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Abstract: We consider the effect of the external magnetic field on the in-plane conductivity in the
AA-stacked bilayer graphene system in the strong excitonic condensate regime. We include the effects
of the applied inter-layer electric field and the Coulomb interactions. The on-site and inter-layer
Coulomb interactions were treated via the bilayer Hubbard model. Using the solutions for the
physical parameters in the system, we calculate the in-plane conductivity of the bilayer graphene.
By employing the Green-Kubo formalism for the polarization function in the system, we show that
the conductivity in the AA bilayer system is fully controlled by the applied magnetic field. For the
partial filling in the layers, the electrical conductivity is different for different spin orientations, and,
at the high values of the magnetic field, only one component remains with the given spin orientation.
Meanwhile, for the half-filling limit, there is no spin-splitting observed in the conductivity function.
The theory evaluated here shows the new possibility for spin-controlled electronic transport in the
excitonic bilayer graphene system.

Keywords: graphene; excitons; spin-valve devices; electronic transport

1. Introduction

Recent technological advances in two-dimensional electronic materials bring new
insights into the methods and applications of modern nanoscale devices [1]. The AB-stacked
bilayer graphene (BLG) is known for its extraordinary property of band gap formation
when exposed to an external electric field potential [2–4]. In contrast with the AB-BLG
systems, the single-particle excitation structure of the AA-stacked BLG has no band gap,
and the energy spectrum is linear [4,5]. Nevertheless, a sufficiently large gap in AA bilayers
was found in [6], induced by the mass terms via the dielectric medium. The authors in [6]
analyzed the transmission and reflection probabilities in the AA bilayer with the layers
encapsulated in the dielectric medium. The band gap was found to be of the order of
40 meV. The coexistence of antiferromagnetism with the excitonic ordering [7–9] and band
gap opening in the doped AA bilayer [10,11] have been found recently, and a bilayer-based
spin-valve device has been proposed in [12] when examining the charge-carrier transport
dependence on the spin relaxation time. A recent theoretical treatment in [13] showed the
possibility of metal–semiconductor transition and excitonic condensation in AA-BLG with
an external magnetic field applied. The optical conductivity in AB- and AA-BLG systems
has been analyzed in many studies [14–21].

In the present work, we calculate the electrical conductivity in the AA-stacked BLG
beyond the Dirac approximation. We consider the system in the presence of the excitonic
condensate regime, an external magnetic field, and electric field potential. In addition to
the works performed on this subject, we show how the conductivity, for different spin
directions, could be controlled by tuning the external magnetic field parameter. We use
as a base our previous results in [13], where we showed the possibility of the formation
of the strong excitonic condensate state with resulting large band gaps in AA-BLG at the
zero temperature limit. We use the Green-Kubo imaginary-time formalism [22] to calculate
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the in-plane electric conductivity of the AA-BLG in the presence of excitons. Different spin
orientations were taken into account. Both partial (with an average fractional number of
particles at the given lattice site) and half-filling (with the average number of particles
equal to one at each lattice site) regimes were considered. We show that, for sufficiently
large values of the magnetic field and at the partial-filling regime, the x-component of the
conductivity completely vanishes in one spin channel and remains sufficiently large in
another spin channel. Additionally, we show the presence of optical gaps in the conductivity
spectrum, which have a strong relationship with the excitonic condensate state in the system,
and consider Coulomb interactions in the system. The results given here could open new
possibilities for spin-controlled electronic transport applications of the AA-BLG system
and allow its consideration as a new type of spin-valve device.

The paper is organized as follows: In Section 2, we introduce the bilayer Hubbard
model and we discuss the Coulomb terms in it. In Section 3, we use the Kubo formalism for
the electric conductivity concerning our system and we calculate it numerically for different
values of the on-site filling coefficient. In Section 4, we give the results of our numerical
calculations. Furthermore, in Section 5, we discuss the obtained results, and in Section 6,
we give a short conclusion to our paper. Appendix A is devoted to the calculation of the
polarization function in the system.

2. Generalization of Hubbard Model for AA Bilayer Graphene

We studied the electrical conductivity in the AA-BLG system with the help of the
bilayer Hubbard model. The Hamiltonian of our system has the following form:

ĤAA = Ĥt + Ĥint, (1)

where Ĥt is the tight binding part of the total Hamiltonian and Ĥint is the interaction part.
The Hamiltonian Ĥt is given in terms of the intra-layer (γ0) and inter-layer (γ1) hopping
amplitudes and

Ĥt = −γ0 ∑
〈r,r′〉

∑
σ

(
â†

σ(r)b̂σ(r′) + h.c.
)

−γ0 ∑
〈r,r′〉

∑
σ

(
ˆ̃a†

σ(r)
ˆ̃bσ(r′) + h.c.

)
−γ1 ∑

rσ

(
â†

σ(r) ˆ̃aσ(r) + b̂†
σ(r)

ˆ̃bσ(r) + h.c.
)
− µ ∑

r
n̂(r). (2)

Here, the operators x̂σ(r), ˆ̃xσ(r) and x̂†
σ(r), ˆ̃x†

σ(r) with x = a, b are the electron annihilation
and creation operators attached to different sublattice sites in the layers (see Figure 1).
The spin σ has two possible directions: σ =↑, ↓. The parameter γ0 describes the hopping
of electrons between the adjacent lattice sites, and γ1 is the local hopping of electrons
between the layers in the AA-BLG. Here, we put the hopping parameters equal to γ0 = 3 eV
and γ1 = 0.384 eV, which are consistent with the values reported in [23]. The summation
〈. . . 〉 in the first two terms in Equation (2) is over the nearest neighbor lattice sites r, r′.
The last term in Equation (2) describes the coupling of the chemical potential with the total
electron density operator n̂(r), which is given as

n̂(r) = n̂1(r) + n̂2(r), (3)

where the electron density operators n̂1(r) and n̂2(r) are defined as

n̂1(r) = ∑
x=a,b

n̂x(r),

n̂2(r) = ∑
x̃=ã,b̃

n̂x̃(r). (4)
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The interaction part of the Hamiltonian includes the on-site U-Hubbard interaction terms
in the layers, the local inter-layer Coulomb coupling, and the interaction with the external
electric field potential V and the magnetic field B. We have

Ĥint = U ∑
rη

n̂η↑(r)n̂η↓(r) + W ∑
rσσ′

n̂aσ(r)n̂ãσ′(r)

+W ∑
rσσ′

n̂bσ(r)n̂b̃σ′(r) +
V
2 ∑

r
(n̂2(r)− n̂1(r))

−gµBBz ∑
rη

(
n̂η↑ − n̂η↓

)
. (5)

Here, the parameters U and W describe the intra-layer and inter-layer Coulomb interactions
in the system. The parameter g, in Equation (5), is the Landé g-factor [24], and µB is the
Bohr magneton (here, we use the conventions µB = 1 and h̄ = 1). The magnetic field B
is considered in the z-direction, perpendicular to the layers of the bilayer (see Figure 1).
The summation index η, in the last term in Equation (5), is over the sublattice site variables
a, b (for the layer ` = 1) and ã, b̃ (for the layer ` = 2).

The biquadratic fermionic terms in the Coulomb interaction parts of the interaction
Hamiltonian in Equation (5) could be linearized via the Hubbard–Stratanovich decoupling
procedure. This detail was reported in [13].

The effective Hamiltonian, after those decoupling procedures, is given as

Ĥeff = −γ0 ∑
rδ

∑
σ

(
a†

σ(r)bσ(r + δ)e
ie
h̄c
∫ r+δ

r A(r′)dr′ + h.c.
)

−γ0 ∑
rδ

∑
σ

(
ã†

σ(r)b̃σ(r + δ)e
ie
h̄c
∫ r+δ

r A(r′)dr′ + h.c.
)

−∑
rσ

(∆σ + γ1)
(

a†
σ(r)ãσ(r) + b†

σ(r)b̃σ(r) + h.c.
)

−∑
rσ

(
µ− gµBBσ +

V
2
− U

2
n̄a − 2W

)
naσ(r)

−∑
rσ

(
µ− gµBBσ +

V
2
− U

2
n̄b − 2W

)
nbσ(r)

−∑
rσ

(
µ− gµBBσ− V

2
− U

2
n̄ã − 2W

)
nãσ(r)

−∑
rσ

(
µ− gµBBσ− V

2
− U

2
n̄b̃ − 2W

)
nb̃σ(r). (6)

We included in Equation (6) the vector potential A(r) in order to consider the electric
current response of the system. The vector potential is taken into account with the help of
the Peierls–Onsager substitution [25,26]. We have

Bσ =


B, if σ =↑,

−B, if σ =↓ .
(7)

The parameter ∆σ, introduced in Equation (6), is the excitonic order parameter, defined as

∆σ = W
〈

a†
σ ãσ

〉
= W

〈
b†

σ b̃σ

〉
, (8)

where the parenthesis 〈. . . 〉means the mean-field average of the product of two fermionic
operators (see [13] for details). The averages n̄η , in Equation (6), (with η = a, ã, b, b̃) are
over sublattice density operators, and come from the decoupling of the intra-layer on-
site Coulomb interaction terms in the interaction part in Equation (5). We assume that
the average electron concentrations on different sublattice sites in the layers are equal,
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i.e., n̄a = n̄b and n̄ã = n̄b̃. Additionally, we impose the condition for the occupation
(particle filling) between adjacent lattice sites in different layers, i.e., n̄a + n̄ã = 1/κ. Thus,
the half filling corresponds to κ = 0.5 when a maximum of one particle occupies a given
lattice site in the given layer.

l=2

l=1

B

A1

A2

B1

B2

+

-
V

Figure 1. Illustration of the AA-stacked BLG system exposed to the external magnetic field B (see
the black dashed arrow in the picture) in the direction of the z-axis. The intra-layer and inter-layer
hopping amplitudes are shown, and the sublattice notation is provided in each layer (see the sublattice
sites A1 and B1 in the bottom layer ` = 1 and A2 and B2 in the top layer ` = 2). The electric field
potential V is applied to the system.

3. The Green-Kubo Formalism and Electrical Conductivity in AA Bilayer Graphene
3.1. The Electric Current Operator beyond Dirac Approximation

Furthermore, by supposing the small variations of the vector potential (at the dis-
tances of the order of δ) and expanding the exponential in the tight binding part of the
Hamiltonian in Equation (6) up to the first order of the vector potential A(r), we obtain, for
the Hamiltonian,

Ĥeff = Ĥeff(A(r) = 0)− 1
c ∑

r,i
∑

`=1,2
A`i(r)j`i(r), (9)

where j`i(r) is the component of the electric current operator along the direction i. We
can obtain the form of the in-plane operator j`x(r) by functional differentiation of the
Hamiltonian in Equation (9) with respect to the vector potential A`x(r). We have, for the
total current density operator in the AA-BLG, the following expression:

jx = −c
δĤeff

δA`x(r)
. (10)

After the Fourier transformation of the fermionic creation and annihilation operators into
the reciprocal space, we obtain, for the current density operator,

jx = − e
N ∑

kσ

(
vkxa†

kσbkσ + v∗kxb†
kσakσ

+vkx ã†
kσ b̃kσ + v∗kx b̃†

kσ ãkσ

)
, (11)

where we have introduced the velocity operator vkx

vkx = − iγ0

h̄ ∑
δ

δxeikδ. (12)
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It is easy to calculate explicitly the x-component of the velocity operator, given in Equation (12).
Indeed, for the nearest neighbor vectors δ (which are the same for the AA-stacking configura-
tion), we have the following expressions

δ =


δ1 =

(
a

2
√

3
, a

2

)
,

δ2 =
(

a
2
√

3
,− a

2

)
,

δ3 =
(
− a√

3
, 0
)

,

(13)

where a =
√

3a0, in Equation (13), is the sublattice constant, while a0 is the carbon–carbon
length in the graphene layers (with a0 = 1.42). Then, for the velocity operator, we obtain

vkx = − iγ0a
h̄

(
ei kx a

2 cos
kya
√

3
2
− e−ikxa

)
. (14)

Hereafter, we use this expression for the velocity operator when calculating the electrical
polarization function beyond the Dirac approximation.

3.2. The Polarization Function and Electrical Conductivity

The electronic polarization function can be calculated within the Matsubara imaginary
time formalism [22] in the following way

Πij(iωm) = −
∫ β

0
dτeiωmτ

〈
Tτ ji(τ)jj(0)

〉
, (15)

where the indexes i, j = x, y, z denote the components of the polarization operator. The fre-
quencies ωm are the Bosonic Matsubara frequencies, with ωm = 2mπ/β (with
m = 0,±1,±2, . . . ), and β is β = 1/T. In turn, the real part of the conductivity func-
tion is related to the imaginary part of the retarded polarization function, as

<σij(Ω) =
=ΠR

ij (Ω)

Ω
. (16)

The retarded polarization function in Equation (16) could be obtained from that in Equation (15)
via analytical continuation into the positive real frequency axis

ΠR
ij (Ω) = Πij(iωm → Ω + iε+). (17)

The average of the time-ordered product in Equation (15) could be evaluated using the
Wick theorem [27]. Then, we obtain, for the x-component of the polarization function in
Equation (15), the expression in terms of the fermionic and excitonic Green’s functions (the
details of calculations and definitions of Green’s functions are given in Appendix A)

Πxx(iωm) = −
e2

βN ∑
kνn

∑
σ

|vkx|2 ×

×
(
Gaa

kσ(iωm + iνn)Gbb
kσ(iνn)

+Gaa
kσ(iνn)Gbb

kσ(iωm + iνn)

+G ãã
kσ(iωm + iνn)G b̃b̃

kσ(iνn)

+G ãã
kσ(iνn)G b̃b̃

kσ(iωm + iνn)

+2Gaã
kσ(iνn)G b̃b

kσ(iωm + iνn)

+2G ãa
kσ(iωm + iνn)Gbb̃

kσ(iνn)
)

, (18)
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where Gηη
kσ(iνn) is the normal fermionic Green’s function and Gηη̃

kσ(iνn) is the excitonic
Green’s function (see Appendix A). The frequencies νn in Equation (18) are the fermionic
Matsubara freqeuncies νn = π(2n + 1)/β, with n = 0,±1,±2, . . . . We present here their
explicit forms following the work in [13]. We have

Gaa
kσ(iνn) = Gbb

kσ(iνn) = −
4

∑
i=1

α
(σ)
ik

iνn + ε
(σ)
ik

,

G ãã
kσ(iνn) = G b̃b̃

kσ(iνn) = −
4

∑
i=1

β
(σ)
ik

iνn + ε
(σ)
ik

,

Gaã
kσ(iνn) = G b̃b

kσ(iνn) = G ãa
kσ(iνn) = Gbb̃

kσ(iνn) =

= −
4

∑
i=1

γ
(σ)
ik

iνn + ε
(σ)
ik

. (19)

Here, the coefficients α
(σ)
ik , β

(σ)
ik , and γ

(σ)
ik in the right-hand side in Equation (19) are

given in Appendix A. Furthermore, we reinserted the expressions of Green’s functions
in Equation (19) into Equation (18) and we performed the summation over the Fermionic
Matsubara frequencies νn. Then, we obtained, for the imaginary part of the polarization
function, the following expression

=Πxx(Ω) =
πe2

N ∑
kσ

∑
i,j=1,...,4

|vkx|2 ×

×
[
2α

(σ)
ik α

(σ)
jk + 2β

(σ)
ik β

(σ)
jk + 4γ

(σ)
ik γ

(σ)
jk

]
×

× δ(Ω− ε
(σ)
jk + ε

(σ)
ik )
(

nF(−ε
(σ)
ik )− nF(−ε

(σ)
ik −Ω)

)
. (20)

Here, nF(x) is the Fermi–Dirac distribution function defined as nF(x) = 1/(eβ(x−µ) + 1).
The energy parameters ε

(σ)
ik with the energy branches i = 1, . . . , 4 define the electronic band

structure in the AA-BLG with the excitonic pairing interaction. They are given and calcu-
lated in [13] for different values of the magnetic field parameter. Due to different physical
solutions of the excitonic order parameter ∆σ, corresponding to different spin orientations,
we expected different results for the imaginary part of the polarization function. Therefore,
we separated

=Πxx(Ω) = =Π↑xx(Ω) +=Π↓xx(Ω) (21)

and we calculated both components separately. In the same manner, the real part of the
electrical conductivity function <σxx(Ω) is

<σxx(Ω) = <σ↑xx(Ω) +<σ↓xx(Ω). (22)

In the next section, we give the numerical results for the function in Equation (22), and we
discuss different on-site filling regimes.

4. Results

In Figures 2 and 3, we presented the numerical results for the energy dependence
of the real part of the conductivity function normalized to the half of the conductance
quantum σ0 = e2/h̄. On the axis of abscissa, we put the excitation energy, normalized to
the intra-layer hopping energy γ0, i.e., E = h̄Ω/γ0, where Ω could be the frequency of the
external radiating photons coming from the light source devices. The zero temperature
limit was considered in the figures.
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Figure 2. The x-component of the real part of conductivity function as a function of the excitation
energy parameter E (in units of γ0). We considered the case of partial-filling in the layers and the
inverse filling coefficient is set at the value κ = 1. Different values of the external magnetic field
have been considered, from zero (see in panel (a)), up to very high value (see in panel (c)). The
separation of the conductivity function, for different spin directions, is well described in panel (b).
The inter-layer Coulomb interaction parameters is fixed at the value W = 2γ0 and external gate
potential at the value V = 2γ0. The zero temperature limit is considered.
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Figure 3. The x-component of the real part of conductivity function as a function of the excitation
energy parameter E (in units of γ0). We considered the case of half-filling in the layers and the inverse
filling coefficient is set at the value κ = 0.5. Different values of the external magnetic field have been
considered, from zero up to very high value (see in panel (a–c)). We see that there is no splitting of
the conductivity function due to different spin orientations. The inter-layer Coulomb interaction
parameters is fixed at the value W = 2γ0 and external gate potential at the value V = 2γ0. The zero
temperature limit is considered.
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Both components of the sum, in the right-hand part of Equation (22), were calculated
separately to show the difference related to the orientation of the spin. In Figure 2, the case
of partial filling is considered with the inverse filling coefficient κ = 1 (see [13]). When
evaluating the k-sum in Equation (20), the δ-Dirac function was replaced by the Lorentzian
function with the small broadening coefficient η = 0.05. Different values of the normalized
magnetic field parameter B̃ = µBB/γ0 are considered in panels (a)–(c) in Figure 2. The inter-
layer Coulomb interaction parameter was set at the value W = 2γ0, and the electric field
potential was fixed at the value V = 2γ0. In panel (a) in Figure 2, we consider the case
of zero magnetic fields. The electrical conductivities coincide for both spin channels.
The plot in black corresponds to the large intra-layer Coulomb interaction with U = 4γ0.
The conductivity peak at the zero frequency limit Ω→ 0 corresponds to the Drude limit
(when no interband transitions occur), and the width of the peak is equal to the inverse
relaxation time of electrons. We see that the region where the conductivity function is
non-zero is displaced to the right on the frequency axis for the small value of the intra-
layer Coulomb interaction parameter U = γ0. Moreover, an optical gap appears in the
conductivity spectrum for the case U = γ0 (see the low-frequency region in the red
plot) with the value ∆opt = γ0. The values of the conductivity function are the same for
both spin orientations, i.e., <↑σxx(Ω) = <↓σxx(Ω). The case of the non-zero magnetic
field with B̃ = 0.5 is considered in panel (b) in Figure 2. Both large and small values of
the parameter U are considered here. We see that the electrical conductivity is different
in this case for different orientations of the spin. For U = 4γ0 the conductivity peaks,
corresponding to the spin orientations σ =↑ and σ =↓, are separated on the Ω-axis and
the conductivity <↑σxx(Ω) is placed in the high-frequency region, while the frequencies
corresponding to the non-zero values of <↓σxx(Ω) are smaller. The optical gaps are present
for both spin orientations, with ∆↑opt = 2γ0 = 6 eV (corresponding to the case σ =↑)
and ∆↓opt = 0.8γ0 = 2.4 eV (corresponding to the case σ =↓). Meanwhile, we see that for
U = γ0, the peaks of the conductivity function for σ =↑ are displaced to the right and
the optical gap is larger, in this case, ∆↑opt = 2.8γ0 = 8.4 eV. The conductivity function for
σ =↓ is very different in this case (see the curve in green, in panel (b) in Figure 2). We can
observe that the optical gap is absent in the case σ =↓ and the conductivity maximum is
displaced again to the right on the Ω-axis. Thus, by inducing the finite magnetic field, the
conductivities corresponding to different spin orientations are completely different and get
completely separated on the Ω-axis. The low-frequency region on Ω corresponds to the
conductivities with σ =↓ and the high-frequency region corresponds to the conductivities
with σ =↑. Experimentally, this means that the electrical conductivity in the magnetic field
B̃ = 0.5 and with σ =↓ could be detected with the photons’ radiation with wavelengths
λ ∈ (137.76, 6200) nm, i.e., covering the light spectrum from the near ultraviolet (UV)
up to the far infrared regions (also covering the visible light spectrum). Meanwhile,
the conductivity, corresponding to σ =↑, could be observed in the presence of radiation
with λ ∈ (68, 137.76) nm, covering the light spectrum from the soft X-ray up to the near
UV regions.

A totally different picture appears for the higher values of the magnetic field parameter
B̃ = 1. In this case, the conductivity becomes totally suppressed for U = γ0 and the results
for the case of U = 4γ0 are given in panel (c) in Figure 2. We can observe in panel
(c), in Figure 2, that in this case only the conductivity with σ =↓ remains and <σxx(Ω)
vanishes. The optical gap is also absent in this case. The results for the case of the half
filling (with the inverse filling parameter κ = 0.5) are presented in Figure 3 with the
same values of the physical parameters in the system as in Figure 2. We can observe in
panels (a)–(c), in Figure 3, that <↑(σxx)(Ω) = <↓σxx(Ω) for all values of the intra-layer
Coulomb interaction parameter U. We can see in panel (a), that for B̃ = 0 and U = 4γ0,
the conductivity is suppressed apart from in the Drude part of the spectrum (see the black
curve in the very low-frequency region). Meanwhile, the conductivity function for the case
U = γ0 generates very large values on a very wide interval of frequencies. The conductivity
functions at B̃ = 0.5 are shown in panel (b) in Figure 3, for U = 4γ0 and U = γ0. We can
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observe that the conductivity function for U = γ0 has practically the same shape as for
the case of zero magnetic fields. Meanwhile, the large domain of conductivity appears
for U = 4γ0 and B̃ = 0.5 (see the black curve in panel (b) in Figure 3). Furthermore,
with a higher value of the magnetic field parameter equal to B̃ = 1, the amplitudes of the
conductivity functions decrease drastically (see panel (c) in Figure 3), and also very large
optical gaps appear in the conductivity spectrum, which transfer the spectrum to the large
frequency region. For U = γ0, the optical gap is of the order of ∆σ

opt = 1.75γ0 = 5.25 eV,
and for U = 4γ0, we obtain ∆σ

opt = 2.45γ0 = 7.35 eV. We can relate the obtained high
values of the optical gap parameters to the presence of the strong excitonic condensate in
the system (which has been proven to be possible in [13]) and the considered limits of the
Coulomb interaction parameters in the AA bilayer graphene.

As an example, we also considered in Figure 4 a very high value for the magnetic field,
equal to B̃ = 2, and a case of partial filling in the layers with κ = 1. The obtained result is
very similar to that obtained for the case of B̃ = 1 (see panel (c) in Figure 2).

Figure 4. The x-component of the real part of conductivity function as a function of the excitation
energy parameter E (in units of γ0).

5. Discussion

Indeed, the results of our work are based, fundamentally, on the initial calculations
that started in [13], where the important physical parameters, such as the excitonic gap
parameter, average charge density imbalance, and chemical potential, were obtained self-
consistently within the framework of the same Hamiltonian that was used in the present
work. In this sense, in general, it could be slightly hard to capture the complete background
on which the results here are based. For this reason, it is perhaps recommended to read the
above-mentioned paper.

Concerning the numerical values of the interaction parameters, given in the Hamil-
tonian in Equation (1) and used in the present work, it is useful to notice that the most
realistic values of the intra-layer (U) Coulomb interaction parameters are given in the inter-
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vals 5–7 eV [4]. In practice, the on-site Coulomb interaction parameter U is the strongest
interaction constant. The local inter-layer Coulomb interaction W is, in general, smaller
than U. In order to measure the interaction constant W in units of U, we can choose the
approximate formula W/U = a0/d0, where a0 is the lattice constant in the layers and d0 is
the inter-layer separation distance. By the way, all mentioned estimations are especially
true for the pristine AB-staked bilayer graphene. For the artificially constructed AA-BLG
systems, we can change the inter-layer separation distance d0 experimentally and obtain
different interaction regimes (which are desired by the authors). In this sense, the artificially
built AA bilayers (which consist of two separate graphene monolayers and are not naturally
obtained bilayers with the given fixed value of the inter-layer distance) are more purposeful
to verify the results presented in the frames of our theory. Moreover, our BLG system con-
sists of such artificial constructions (for this reason we sometimes call them “double-layer”
systems and not “bilayer”) with variable inter-layer distances. The parameters V and B
could be changed experimentally or arbitrarily, within the reasonable bandwidths (see,
in [13], about the relation of B and V).

To our knowledge, the experimental results for U and W were only known (until
now) for the AB-stacked BLG structure (see [28] or in [29]). The authors introduced a
fundamental emphasis on the control of the charge carrier concentration (by changing
the doping level in the layers), which permits the measurements of parameters, such
as U and γ1. They synthesized the BLG structure on the silicon carbide (SiC) substrate
and measured the electronic properties using angle-resolved photoemission spectroscopy.
The most important parameter, which merits measurement, is the local Hubbard interaction
U for different carrier concentrations. For the AA-BLG, we calculated, numerically [13],
the exact average carrier concentration difference δn̄ (charge-imbalance) between layers.
which gives fundamental information about the electron or hole doping in the individual
layers. The nature of the electron or hole type of the layers was determined by the sign of
the parameter δn̄. If δn̄ > 0, then the upper layer in BLG was populated by the electrons,
while the lower layer was populated by the holes. For δn̄ < 0, the holes are dominating
in the upper layer and the electrons in the lower layer. The other parameter W (especially
in the case of AA-stacked BLG) could be measured just by varying the inter-layer distance
in the bilayer construction with the simultaneous ARPES measurements of the electron
concentrations in the layers. Furthermore, the results for W could be compared with those
obtained for U, and then the energy scales of W could be extracted subsequently. On the
other hand, the charge density modulations due to the electric field and in the example of the
AB-BLG structures have been measured recently via low-temperature Raman spectroscopy
techniques [30]. Particularly, the authors analyzed and measured experimentally the charge
density non-uniformity of the BLG caused by phonon anharmonicity.

Indeed, very good estimates for the magnetic fields, needed to employ the spin-valve
regime on several spin transport devices, are given in a series of works in [31–33] and
in the references therein. Particularly, the order of magnitudes of the magnetic fields
at which the suitable spin-valve effect takes place are very small and of the order of mT.
Nevertheless, our estimations for the magnetic field values at which the AA-BLG behaves
like a spin-valve device are presented in panels (a)–(c) in Figure 2, and in Figure 4 for the
case of the partial-filling regime. We should remark that the spin-valve effect takes place
in our BLG at the partial-filling regime and at sufficiently high values of the external
magnetic field parameter, at the order of 1.5–6 T. It is notable that the spin-valve effect
observed here occurs at the partial-filling regime, which is also mentioned in each panel
in Figures 2 and 3. The partial-filling regime deviates considerably from the half-filling
regime. In the case of partial filling, the average number of particles (electrons or holes)
at the single atomic lattice site position is not one (as in the case of half filling) but could
be fractional and less than one. The most prominent effect of the spin-split conductivity
was attained at the value of the dimensionless magnetic field parameter B̃ = 0.5 and is
presented in panel (b) in Figure 2. This regime corresponds to the real magnetic field with
the value B = γ0B̃ = 1.5 T, which is completely achievable in experimental situations.
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Moreover, such realistic values of the magnetic field have been discussed in many works,
such as in [16,34,35].

It is remarkable here to note that the spin-valve effect does not take place in the case
of the half filling. Indeed, as shown in Figure 3, there is no spin-splitting of the electrical
conductivity function; nevertheless, the behavior of the conductivity function was different
at the small and large U limits. This does not occur at the high value of the magnetic field,
and at the half filling we found the opening of the large optical gap in the system [36],
which is due to the existence of the excitonic condensate state in the AA-BLG [13].

6. Conclusions

In this paper, we considered the bilayer Hubbard model to study the electronic conduc-
tivity of AA-stacked bilayer graphene in the strong excitonic condensate regime. The ap-
plied electric field potential and the magnetic field were considered. The effect of the
in-plane electric field was taken into account in the form of the Peierls phase variables in
the hopping terms of the initial Hamiltonian of the system. The Green-Kubo approach was
used to calculate the electrical conductivity function in the system with the presence of
excitons at the zero temperature limit. Both partial and half-filling cases were considered,
and we used the numerical results obtained in [13] for the physical parameters in the
system, such as the chemical potential, the average charge density difference between the
layers, and the excitonic order parameters for different spin orientations σ =↑ and σ =↓.
We numerically calculated the conductivity functions for both spin channels and different
values of the magnetic field parameters and interaction parameters. For the partial-filling
case and when changing the magnetic field, the conductivity function obtained different
values for different spin orientations. Particularly, for σ =↑, the conductivity function
vanished at the high values of the magnetic field, while for σ =↓ it remained finite for all
values of the applied magnetic field. Contrarily, for the half-filling case, the conductivity
functions nearly coincided for different spin orientations and at small and intermediate
values of the applied magnetic field. Moreover, in this case, the obtained large values of the
optical gap parameters were strongly related to the presence of an excitonic condensate
state in the system.

The results obtained in this paper, show how one can control the electrical conduc-
tivity function in AA-stacked bilayer graphene by changing the magnetic field. After an
appropriate tuning of the interaction parameters, one can obtain the electrical conductivity
in the system with the required spin orientations. The results obtained here could be
important for spintronic and optoelectronic applications of the AA bilayer graphene and
give new insight into the possible applications of the AA bilayer graphene as a new type of
spin-valve device.
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Appendix A. Green’s Functions and Wick’s Average

In this section, we calculated the four fermionic averages entering the expression of the
polarization function, given in Equation (15) in Section 3.2. For this, we used the expression
of the electrical current operator given in Equation (11). We obtained, for the Tτ product

〈Tτ jx(τ)jx(0)〉 = −
e2

N ∑
kk′

∑
σσ′

vkxv∗k′x ×

×
〈

ak′σ′(0)a†
kσ(τ)

〉〈
bkσ(τ)b†

k′σ′(0)
〉
+

+vkxv∗k′x
〈

ãk′σ′(0)a†
kσ(τ)

〉〈
bkσ(τ)b̃†

k′σ′(0)
〉

+vkxv∗k′x
〈

ak′σ′(0)ã†
kσ(τ)

〉〈
b̃kσ(τ)b†

k′σ′(0)
〉

+vkxv∗k′x
〈

ãk′σ′(0)ã†
kσ(τ)

〉〈
b̃kσ(τ)b̃†

k′σ′(0)
〉

+vkxv∗k′x
〈

bk′σ′(0)b
†
kσ(τ)

〉〈
akσ(τ)a†

k′σ′(0)
〉

+vkxv∗k′x
〈

b̃k′σ′(0)b
†
kσ(τ)

〉〈
akσ(τ)ã†

k′σ′(0)
〉

+vkxv∗k′x
〈

bk′σ′(0)b̃
†
kσ(τ)

〉〈
ãkσ(τ)a†

k′σ′(0)
〉

+vkxv∗k′x
〈

b̃k′σ′(0)b̃
†
kσ(τ)

〉〈
ãkσ(τ)ã†

k′σ′(0)
〉

. (A1)

Then, we defined the normal (for the sublattices a, b, ã, and b̃) and excitonic (between
the sublattices a ã and b b̃) Green’s functions as

G(σ)aak(τ − τ′) = −
〈

akσ(τ)a†
kσ(τ

′)
〉

,

G(σ)bbk(τ − τ′) = −
〈

bkσ(τ)b†
kσ(τ

′)
〉

,

G(σ)ããk(τ − τ′) = −
〈

ãkσ(τ)ã†
kσ(τ

′)
〉

,

G(σ)
b̃b̃k

(τ − τ′) = −
〈

b̃kσ(τ)b̃†
kσ(τ

′)
〉

,

G(σ)aãk(τ − τ′) =
〈

akσ(τ)ã†
kσ(τ

′)
〉

,

G(σ)
bb̃k

(τ − τ′) =
〈

bkσ(τ)b̃†
kσ(τ

′)
〉

. (A2)

For the Tτ-product, we obtained

〈Tτ jx(τ)jx(0)〉 = −
e2

N ∑
kσ

|vkx|2 ×(
G(σ)aak(−τ)G(σ)bbk(τ) + G

(σ)
aak(τ)G

(σ)
bbk(−τ)+

+G(σ)ããk(τ)G
(σ)

b̃b̃k
(−τ) + G(σ)ããk(−τ)G(σ)

b̃b̃k
(τ)+

+2G(σ)aãk(τ)G
(σ)

b̃bk
(−τ) + 2G(σ)ãak(τ)G

(σ)

bb̃k
(−τ)

)
. (A3)

Furthermore, we performed a Fourier transformation of Green’s functions in Equation (A2) by
introducing the fermionic Matsubara frequencies νn = π(2n + 1)/β, where n = 0,±1,±2, . . .

G(σ)aak(τ) =
1
β ∑

νn

eiνnτG(σ)aak(iνn). (A4)

Similar expressions could also be written for the other Green functions in Equation (A2).
The analytical forms of the Fourier-transformed Green functions could be derived exactly,
and this is performed in [13]. The results are given in Equation (19) in Section 3.2. Here,



C 2023, 9, 42 14 of 17

we just give the expressions of the k-dependent coefficients α
(σ)
ik , β

(σ)
ik , and γ

(σ)
ik , figuring in

Equation (19). They are given as

α
(σ)
ik = (−1)i+1


P(3)

1σ (εiσ(k))
ε1σ(k)−ε2σ(k)

∏j=3,4
1

εiσ(k)−εjσ(k)
, if i = 1, 2,

P(3)
1σ (εiσ(k))

ε3σ(k)−ε4σ(k)
∏j=1,2

1
εiσ(k)−εjσ(k)

, if i = 3, 4,

(A5)

β
(σ)
ik = (−1)i+1


P(3)

2σ (εiσ(k))
ε1σ(k)−ε2σ(k)

∏j=3,4
1

εiσ(k)−εjσ(k)
, if i = 1, 2,

P(3)
2σ (εiσ(k))

ε3σ(k)−ε4σ(k)
∏j=1,2

1
εiσ(k)−εjσ(k)

, if i = 3, 4,

(A6)

and

γ
(σ)
ik = (−1)i+1


P(2)

σ (εiσ(k))
ε1σ(k)−ε2σ(k)

∏j=3,4
1

εiσ(k)−εjσ(k)
, if i = 1, 2,

P(2)
σ (εiσ(k))

ε3σ(k)−ε4σ(k)
∏j=1,2

1
εiσ(k)−εjσ(k)

, if i = 3, 4.

(A7)

Here, the polynomials P(3)
1σ (x), P(3)

2σ (x), and P(2)
σ (x) are given as

P(3)
1σ (x) = x3 + a(σ)1 x2 + b(σ)1 x + c(σ)1 ,

P(3)
2σ (x) = x3 + a(σ)2 x2 + b(σ)2 x + c(σ)2 ,

P(2)
σ (x) = a(σ)3 x2 + b(σ)3 x + c(σ)3 , (A8)

where

a(σ)1 = x(σ)1 + 2x(σ)2 +
V
2

,

b(σ)1 = 2x(σ)1 x(σ)2 + (x(σ)2 )2 + x(σ)1 V − V2

4
− (∆σ + γ1)

2

−|γ̃k|2,

c(σ)1 =
1
8

[
−(V + 2x(σ)2 )[V2 + 2x(σ)2 V − 2x(σ)1 (2x(σ)2 + V)+

+4(∆σ + γ1)
2] + 4(V − 2x(σ)1 )|γ̃k|2

]
, (A9)

a(σ)2 = 2x(σ)1 + x(σ)2 − V
2

,

b(σ)2 = 2x(σ)1 x(σ)2 + (x(σ)1 )2 − x(σ)2 V − V2

4
−

−(∆σ + γ1)
2 − |γ̃k|2,

c(σ)2 =
1
8

[
4(x(σ)1 )2(V + 2x(σ)2 )− 4x(σ)1 (V2 + 2(∆σ + γ1)

2+

+2Vx(σ)2 ) + 2x(σ)2 (V2 − 4|γ̃k|2) + V(V2+

+4(∆σ + γ1)
2)− 4|γ̃k|2

]
, (A10)
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and

a(σ)3 = ∆σ + γ1,

b(σ)3 = (∆σ + γ1)(x(σ)1 + x(σ)2 ),

c(σ)3 = −V2

4
(∆σ + γ1) +

V
2
(∆σ + γ1)(x(σ)1 − x(σ)2 )

+(∆σ + γ1)x(σ)1 x(σ)2 − (∆σ + γ1)
3 + (∆σ + γ1)|γ̃k|2. (A11)

The spin-dependent parameters x(σ)1 and x(σ)2 were defined as (see also in [13])

x(σ)1 =
U
2

n̄a + 2W − µ + (−1)σgµBB,

x(σ)2 =
U
2

n̄ã − µ + (−1)σgµBB. (A12)

Furthermore, we reintroduced the Fourier-transformed forms of Green’s functions in
Equation (19) into the expression of the polarization function in Equation (18), and
we obtained

Πxx(iωm) =
e2

βN ∑
kσ

∑
νn

∑
i,j=1,...,4

|vkx|2 ×

×
2αikσαjkσ + 2βikσβ jkσ + 4γikσγjkσ(
−iνn − iωm − ε

(σ)
ik

)(
−iνn − ε

(σ)
jk

) . (A13)

Next, we performed the summation over fermionic Matsubara frequencies iνn in Equation (A13),
and we obtained

Πxx(iωm) =
e2

N ∑
kσ

∑
i,j=1,...,4

|vkx|2 ×

×
(
2αikσαjkσ + 2βikσβ jkσ + 4γikσγjkσ

)
×

×
nF(−ε

(σ)
ik )− nF(−ε

(σ)
jk )

ε
(σ)
ik − ε

(σ)
jk − iωm

. (A14)

The real part of the electrical conductivity function is related to the imaginary part of the
retarded form of the polarization function in Equation (A14). Therefore, by performing the
analytical continuation iωm → Ω + iε+ we used Cauchy’s identity for the denominator in
Equation (A14)

1

ε
(σ)
ik − ε

(σ)
jk −Ω− iε+

= P

 1

ε
(σ)
ik − ε

(σ)
jk −Ω


+iπδ

(
ε
(σ)
ik − ε

(σ)
jk −Ω

)
,

(A15)

where δ(x) is Dirac’s delta-function. Then, we took the imaginary part and arrived at the
formula given in Equation (20) in Section 3.2.
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