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Abstract: Waste insulation electrical cables (WIEC) currently do not have an added value, due to
their physical–chemical characteristics. Carbonization is known to enhance feedstock properties,
particularly fuel and material properties; as such, this article aimed to study the production and
activation of biochars using WIEC and lignocellulosic biomass wastes as feedstock. Biochars were
produced in a ceramic kiln with an average capacity of 15 kg at different temperatures, namely 300, 350
and 400 ◦C. After production, the biochars were further submitted to a washing process with water
heated to 95 ◦C ± 5 ◦C and to an activation process with 2 N KOH. All biochars (after production,
washing and activation) were characterized regarding an elemental analysis, thermogravimetric
analysis, heating value, chlorine removal, ash content, apparent density and surface area. The
main results showed that the increase in carbonization temperature from 300 to 400 ◦C caused the
produced biochars to present a lower amount of oxygen and volatile matter, increased heating value,
greater chlorine removal and increased ash content. Furthermore, the activation process increased
the surface area of biochars as the production temperature increased. Overall, the carbonization of
WIEC mixed with lignocellulosic wastes showed potential in enhancing these waste physical and
chemical properties, with prospects to yield added-value products that activates biochar.

Keywords: WIEC; carbonization; biochar; pretreatment; activation

1. Introduction

Nowadays, the problems related to humanity’s carbon footprint have become an
important theme, and carbon neutrality has been pointed out as the only viable path-
way to solve our current environmental issues. As such, it is necessary to research new
materials that can be considered similar to fossil fuels but which are characterized by a
reduced or zero contribution to the overall balance of carbon dioxide [1]. The search for
alternative fuels with low emissions and renewable characteristics is crucial to mitigate en-
vironmental impacts and meet the increased global energy demand [2]. In this sense, wastes
(e.g., biomass wastes, municipal solid wastes, mixed wastes and construction and demoli-
tion wastes) are presented as valuable and sustainable energy sources to generate clean
energy instead of fossil fuels, presenting a fundamental role in sustainable development
strategies [3–5].

There are significant amounts of plastic and mixed wastes that cannot be recycled and
are not adequate for direct combustion or gasification due their heterogeneity and high
chlorine contents. These wastes usually end up being landfilled instead of being recognized
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for their potential as energy sources. Wastes from electrical equipment (e-waste or WEEE,
which includes waste insulation electric cables—WIEC) are the fastest-growing waste type
and are becoming a major environmental problem, mainly for developing and emerging
economies [6–9]. This increase is associated with the consumption of electrical equipment
(EEE), which increases annually around 2.5 Mt, resulting from economic and technological
development [10]. The amount of WEEE generated is increasing year by year, thus making
it difficult for recycling to keep up with this growth [11]. In the last 5 years, the global
amount of WEEE has increased by more than 9.0 Mt, producing an amount of 53.9 Mt
in 2019, with Europe being the third-largest producer of these wastes with annual rates
of 2% and estimating that less than 40% of these wastes are recycled [6]. In Portugal, in
2017, 43.5% of WEEEs were recycled. This increasing trend is clearly related to a higher
consumption of electrical equipment associated with a short lifetime and limited repair
options for the equipment [12,13].

Plastics assume different proportions in WEEEs, varying according to size and charac-
teristics. The plastic component can serve as housing, casing, insulation, internal shelves
or lining. The amount of plastic by weight represents a range between 3.5% and 45%,
presenting a great challenge to the recycling of WEEE derived from the mixture of plastics
that is used for each component and the plastic’s mechanical properties [14–16]. The charac-
teristics of different types of plastics must be taken into account for WEEE management to
provide a solid benchmark of environmental performance in recycling WEEE plastics [17].

Considering that wastes—in particular, biomass and mixed wastes—have very par-
ticular properties regarding their chemical characteristics, an understanding and compre-
hension of the various processes that integrate the energy recovery from them is essential.
To enhance the process of converting wastes into products with value, a pretreatment is
usually necessary. To further use these wastes in thermochemical conversion processes,
adsorption processes, as an additive in construction materials or for agricultural appli-
cations, carbonization can be applied to deal with the inherent recalcitrance present in
the components of these materials, being an alternative to homogenizing the material,
increasing their energy density or even their porosity. Carbonization is a thermochemical
process carried out at atmospheric pressure, temperatures between 300 and 500 ◦C in
a nonoxidizing atmosphere, with slow heating rates [18–21]. This process has emerged
as one of the approaches to treat biomass and wastes before submitting the feedstock to
gasification processes, for example, to avoid the excessive production of tars and harmful
compounds such as chlorine and yield better-quality syngas [22,23]. The main product
of this thermal process is known as biochar. Currently, there is a great interest in biochar
production due to the possibility of energy storage and possible use as anodes, filters
and biofuels. The use of different reaction conditions and different feedstock allow the
production of biochar with customized physical and chemical properties [24–26]. When
the feedstock is a biomass, the lignin content has a positive effect on the biochar yield and
its physical–chemical properties [27,28] The lignin content of a biomass also influences the
particle size, porosity and aromatic carbon content of the biochar products [29].

The production of biochar brings many benefits to the environment, because it can
be produced from a broad range of renewable sources and has low production costs and
various applications [30]. Biochars can also be produced from biomass or mixed wastes,
but conversion conditions must be optimized in order to maximize the energy efficiency
and production yield, as these wastes are usually heterogeneous and their composition is
variable, depending on the source and collection period [31].

This work aimed to produce biochar with waste insulation electric cables (WIEC) and
waste lignocellulosic biomass (WLB) using the carbonization process. The main goal was
to evaluate the characteristics of the produced biochars and assess their use in further
thermochemical conversion processes (e.g., as feedstock for gasification) and their use as
activated carbon precursors. Overall, applying carbonization can be one solution to achieve
better properties for these wastes to find them added-value applications to decrease the
large amounts that are currently being landfilled.
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2. Materials and Methods
2.1. Feedstock

Lignocellulosic biomass wastes (WLB) were supplied by a biomass waste management
company (CMC Biomassa) located in Portugal. This company collects lignocellulosic waste
from deforestation, furniture and other wood wastes, which are later recycled into fractions
that can be recovered as raw material and transformed into pellets, briquettes, flooring,
new pallets, etc.

Waste insulation electric cables (WIEC) were supplied by a company dedicated to
the management, recycling and recovery of waste, namely the recovery of noble metals
(AFCarreto). This recovery from the pickling of electrical cables leads to the generation
of a large amount of polymeric wastes, which are part of the coating of electrical cables
corresponding to a mixture of polyvinyl chloride (PVC) and polyethylene (PE) and noble
metals in small quantities.

Detailed characterizations of both WIEC and WLB can be found in [32]. For this work,
a mixture with 50% WIEC and 50% WLB was prepared for the carbonization tests, as shown
in Figure 1.
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Figure 1. Mixture of WIEC and WLB used for the carbonization tests on a pilot scale.

2.2. Carbonization Experiments

The carbonization experiments were based on the carbonization study carried out
by [32], whose main objective was to optimize the carbonization process to obtain biochar
with higher chemical and energy properties for energy recovery. Using the results of the
best mixture, temperature and residence time, carbonization was carried out on a pilot scale.
Briefly, an electric oven (KS 72L ceramic oven) with a capacity between 12 and 20 kg per test
(depending on the properties of the raw material) was used. The oven had a temperature
and heating rate control panel and capacity of 72 L in the carbonization zone. For biochar
production, 15 kg of the mixture (50% WIEC + 50%WLB) was placed in capped clay vessels
(to ensure a nonoxidizing atmosphere) that were heated at a heating rate of 10 ◦C/min
until reaching the final carbonization temperatures (300, 350 and 400 ◦C) and remained in
the oven for 2 h. A general schematic for the used oven can be seen in Figure 2.

C 2023, 9, x FOR PEER REVIEW 4 of 20 
 

 

Figure 2. Schematic representation of the carbonization system on a pilot scale. 

2.3. Biochar Washing Process  

The produced biochars were crushed and sieved, and the fraction lower than 425 μm 

was used. This fraction was washed in heated water for the removal of water-soluble com-

pounds based on the works of [33,34]. The biochars were placed in glass containers under 

heating and stirring plates with a ratio of 100 g/200 mL of deionized water and heated to 

the temperature of 95 ± 5 °C, remaining after temperature stabilization for 30 min. The 

biochars were then allowed to cool to room temperature and filtered. Afterwards, the bi-

ochars were dried in an oven (Holelab Greenhouse) at 105 °C until reaching a constant 

mass, which took about 24 h [32,35]. 

2.4. Biochar Activation Process  

The activation process involved mixing 2 g of biochar (already washed and dried as 

described above) with 500 mL of a KOH 2 N solution under agitation for 1 h. After this 

process, the biochar samples were left at rest for 30 min and filtered for recovery. After the 

filtration process, the biochars were washed in deionized water, and the resulting solution 

was neutralized with the addition of HCl 1 N. The biochar samples were then filtered 

again and dried in an oven at 105 °C for 12 h prior to the characterization analysis. 

2.5. Biochar Characterization  

Table 1 presents the conditions for obtaining the Table 1 different biochar samples 

according to the processes described in Sections 2.2–2.4. 

Table 1. Processing conditions for each biochar sample. 

Sample  Temperature  Features  

B300 300 

Biochars were produced at different temperatures.  B350 350 

B400 400 

B300-L 300 
Biochars were washed in hot water, filtered and 

dried. 
B350-L 350 

B400-L 400 

B300-A 300 Biochars were washed in hot water, filtered and 

dried and were submitted to an activation process 

with KOH 2 N.  

B350-A 350 

B400-A 400 

To evaluate the efficiency of the carbonization process, the biochar yield (Equation 

(1)), energy yield (Equation (2)) and energy density (Equation (3)) were determined.  

Biochar Yield (wt. %) =  
M1

M0
× 100 %  (1) 

Figure 2. Schematic representation of the carbonization system on a pilot scale.



C 2023, 9, 49 4 of 17

2.3. Biochar Washing Process

The produced biochars were crushed and sieved, and the fraction lower than 425 µm
was used. This fraction was washed in heated water for the removal of water-soluble
compounds based on the works of [33,34]. The biochars were placed in glass containers
under heating and stirring plates with a ratio of 100 g/200 mL of deionized water and
heated to the temperature of 95 ± 5 ◦C, remaining after temperature stabilization for 30 min.
The biochars were then allowed to cool to room temperature and filtered. Afterwards, the
biochars were dried in an oven (Holelab Greenhouse) at 105 ◦C until reaching a constant
mass, which took about 24 h [32,35].

2.4. Biochar Activation Process

The activation process involved mixing 2 g of biochar (already washed and dried as
described above) with 500 mL of a KOH 2 N solution under agitation for 1 h. After this
process, the biochar samples were left at rest for 30 min and filtered for recovery. After the
filtration process, the biochars were washed in deionized water, and the resulting solution
was neutralized with the addition of HCl 1 N. The biochar samples were then filtered again
and dried in an oven at 105 ◦C for 12 h prior to the characterization analysis.

2.5. Biochar Characterization

Table 1 presents the conditions for obtaining the Table 1 different biochar samples
according to the processes described in Sections 2.2–2.4.

Table 1. Processing conditions for each biochar sample.

Sample Temperature Features

B300 300
Biochars were produced at different temperatures.B350 350

B400 400
B300-L 300

Biochars were washed in hot water, filtered and dried.B350-L 350
B400-L 400
B300-A 300 Biochars were washed in hot water, filtered and dried and

were submitted to an activation process with KOH 2 N.B350-A 350
B400-A 400

To evaluate the efficiency of the carbonization process, the biochar yield (Equation (1)),
energy yield (Equation (2)) and energy density (Equation (3)) were determined.

Biochar Yield (wt. %) =
M1

M0
× 100 % (1)

where M1 is the final mass in g, and M0 is the initial mass in g.

Energy Yield (wt. %) =
M1 × HHV1

M0 × HHV0
× 100 % (2)

where M1 is a final mass in g, M0 is the initial mass in g, HHV1 is the final higher heating
value in MJ/kg and HHV0 corresponds to the initial higher heating value in MJ/kg.

Energy Density (%) =
Energy Yield
Char Yield

× 100 % (3)

2.5.1. Elemental Analysis

The elements of interest included carbon (C), hydrogen (H), nitrogen (N), sulfur (S)
and oxygen (O). The amounts of C, H, N, S and O were determined using a Thermo Fisher
Scientific Flash 2000 CHNS-O analyzer. Oxygen was determined by the difference in a
dry base.
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2.5.2. Thermogravimetric Analysis

A thermogravimetric analysis (TGA) was used to determine the moisture content,
volatile matter and fixed carbon combined with ash. The tests were performed in triplicate
with sample weights between 3 and 4 mg. A PerkinElmer thermogravimetric analyzer,
STA 6000, using a heating rate of 20 ◦C/min was used. The content of each proximate
analysis parameter was taken from the thermogravimetric profiles (sample mass variation
versus temperature), considering the inflection points of the mass derivative on the function
of time.

2.5.3. High Heating Value and Low Heating Value

For the high heating value (HHV) of the biochar samples, IKA C2000 calorimetry
equipment was used, which performed the complete combustion of the samples in an
adiabatic environment. For this measurement, a sample with 0.5 ± 0.1 g of each sample
was placed in the calorimeter, and its total combustion was carried out. The measurements
for each biochar sample were performed in triplicate, and the presented values represent
the average values. The lower heating value (LHV) was determined using Equation (4)
as follows:

LHV = HHV − 2.26 × 9H
100

(4)

where LHV is a lower heating value in MJ/kg, HHV is a higher heating value in MJ/kg
and H is hydrogen.

2.5.4. Chlorine Content and Mineral Composition

The chlorine content of the produced biochars was determined through X-ray fluores-
cence (Niton XL 3T Gold++).

The biochars’ complete mineral composition (Al, B, Ba, Ca, Cr, Fe, K, Mg, Na, Ni and
Zn) was determined through ICP-AES (Inductively Couple Plasma—Atomic Emission
Spectrometer, Horiba Jobin-Yvon, Ultima), after ashing and acid digestion of the biochar
samples. All the measurements were carried out in triplicate, and the results shown are the
average values.

2.5.5. Ash Content

For the determination of the ash content, biochar samples were placed in porcelain
crucibles in a muffle furnace at 500 ◦C ± 5 ◦C until the total burning of the organic matter.
The ash content was calculated using Equation (5):

mashes =
mf − mcrucible

msample
(5)

where mashes is the mass of the ashes in g, mf final mass in g, mcrucible is the mass of the
calcinated empty crucible in g and msample is the mass of the initial sample in g.

2.5.6. Apparent Density

The determination of the apparent density is the relationship between the mass of a
sample and its occupied volume. This determination was performed with a beaker and
expressed in g/cm3, according to Equation (6).

D =
M
V

(6)

where M corresponds to the mass in g and V to the volume in cm3.

2.5.7. Fourier-Transform Infrared

Fourier-transform infrared spectra (FTIR) were obtained as an average of 128 scans at
a resolution of 4 cm−1 using an ATR-FTIR spectrometer (Thermo Scientific Nicolet iS10),
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with a range of 4000 to 400 cm−1. The biochar samples were powdered and placed in
the ATR diamond crystal and compacted using a vertical screw to the plane to perform
the analysis.

2.5.8. Nitrogen Adsorption at 77 K

Nitrogen adsorption at 77 K was used to measure the specific area of the samples.
For biochar samples, Micromeritics ASAP 202 Plus equipped with sensors and a vacuum
system was used. The vacuum is controlled by a high vacuum pump with a 1 mmHg
transducer. This equilibrium has two independent vacuum systems, which allows the
preparation of two samples and the analysis of a third simultaneously.

3. Results and Discussion
3.1. Biochar Yield, Enery Yield and Energetic Densification

The production of biochar can be affected by several factors: the characteristics of
the materials used, the method, formation of byproducts, application, economic aspects
and environmental impact. The chemical composition, particle size, pH value, moisture
level, calorific value and volatility are important characteristics of materials that must be
considered as they directly affect the biochar results [36]. The results obtained for the
biochar samples (without washing or activation) regarding the biochar yield, energy yield
and energy density are shown in Figure 3.
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Temperature is one of the main factors that affect the biochar structure and physic-
ochemical properties, as it affects the decomposition, formation and transformation of
the biomass and wastes [37]. With higher temperatures, there is a favoring of free radi-
cal reactions such as decarboxylation, decarbonylation, dehydration, aromatization and
intermolecular rearrangement, among others [27]. From the obtained results, it was pos-
sible to observe that, for the three biochar production conditions, the biochar yield was
between 58 and 63%. Sample B300 consistently presented higher values for the parameters
depicted in Figure 3, indicating that higher temperatures promote sample decomposition
via the above-described reactions, entailing lower mass and energy yields. On the other
hand, energy densification was similar for the three studies, and considering the type of
wastes used as feedstock, higher temperature were most likely needed to reach a higher
densification factor.
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3.2. Biochar Characterization
3.2.1. Elemental Analysis and Heating Value

After the biochar production process at temperatures of 300, 350 and 400 ◦C, part of
the biochar was washed, and another part was washed and activated. Table 2 presents the
results for the elemental analysis, HHV and LHV of the produced biochars.

Table 2. Elemental analysis, HHV and LHV of the original mixture and the different biochar samples.

Parameters WIEC/WLB B300 B350 B400 B300-L B350-L B400-L B300-A B350-A B400-A

C (wt.%, db) 52.3 40.77 42.64 43.95 42.38 43.06 43.14 41.59 35.22 47.44
H (wt.%, db) 2.5 4.02 3.74 2.83 2.81 3.33 3.76 4.34 3.56 5.12
N (wt.%, db) 0.2 5.08 4.24 4.01 12.9 11.38 10.41 0.9 0.85 0.51
S (wt.%, db) <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l.
O (wt.%, db) 45.0 50.13 49.38 49.21 41.91 42.23 42.69 53.17 60.37 46.93

HHV (MJ/kg, db) 21.23 18.15 18.27 18.45 19.6 19.67 19.71 - - -
LHV (MJ/kg, db) 19.88 15.98 16.25 16.92 18.08 17.87 17.68 - - -

The main elements that are present in the WIEC/WLB mixture are C (52.3%) and O
(42.7%). Concerning the produced biochars without treatment (B300, B350 and B400) and
washed biochars (B300-L, B350-L and B400-L), it is possible to observe that the amount of
C is not very variable, 42.85% ± 4%, but the amount of O was reduced by an average of
30% for the washed biochars. On the other hand, the amount of ash for the mixture was
3%, and after carbonization, the ash content increased to an average of 37% (results shown
below. With the increase in the amount of ash in biochar, there is a reduction in the calorific
value of the material by an average of 2 MJ/kg.

Activated carbons are very similar to other biochar samples, differing only in the
amount of oxygen, which is 10% higher than other biochars. The activation process is
carried out to produce a biochar that can be used for other methods, such as being used as
an adsorbent for gas or liquid effluents.

The carbonization process promotes dehydration, thus promoting the elimination of
H, resulting in an accumulation of C in the biochar. The content and proportions of these
elements are the most important factors influencing the stability or carbon sequestration
capacity of biochar. The lability of biochar is directly related to the oxygen content and
indirectly to the C content present in the biochar [38]. The O/C and H/C ratios are
indicative of biochar structures and provide an intrinsic measure of biochar stability. These
relationships are negatively correlated with the percentage of aromatic C in the biochar [39].
Figure 4 shows the van Krevelen diagram for the obtained biochars.

The oxygen content plays an important role in the chemical behavior of the biochar
surface; this factor is associated with a close relationship with the number and composition
of substituted functional groups, and these functional groups constitute an important
driver for the degradation potential. The H/C molar ratio can be used to evaluate the
thermochemical alterations that produce fused aromatic ring structures in the material. A
lower amount of H/C means that higher fused aromatic ring structures provide greater
stability. The H/C ratio is considered an index of aromaticity and resistance of char to
microbial and chemical degradation. As biochar is mainly composed of some aromatic
compounds, the amount of C present is an important factor in determining the stability of
biochar. According to Spokas [40], Budai et al. [41] and the European Biochar Certificate
(EBC), the O/C and H/C molar ratios are indicators of biochar stability. Moreover, the
upper limit for the O/C ratio is 0.4, and for the H/C ratio, the established limit is 0.7 [31].

Based on Figure 4, it is possible to observe that all the biochar samples that were
washed have a stability below 0.2, and sample B400-A biochar is also considered stable
for this parameter. Regarding the H/C ratio, it is possible to observe that the biochars are
relatively similar, with little variation [42]. Using the two parameters to define the most
stable biochar, it is possible to verify that B300-L and B400-A are the most stable.
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3.2.2. Thermogravimetric Analysis

Figure 5 shows the results for the TGA analysis of the produced biochars compared
with the original feedstock.

The moisture content is an important parameter and is negatively correlated with
the heating value of fuel and with the potential for biological degradation during storage.
Materials with a relatively low moisture content become more prone to self-ignition at room
temperature [43]. In the obtained TGA profiles (Figure 5), the WIEC/WLB mixture (original
feedstock) has a low moisture content, less than 0.5%, which means that it is suitable
for thermochemical conversion processes, as they contain less than 10% moisture [44].
However, the produced biochars showed higher moisture contents, between 8 and 15%
(B300, B350 and B400). These results can be associated with the absorption of atmospheric
moisture and the tars that are on the surface of the biochar [45]. As for the biochars that
were washed and activated, despite having been dried in an oven before carrying out the
tests, the values for the moisture contents can also be associated with atmospheric humidity.
The moisture content variations of the washed biochars were between 2 and 7% and, for
the activated biochars, less than 5%, and in all the studied biochars, the loss of mass in
the first stage was associated with dehydration and the decomposition of the hydrated
compounds and light volatiles, which occurs up to 200 ◦C [46].

The main degradation occurred after dehydration, causing a sharp decrease at 200 ◦C
and ending close to 600 ◦C, reaching the peak of Tmax at 475 ◦C. This peak corresponds to a
loss in volatile matter, being 45–50% of the weight for the biochars. This decrease in volatiles
may be related to the decomposition of the biomass fraction (hemicellulose, cellulose and
lignin), which occurs in a temperature range up to 400 ◦C, but also to the decomposition of
some polymeric monomeric units with a higher degree of unsaturation [46].

The second curve can be divided into the depolymerization of biodegradable ma-
terials up to approximately 400 ◦C and degradation of less reactive and high molecular
weight components [46,47]. The degradation of polystyrene (PS), polypropylene (PP) and
polyethylene terephthalate (PET) occurs between 350 and 500 ◦C; this phenomenon can be
observed in biochars produced at 400 ◦C, where the amount of organic matter present in
the biochar is lower because they have already been previously degraded [48].
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The third peak, which started after 600 ◦C, corresponds to the decomposition of
inorganic substances such as inorganic carbonate and lignin aromatic rings [49,50], varying
up to 850 ◦C for B300, B350 and B400 biochars, and for biochars that have been washed
and/or activated up to 800 ◦C.

3.2.3. Mass Yield, Ash Content, Chlorine Removal Potential and Apparent Density of
the Biochars

Figure 6 shows the results for the mass yield, ash content, chlorine removal potential and
apparent density for all the produced biochars (without treatment, washed and activated).

It is possible to observe that, when compared with the nontreated biochar samples,
the washed and activated samples show greater mass yields, particularly samples B300-A,
B350-A and B400-A.

For the ash content results, there was an increase in the ash content when the car-
bonization temperature was increased from 300 to 400 ◦C. When washing the biochar, there
was a reduction of the ash content, and with the activation of biochars B300-A and B350-A,
the ash content increased. For samples B400-L and B400-A, the differences between the
ash contents after the different processes were not noticeable. The ash contents obtained
in biochars produced at 300 and 350 ◦C were very similar and differed significantly from
B400, with very close mass yields (70–75%).
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Figure 6. Mass yield, ash content, chlorine removal potential and bulk density for different biochars. Figure 6. Mass yield, ash content, chlorine removal potential and bulk density for different biochars.

The chlorine removal potential for biochars B300, B350 and B400 were negative, which
means that there was a concentration effect, caused by the mass loss, associated with the
chlorine volatilization and, further, deposited onto the biochar surface. When the biochars
were washed with hot water, the chlorine removal potential showed very significant values
greater than 85%. This removal potential is an important indicator that demonstrates the
further need to treat biochars that are produced from chlorine-containing wastes, since the
chlorine content is extremely important in further thermal conversion processes. Excess
chlorine is known not only for producing harmful emissions (such as HCl or PCDD/Fs) but
also to cause equipment damage due to corrosion phenomena [51]. Activated biochars have
shown to be very stable in terms of the mass yield, chlorine and ash removal. These biochars
differ mainly regarding the apparent density, as the higher the production temperature,
the greater the density of the biochar. Biochar samples B400-L and B400-A presented
chlorine removal potentials of 86 and 89%, respectively, mass yields above 82% and ash
contents of 33% for B400-L and 26% for B400-A, thus presenting the best carbonization and
treatment conditions.

Overall, the apparent density of the produced biochars increased as the production
temperature increased, varying between 0.50 and 0.54 g/m2. However, as it was a measure
with experimental observations, this difference was not very significant. For the biochars
that were washed (B300-L, B350-L and B400-L) and for the activated ones (B300-A, B350-A
and B400-A), the values for the apparent density when compared to the nontreated biochars
at the same production temperature were the same.

3.2.4. Mineral Composition

Figure 7 shows the mineral compositions for the different biochars.
It is possible to observe that the concentrations of aluminum in the ashes of biochars

B300, B300-L, B300-A, B400, B400-L and B400-A are decreasing. These results can be related
to the fact that, with washing, the aluminum concentration was reduced and, with the
activation process, the reduction compared to the initial concentration was, on average,
50%. Regarding the calcium in all washed biochars, it was possible to observe that, when
the production temperature increased, the concentration of this element was lower, and
when the biochars were activated, the calcium concentration had no significant variation.

The concentrations of magnesium and silica for the different biochars that did not
undergo treatment (B300, B350 and B400) and for the biochars that were subjected to a
washing process (B300-L, B350-L and B400-L) also showed no relevant variations. For
the activated biochars (B300-A, B350-A and B400-A), the concentrations of magnesium,
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copper, potassium and sodium were similar and higher when compared to the other
studied biochars.

C 2023, 9, x FOR PEER REVIEW 13 of 20 
 

It is possible to observe that, when compared with the nontreated biochar samples, 

the washed and activated samples show greater mass yields, particularly samples B300-

A, B350-A and B400-A. 

For the ash content results, there was an increase in the ash content when the carbon-

ization temperature was increased from 300 to 400 °C. When washing the biochar, there 

was a reduction of the ash content, and with the activation of biochars B300-A and B350-

A, the ash content increased. For samples B400-L and B400-A, the differences between the 

ash contents after the different processes were not noticeable. The ash contents obtained 

in biochars produced at 300 and 350 °C were very similar and differed significantly from 

B400, with very close mass yields (70–75%). 

The chlorine removal potential for biochars B300, B350 and B400 were negative, 

which means that there was a concentration effect, caused by the mass loss, associated 

with the chlorine volatilization and, further, deposited onto the biochar surface. When the 

biochars were washed with hot water, the chlorine removal potential showed very signif-

icant values greater than 85%. This removal potential is an important indicator that 

demonstrates the further need to treat biochars that are produced from chlorine-contain-

ing wastes, since the chlorine content is extremely important in further thermal conversion 

processes. Excess chlorine is known not only for producing harmful emissions (such as 

HCl or PCDD/Fs) but also to cause equipment damage due to corrosion phenomena [51]. 

Activated biochars have shown to be very stable in terms of the mass yield, chlorine and 

ash removal. These biochars differ mainly regarding the apparent density, as the higher 

the production temperature, the greater the density of the biochar. Biochar samples B400-

L and B400-A presented chlorine removal potentials of 86 and 89%, respectively, mass 

yields above 82% and ash contents of 33% for B400-L and 26% for B400-A, thus presenting 

the best carbonization and treatment conditions. 

Overall, the apparent density of the produced biochars increased as the production 

temperature increased, varying between 0.50 and 0.54 g/m2. However, as it was a measure 

with experimental observations, this difference was not very significant. For the biochars 

that were washed (B300-L, B350-L and B400-L) and for the activated ones (B300-A, B350-

A and B400-A), the values for the apparent density when compared to the nontreated bi-

ochars at the same production temperature were the same. 

3.2.4. Mineral Composition  

Figure 7 shows the mineral compositions for the different biochars.  

B300 B350 B400 B300-L B350-L B400-L B300-A B350-A B400-A

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

M
in

er
al

 c
o

m
p

o
si

ti
o

n
 /

 m
g

/k
g

 c
in

za

 Zn  Ti  Sr  Si  Sb  Pb  P  Na

 Mg  K  Fe  Cu  Cr  Ca  Ba  Al

 

Figure 7. Mineral compositions of the produced biochars expressed in mg/kg of ash. 
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3.2.5. Fourier-Transform Infrared Spectroscopy

In a general observation of the FTIR spectra presented in Figure 8, it is possible to
observe that there was a reduction in the intensity of the peaks between biochar samples
B300, B350 and B400 for the biochars that were washed and activated.

The FTIR analysis provided us with an absorption spectrum of chemical clusters and
not substances. Despite being an analysis that hardly identifies a substance, in the PP, PS
and PVC spectra, it is possible to observe a higher concentration of chemical groups up to
1800 cm−1. When polymeric materials undergo a thermochemical process, it is possible to
observe that these chemical groups are no longer evident.
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Figure 8. FTIR spectra: (a) biochars produced at 300 ◦C, (b) biochars produced at 350 ◦C and
(c) biochars produced at 400 ◦C.

Except for B300-L and B350-A, it was possible to observe the presence of a peak at
3400 cm−1 that corresponded to the vibration of -OH elongation of the hydroxyl groups [52].
In biochars produced at temperatures of 350 and 400 ◦C, as the biochar underwent treat-
ment and drying processes, the intensity of the peak decreased. According to Preston
and Schmidt [53], the aromatic ring structure should be progressively formed with the
increasing temperature. The high intensity and pronounced peak that we could observe at
2350–2340 cm−1 might occur due to the existence of atmospheric C02 and also due to the
existence of some groups due to O = C = O stretching [54]. Another prominent intensity
peak was 1600 cm−1, which corresponds to the C = C stretching vibrations in aromatic
compounds [55], and it was possible to verify a higher incidence as the biochar production
temperature increased. In biochars B350-A and B400-A, it was possible to observe that a
peak intensity appeared corresponding to the functional group and stretching C = C, which
indicated that the projection of aromatic structures occurred [56]. The peak of 700–600 cm−1

corresponded to the C–Cl stretching vibration, and when washing and activation occurred,
chlorine was absorbed or adsorbed in the case of activation [57].
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3.2.6. Nitrogen Adsorption at 77 K

The removal of volatile matter produces a void within the biochar that leads to a large
surface area, which is also dependent on the properties of the raw material used to produce
the biochar. Biochar production based on a biomass develops pores and has been found to
be very useful in land application, effluent purification and the removal of heavy metals
and different chemicals [58–60]. A biochar with a high carbon content and a large surface
area is also considered a potential electrode [61]. Figure 9 shows the results obtained for
the surface area analysis of the produced biochars.
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Temperature is one of the main factors that affects the structure and physicochemical
properties of biochar. Temperature affects the decomposition, formation and transformation
of biomass and thus differs from the surface functionality of biochar [27].

In the tests carried out and presented in Figure 9, the increase in temperature did not
significantly increase the surface area of biochars B300, B350 and B400. As the temperature
increased, the surface area increased; however, it was possible to observe that, in the
biochars produced without any type of treatment, there was a reduction in the surface area
associated with a greater production of tars that were embedded on the biochar surface,
and when they were washed, they increased the area due to the removal of the tars. When
the biochars underwent the hot water washing process, the results showed an increase in
surface area from 198 m2g−1 to 226 m2g−1 when the temperature was raised from 300 to
400 ◦C, respectively. Biochar samples B300-A and B350-A, when compared to the biochars
without treatment, showed that the activation process did not significantly improve the
area, with an increase corresponding to approximately 16%. Sample B400-A was the biochar
that obtained the best surface area; when compared to sample B400, it had a 133% increase
in surface area. These results indicated that the greater the removal of volatile matter, the
better the surface area.

4. Conclusions

The characteristics of the biochars produced at temperatures of 300, 350 and 400 ◦C
are strongly influenced by the production temperature and, subsequently, by washing and
activation treatments. This was indicated by the different physicochemical properties that
the biochars presented.

• The percentage of carbon present in the original feedstock and in the produced biochars
were similar, differing mainly in the percentage of oxygen, which was lower, and in
the ash, which increased as the temperature increased.
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• The amount of volatile matter in the biochars was lower as the temperature of biochar
production increased from 300 to 400 ◦C.

• The mass yield of biochars was not influenced by the temperature increase, ranging
between 70 and 75%.

• The chlorine removal potential for biochars that were washed and activated was above
80%, demonstrating the efficiency of carbonization as a pretreatment for thermochemi-
cal processes to remove chlorinated compounds.

• In the FTIR analysis, it was possible to observe that there was a great difference
between the spectra of the untreated biochars and the washed biochars, indicating the
removal of compounds that were on the surface, such as chlorine. Biochar produced
at 400 ◦C showed the lowest peaks after washing.

• In the analysis of the surfaces of the biochar samples, the differences between temper-
atures were more noticeable when the biochars were washed. When the activation
process was carried out, the biochar samples produced at 300 and 350 ◦C were very
similar, with the biochar produced at 400 ◦C having a higher surface area.

• Some results for the 350 ◦C biochars were not similar to the behaviors of the biochars
produced at 300 and 400 ◦C, indicating that, when making the feedstock mixture,
the amount of plastic and small metals may have been higher, thus making the
carbonization process more difficult.
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