where the initial hydrothermal pre-treated sludge
concentration was 10.0 g VS/L and 20.0 g VS/L, the addition of hydrochar significantly
reduced the λ of AD. For reactors without hydrochar addition (HC-L group, HC-M group,
and HC-H group), the λ were 7.18 ± 0.30, 14.54 ± 0.53, and 10.06 ± 0.30 days, respectively.
The higher λ in the HC-H group might be influenced by the microbial processes occurring
within the reactor. In the cases of moderate and high initial sludge concentrations, the
addition of hydrochar significantly reduced the λ of AD (p < 0.05). When the initial hy-
drothermal pre-treated sludge concentration was 10.0 g VS/L and 20.0 g VS/L, the λ in the
HH-M and HH-H groups were reduced to 9.13 ± 0.33 and 7.77 ± 0.45 days, corresponding
to a decrease of 37.19% and 22.78%, respectively. However, in reactors with low initial
sludge concentration, the HH-L group showed slightly higher λ compared to the control
group. Nevertheless, the HH-L group exhibited significantly higher actual methane pro-
duction and Rm than the control group, indicating that hydrochar still enhanced methane
production in low initial sludge conditions.

Subsequently, we continued to investigate changes in pH and VFAs during the ther-
mophilic AD of hydrothermal pre-treated sludge. During the initial 4–8 days of AD,
the VFA concentrations gradually increased in all reactors. By the 8th to 12th day of
the experiment, the VFA accumulation reached its peak. In reactors with an initial hy-
drothermal pre-treated sludge concentration of 20.34 g VS/L, the HC-H and HH-H groups
exhibited the highest VFAs accumulation, reaching 3230.53 mg/L and 3004.2 mg/L, re-
spectively (Figure 4c). Under initial hydrothermal pre-treated sludge concentrations of
5.0 g VS/L and 10.0 g VS/L, the highest VFAs accumulation during AD was observed,
reaching 999.08 mg/L (HC-M group on the 12th day) and 1721.51 mg/L (HC-H group on
the 12th day). As VFAs accumulated in the reactors, the pH rapidly decreased, and this
decrease was more pronounced in reactors with higher initial hydrothermal pre-treated
sludge concentrations. In reactors without hydrochar addition, the pH reached its lowest
point on the 12th day of the experiment. The pH for the HC-L, HC-M, and HC-H groups
on the 12th day were 7.10, 6.96, and 6.89, respectively. On the eighth day, the pH reached
its lowest point in the HH-L, HH-M, and HH-H groups, with values of 7.11, 7.00, and 6.90,
respectively (Figure 4d). Reactors with hydrochar addition reached their lowest pH earlier
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than those without hydrochar, and the pH remained more stable during AD compared
to the reactors without hydrochar. This observation could be associated with dominant
functional microorganisms in the system and variations in microbial substrate metabolic
pathways [21,29]. From the 12th to the 16th day of the experiment, the VFAs in the reactors
were rapidly consumed and converted into CH4 and CO2, leading to a gradual increase
in pH. The maximum methane production was also observed during this phase. After
the 24th day, VFA accumulation decreased, and the consumption rate gradually slowed
down, resulting in pH stabilization. This pattern aligned with the gradual reduction in
methane production in the system. At the end of the experiment, the pH for different initial
hydrothermal pre-treated sludge concentrations (5.0 g VS/L, 10.0 g VS/L, and 20.0 g VS/L)
stabilized within the ranges of 7.89–7.94, 7.71–7.85, and 7.55–7.59, respectively.
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Figure 4. Effect of hydrochar on VFAs variation (a–c) and pH variation (d) of hydrothermal pre-
treated sludge with different concentrations during thermophilic AD. In panels (a–c), the notation
“C” designates the group without hydrochar, while “SH” designates the group with hydrochar.

3.3. Effect of Temperature on the AD of Hydrothermal Pre-Treated Sludge

Previous studies have shown that temperature was closely associated with AD effi-
ciency, with the suitable temperature range playing a critical role in the process [37,38].
Furthermore, temperature could significantly affect methane production by influencing the
stability of enzymes and coenzymes [38,39]. Anaerobic microorganisms could thrive under
low temperature (10–30 ◦C), mesophilic (30–40 ◦C), or thermophilic (50–60 ◦C) conditions.
However, since methane production is relatively low at low temperatures, mesophilic and
thermophilic AD was usually used in practical applications [37,40]. Therefore, this study fo-
cused on the AD of hydrothermal pre-treated sludge at 35 ◦C and 55 ◦C. At the end of the ex-



Fermentation 2024, 10, 10 10 of 16

periment, a significant contrast in methane production was evident between the mesophilic
and thermophilic AD of hydrothermal pre-treated sludge. Under the same initial hydrother-
mal pre-treated sludge concentrations, the mesophilic reactors exhibited higher cumulative
methane production compared to their thermophilic counterparts (Figures 1 and 2). The
most significant difference in cumulative methane production between the mesophilic and
thermophilic AD was observed at an initial hydrothermal pre-treated sludge loading of
10.0 g VS/L. At the end of the experiment, the MC-M group showed an increase of 66.11 mL
CH4/g VS in cumulative methane production compared to the HC-M group. In contrast,
the MC-L and MC-H groups had an increase of 22.33–28.09 mL CH4/g VS in cumulative
methane production over their corresponding thermophilic reactors at similar loading
concentrations. When the hydrothermal pre-treated sludge loading was below 10.0 g VS/L,
the enhancement in Rm via hydrochar addition was more pronounced in thermophilic
anaerobic reactors. However, when the hydrothermal pre-treated sludge loading reached
20.0 g VS/L, the enhancement effect of mesophilic AD was significantly better than that of
thermophilic AD. At lower hydrothermal pre-treated sludge concentrations, the hydrochar
addition had a more significant impact on maximum methane production in thermophilic
reactors than in mesophilic reactors. When the hydrothermal pre-treated sludge concentra-
tion exceeded 20.34 g VS/L, the improvement effect of hydrochar in mesophilic AD was
more prominent.

3.4. Effect of Hydrochar on Microbial Community Diversity

Metagenomic binning methods could isolate individual sequences (reads or contigs)
from complex microbial communities, making a strain-level functional analysis based on indi-
vidual genome assembly possible [41,42]. Considering the significant methane enhancement
effect of hydrochar addition under the initial hydrothermal pre-treated sludge concentration
of 10.0 g VS/L, after the experiment, the MC-M group under mesophilic conditions (abbrevi-
ated as MC1, MC2, and MC3), the MH-M group (abbreviated as MH1, MH2, and MH3), the
HC-M group under thermophilic conditions (abbreviated as HC1, HC2, and HC3), and the
HH-M group (abbreviated as HH1, HH2, and HH3) were selected to explore the influence
of hydrochar and temperature on the microbial community in those reactors. Sludge sam-
ples were collected from the reactors for metagenomic sequencing analysis. Metagenomic
sequencing produced 193.4 GB of paired-end data after deduplication and quality filtering.
Finally, 144 medium-high quality (completeness >70% and contamination <5%) metage-
nomic assembled genome MAGs were reconstructed from the collected sludge samples for
subsequent analysis (Figure 5). Phylogenetic analysis showed that these 144 MAGs were
taxonomically divided into 18 bacterial phyla and 3 archaeal phyla.

Hydrochar significantly influenced the biodiversity during the AD of hydrothermal
pre-treated sludge (Figure 6a). The Shannon index serves as a measure of biodiversity
or species diversity within a given ecological community, with higher values indicating
greater diversity and lower values suggesting lower diversity in the community [29]. The
Shannon index in the four groups of reactors follows this order: MH > HH > MC > HC.
The Shannon index was higher in the mesophilic AD microbial community, indicating a
more diverse and richer ecosystem in the mesophilic AD system, with a greater variety of
organisms involved in the hydrothermal pre-treated sludge AD process. On the other hand,
the addition of hydrochar resulted in a higher Shannon index compared to the control
group at the corresponding temperature, which showed that hydrochar could improve
hydrothermal pre-treated sludge by increasing alpha diversity in both mesophilic and
thermophilic AD systems.

A PCA analysis based on Bray–Curtis distance reveals a distinct separation in the
distribution patterns of the microbial community composition among the MC, MH, HC,
and HH groups (Figure S1). MC were notably separated from the other groups, which
revealed that both temperature and hydrochar played substantial roles in influencing the
microbial community. The interaction between various microorganisms could be promoted
by regulating the anaerobic reaction temperature or adding hydrochar. And the functional
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microorganisms in the system could establish connections with each other more effectively,
thereby promoting the methanogenesis process of hydrothermal pre-treated sludge. The
hierarchical clustering analysis of the microbial community similarity levels among various
anaerobic reactors and the construction of a dendrogram further confirm the differences
in microbial community composition among the reactors. These findings collectively
illustrated that both anaerobic reaction temperature and the addition of hydrochar could
lead to distinct microbial community structures within the reactors.
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A total of 66.67% of the MAGs were shared among all the reactors (Figure 6b). The
MC group possessed the highest number of unique MAGs, which suggested that reaction
temperature was a critical factor influencing the microbial community. Additionally, the
MH group also exhibited a significant number of unique MAGs, which indicated that
hydrochar might result in the emergence of more distinct MAGs in the mesophilic AD
reactor. Despite the presence of numerous distinctive microorganisms in the HC group, its
methane production rate was lower than that in the HH group. This discrepancy might
be attributed to competitive interactions between the unique microorganisms enriched
in the HC group and the functional bacteria involved in the methane production process,
which, in turn, reduce the microbial abundance and richness participating in methane
production. The presence of distinctive microbial taxa in the MH group might also be
associated with α-diversity, as they surpass those in the MC group. This might be due to
differing mechanisms by which hydrochar promotes methane production under mesophilic
and thermophilic conditions. In conclusion, these findings revealed that both temperature
and hydrohar could lead to the formation of distinct microbial communities, consequently
impacting the AD of hydrothermal pre-treated sludge.
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Figure 6. Microbial community diversity in mesophilic and thermophilic AD. (a) Microbial commu-
nity Shannon index. (b) Venn diagram of common and unique bins in microbial communities in
mesophilic and thermophilic AD systems.

3.5. Microbial Community Composition and Dynamics

To gain a more comprehensive understanding of how hydrochar influences the com-
position of the microbial community in the hydrothermal pre-treated sludge AD system,
this study further analyzed the distribution of bacteria and archaea in each reactor. The
relative abundance of archaea in the reactor ranged from 59.9% to 70.83% in HH and HC.
The abundance of archaea in thermophilic AD reactors was generally lower than that
in mesophilic AD reactors (Figure 7a). In addition, hydrochar resulted in an increased
abundance of archaea in the reactors, which corresponded to the high Rm of each group
with hydrochar addition. In the HH group, the archaeal relative abundance was 62.4%,
exhibiting a 4.99% increase compared to the HC group. Additionally, the MH group dis-
played an archaeal relative abundance of 70.83%, marking a 15.30% rise compared to the
HC group. This phenomenon suggested that hydrochar was more conducive to enriching
archaea in mesophilic AD.

Subsequently, the distribution of microorganisms in each reactor was analyzed at the
gate level for a comprehensive insight into the influence of hydrochar on the hydrothermal
pre-treated sludge AD process. The results showed that Methanobacteriota, Halobacterota,
Firmicutes, Actinobacteriota, and Synergistota were the dominant microbial phyla in all
reactors (Figure 7b). Among them, Methanobacteriota was the most abundant microbial
phylum in all reactors, accounting for 33.84%, 37.43%, 40.94%, and 42.16% of all microbial
abundance in the MC group, MH group, HC group, and HH group, respectively. It is
worth noting that Methanobacteriota is one of the essential functional bacteria in the methane
process. Some bacteria belonging to Methanobacteriota could use acetate, H2/CO2, and
methanol for methane production during AD. In addition, there were some bacteria, such
as Syntrophobacter and Hydrogenogens, that could engage in cooperative hydrogenotrophic
methane production processes. Hydrochar addition also resulted in a notable rise in the
relative abundance of Synergistota and Firmicutes in the MH and HH groups compared
to the MC and HC groups without hydrochar addition. Some microorganisms belonging
to Synergistota possess the capability to degrade peptides, amino acids, and proteins, the
augmented relative abundance of which plays a role in converting complex organic matter
in hydrothermal pre-treated sludge into small-molecule substances, thereby promoting
methane production in subsequent processes [29]. Firmicutes have also been documented
to be the prevailing microorganisms in AD reactors [43]. Firmicutes include members
with various functions, including polysaccharide and protein hydrolysis, glycolysis, and
acidogenesis [22]. Furthermore, the addition of hydrochar resulted in a noteworthy decline
in the relative abundance of Halobacterota in mesophilic and thermophilic AD reactors.
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While bacteria belonging to the Halobacterota exhibit strong adaptability, high salt tolerance,
and various special functions in high-salinity environments, they are typically not the
primary participants in AD processes. In summary, the addition of hydrochar to mesophilic
and thermophilic AD reactors for hydrothermal pre-treated sludge enables the control of
the microbial community, thereby promoting the AD process.
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4. Discussion

This investigation reveals notable variations in methane production between mesophilic
and thermophilic AD of hydrothermal pre-treated sludge. The actual methane production
in the mesophilic groups surpasses that in the corresponding reactors under thermophilic
conditions. However, in the initial phases of the AD process, the thermophilic AD reac-
tors exhibit higher methane production than the mesophilic ones. Previous research has
indicated that the thermophilic AD process holds an advantage over the mesophilic AD
process as it enhances the breakdown of volatile solids during the initial hydrolysis phase of
anaerobic reactions. In contrast to thermophilic AD, mesophilic AD could provide more
stable methane production.

The contribution of hydrochar to the enhancement of methane production was evident
in two aspects. Firstly, hydrochar could promote the hydrolysis and acidification steps of hy-
drothermal pre-treated sludge and mitigate the excessive accumulation of VFAs. Previous
studies also indicated that hydrochar addition might promote the degradation of soluble
carbohydrates and soluble proteins during AD [22]. Secondly, hydrochar could also have
an impact on the microbial community; the addition of hydrochar-enriched Methanosarcina
and Acetomicrobium. The enhancement of Acetomicrobium, a common microorganism in
thermophilic sludge that could convert glucose into acetate, CO2, and H2, might explain the
effect of hydrochar on thermophilic AD [44]. It has been reported that Methanosarcina could
accept electrons to reduce CO2 and produce methane through DIET. DIET usually relies
on cytochrome c and e-pili, enabling the direct transfer of electrons between contacting
methanogens and bacteria [45]. Hydrochar could help some microorganisms that cannot
form conductive flagella complete the DIET process by acting as a conductor between
microorganisms. Conversely, symbiotic bacteria could leverage the surface of hydrochar
for electron conduction. It was also found that there was a positive correlation between
the presence of oxygen-containing functional groups on the hydrochar surface and the
efficiency of AD [46]. Moreover, the adsorption capabilities of hydrochar also played a
role in capturing toxic substances within the reactor, mitigating their harmful effects on
microorganisms and consequently impacting methane generation [47].

This study was concerned with the impact of hydrochar on enhancing the AD per-
formance of hydrothermal pre-treated sludge. The sludge contains a high density of
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microorganisms and various pollutants. Therefore, the influence of hydrochar on their
distribution should also be taken into consideration. Moreover, it is worth noting that
the effective utilization and treatment of digestate and biogas slurry generated during
anaerobic digestion is also a significant consideration. In the future, there is an urgent
need for research investigating the resource utilization of digestate and biogas slurry in
anaerobic digestion reactors supplemented with hydrochar.

5. Conclusions

Hydrochar positively enhanced methane production efficiency in mesophilic and ther-
mophilic AD systems with different initial hydrothermal pre-treated sludge concentrations.
However, the influence of hydrochar on AD efficiency varies depending on the digestion
temperature. At initial hydrothermal pre-treated sludge concentrations below 10.0 g VS/L,
hydrochar significantly improved the Rm in thermophilic AD reactors. And when the initial
hydrothermal pre-treated sludge concentration reaches 20.0 g VS/L, the enhancement in
mesophilic AD efficiency via hydrochar becomes more pronounced than in the thermophilic
condition. In addition, both temperature and the addition of hydrochar were crucial factors
that could influence the microbial community. Hydrochar elevated the relative abundance
of archaea in the AD system, resulting in an increment of 4.99% to 15.30% compared to the
control group. Mesophilic reactors exhibit greater microbial diversity.
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and hydrochar in each AD reactor; Table S2: modified Gompertz equation fitting methanogenic
kinetic parameters of hydrothermal sludge with different initial concentrations during mesophilic
AD; Table S3: modified Gompertz equation fitting methanogenic kinetic parameters of hydrothermal
sludge with different initial concentrations during thermophilic AD; Text S1. The modified Gompertz
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