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Abstract: [5.5.5.5]hexaene is a [12]annulene ring with a symmetrically bound carbon atom in its center.
This is the smallest hydrocarbon with a hyperbolic paraboloid shape. [5.5.5.5]hexaene and related
hydrocarbons are important building blocks in organic and materials chemistry. For example, penta-
graphene—a puckered 2D allotrope of carbon—is comprised of similar repeating subunits. Here, we
investigate the thermochemical and kinetic properties of [5.5.5.5]hexaene at the CCSD(T) level by
means of the G4 thermochemical protocol. We find that this system is energetically stable relative
to its isomeric forms. For example, isomers containing a phenyl ring with one or more acetylenic
side chains are higher in energy by ∆H298 = 17.5–51.4 kJ mol−1. [5.5.5.5]hexaene can undergo skeletal
inversion via a completely planar transition structure; however, the activation energy for this process
is ∆H‡

298 = 249.2 kJ mol−1 at the G4 level. This demonstrates the high configurational stability
of [5.5.5.5]hexaene towards skeletal inversion. [5.5.5.5]hexaene can also undergo a π-bond shift
reaction which proceeds via a relatively low-lying transition structure with an activation energy of
∆H‡

298 = 67.6 kJ mol−1. Therefore, this process is expected to proceed rapidly at room temperature.

Keywords: penta-graphene; 2D Carbon allotrope; skeletal inversion; π-bond shift; CCSD(T); G4 theory

1. Introduction

Carbon atoms that are surrounded by an annulene ring have attracted considerable
attention over the past 50 years [1–5]. A [12]annulene with a symmetrically bound carbon
in its center is of particular importance since it adopts a hyperbolic paraboloidal shape due
to a central sp3 carbon surrounded by 12 sp2 carbons. Scheme 1 illustrates the hyperbolic
paraboloidal structure of the [12]annulene–[5.5.5.5]hexaene (1). In this structure, the cen-
tral sp3 carbon is located at the saddle point of the surface created by the four adjacent
pentagons. It is well known that hyperbolic paraboloid surfaces of the equation z = axy
possess rigidity in the x and y directions [6,7]. Indeed, this may explain the high rigidity of
penta-graphene—a two-dimensional allotrope of carbon. Penta-graphene, which consists
of repeating hyperbolic paraboloid units, each comprising four pentagon rings sharing a
vertex, has been suggested to be more rigid than graphene [8,9].

Computational quantum chemistry is a branch of chemistry that uses computational
simulations to study the chemical properties of molecules and materials [10,11]. Computa-
tional quantum chemistry provides means for the rational design and development of new
molecules and materials with tailored chemical properties. Due to significant advances in
quantum theory and supercomputers, computational simulations are capable of unprece-
dented predictive accuracy. The present work focuses on the structural, thermodynamic,
and kinetic properties of [5.5.5.5]hexaene. In particular, we use high-level composite ab
initio methods [12,13] to show that [5.5.5.5]hexaene is (i) configurationally stable with
respect to structural inversion, (ii) energetically stable relative to its isomeric forms, and
(iii) has a relatively low lying π-bond shift transition state.
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is computationally more demanding and in most cases more accurate than G4(MP2) the-
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transition structures (i.e., with one imaginary frequency). The connectivity of the transi-
tion structures were confirmed by performing intrinsic reaction coordinate calculations 
[31,32]. Zero-point vibrational energies and enthalpic temperature corrections have been 
obtained from the harmonic frequencies and scaled by appropriate scaling factors as rec-
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Scheme 1. (a) Skeletal structure of a hyperbolic paraboloidal shape created by four pentagon rings
sharing a common vertex, (b) the optimized structure of [5.5.5.5] hexaene, and (c) a 3D representation
of the hyperbolic paraboloidal structure.

2. Computational Details

In order to obtain accurate thermochemical and kinetic properties for the hydrocarbons
considered in the present work, calculations have been carried out using the high-level,
ab initio, G4 and G4(MP2) procedures [14–16]. These procedures combine coupled-cluster
with single, double, and perturbative triple excitation (CCSD(T)) calculations as well as
second- and fourth-order Møller–Plesset perturbation theories to approximate the CCSD(T)
energy in conjunction with a triple-ζ-quality basis set (CCSD(T)/TZ). Both theories have
been found to provide thermochemical and kinetic properties for hydrocarbons with
chemical accuracy (arbitrarily defined as 1 kcal mol−1 = 4.2 kJ mol−1) [14–27]. G4 theory is
computationally more demanding and in most cases more accurate than G4(MP2) theory;
therefore, the main text reports the G4 results whilst the G4(MP2) results are provided
as Supporting Information. The geometries of all structures have been obtained at the
B3LYP/6-31G(2df,p) level of theory [28–30] as prescribed in the G4 and G4(MP2) protocols.
Harmonic vibrational frequencies have been calculated at the same level of theory to
confirm that all stationary points are equilibrium structures (i.e., with all real frequencies) or
transition structures (i.e., with one imaginary frequency). The connectivity of the transition
structures were confirmed by performing intrinsic reaction coordinate calculations [31,32].
Zero-point vibrational energies and enthalpic temperature corrections have been obtained
from the harmonic frequencies and scaled by appropriate scaling factors as recommended
in G4 and G4(MP2) theories [15,16]. All DFT and ab initio calculations were performed
using the Gaussian 09 program suite [33].

We have additionally assessed several DFT functionals for their ability to compute
the isomerization energies of the highly unsaturated C13H8 isomers considered in the
present work relative to the bottom-of-the-well G4 reference values. The considered
DFT methods, ordered by their rung on Jacob’s ladder [34], are the generalized gradient
approximation (GGA) functionals BLYP [28,35], PBE [36], BPBE [35,36] and BP86 [35,37]
the meta-GGA functionals TPSS [38] and MN15-L [39] the hybrid-GGAs B3LYP [28–30]
B3PW91 [27,40], PBE0 [41] and the range-separated CAM-B3LYP [42] the hybrid-meta
GGAs M05-2X [43], M06-2X [44], MN15 [39], BMK [45], and PW6B95 [46]. All calculations
have been performed in conjunction with the def2-QZVPP basis set [47]. With the exception
of the Minnesota functionals, which account for dispersion in the functional form, the
empirical D3 dispersion correction has been used in conjunction with the Becke–Johnson
damping potential (denoted by D3BJ) [48–50].

3. Results and Discussion

[5.5.5.5]hexaene (1, Scheme 1) has the molecular formula of C13H8, Scheme 2 de-
picts key structural C13H8 isomers 2–14 that have been identified using the ChemSpider
database [51]. [5.5.5.5]hexaene and the C13H8 isomers in Scheme 2 are, by definition, highly
unsaturated. As such, most of the C13H8 isomers are polyynes (isomers 2–12, Scheme 2),
and many isomers include a phenyl ring (isomers 2–10 and 13, Scheme 2). Isomer 1 does
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not contain a phenyl ring; however, it contains a nonplanar conjugated π-system. Therefore,
[5.5.5.5]hexaene is expected to be relatively stable compared to the isomers in Scheme 2. Yet,
to the best of our knowledge, [5.5.5.5]hexaene (1) has not been synthesized; however, sev-
eral of the C13H8 isomers are synthetically accessible, for example, isomers 2 and 3 [52–54].
In the present work, we examine the relative stability of the C13H8 isomers and show
that [5.5.5.5]hexaene (1) is the energetically most stable isomer within this space of highly
unsaturated structures. This stability may be attributed to the conjugated [12]annulene
ring. We also show that, with the exception of isomer 13, which contains a highly strained
cyclobutene ring, all of the isomers that contain a phenyl ring are relatively stable with
isomerization energies of ∆H298 = 17.5–52.8 kJ mol−1 relative to isomer 1. For example,
isomers 2 and 3 are associated with isomerization energies of 17.5 and 24.3 kJ mol−1,
respectively, relative to isomer 1.
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Table 1 gives the G4 isomerization energies on the electronic (∆Ee), enthalpic at 0 K
(∆H0), and enthalpic at 298 K (∆H298) potential energy surfaces (PESs). Remarkably, our
G4 calculations show that 1 is the energetically most stable isomer on the ∆Ee, ∆H0, and
∆H298 PESs. From here onwards, we will focus on the ∆H298 values; however, we note
that the same trends are observed on the ∆Ee and ∆H0 PESs. We also note that there is a
reasonably good agreement between the G4 and G4(MP2) values. For example, the largest
deviation of 12.7 kJ mol−1 between the two theories is obtained for isomer 14. All the
G4(MP2) isomerization energies are given in Table S1 of the Supporting Information. All
the isomers 2–10 contain an aromatic phenyl ring with one (or more) linear acetylenic
carbon chain. Isomer 2, which contains a single (−C≡C−)3 chain terminated with a
methyl group, is less stable than [5.5.5.5]hexaene (1) by 17.5 kJ mol−1. Moving the methyl
group to the Ph ring in the ortho, meta, and para positions relative to the acetylenic chain
(isomers 3–5) destabilizes the isomers. In particular, we obtain isomerization energies of
24.3 (3), 28.0 (5), and 28.3 (4) kJ mol−1 relative to isomer 1. Isomers 6–9 all involve three
acetylene substituents and one methyl substituent. These isomers, along with isomer 10,
are energetically less stable than isomer 1 by 46.8–52.8 kJ mol−1. All the other isomers
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(11–14) involve long acetylenic or cumulenic chains or a highly strained cyclobutene ring.
These isomers are highly energetic and lie as much as 277.3–488.2 kJ mol−1 above isomer 1.

Table 1. CCSD(T) energies relative to isomer 1 (in kJ mol−1) obtained from G4 theory for the
fourteen C13H8 isomers shown in Schemes 1 and 2 and transition structures in Figure 1.

Struct. ∆Ee ∆H0 ∆H298 Struct. ∆Ee ∆H0 ∆H298

1 0.0 0.0 0.0 10 52.3 43.1 51.4
2 15.3 8.1 17.5 9 61.2 42.0 52.8
3 25.8 15.2 24.3 11 281.8 263.2 277.3
5 29.5 18.3 28.0 12 283.6 264.3 278.7
4 29.8 18.7 28.3 13 363.6 359.9 361.4
6 54.9 36.3 46.8 14 498.7 472.8 488.2
7 54.8 36.7 46.9 1-TSinv

a 262.7 247.5 249.2
8 57.4 38.5 48.9 1-TSshift

b 74.6 68.4 67.6
a transition structure of 1 for skeletal inversion (see Figure 1b and Scheme 3a). b transition structure of 1 for π-bond
shift (see Figure 1c and Scheme 3b).

Having established that [5.5.5.5]hexaene (1) is a relatively stable C13H8 isomer, it is
of interest to examine its structure in more detail. This is a symmetric molecule of D2
symmetry. The bond lengths and angles are shown in Figure 1a. We begin by noting that
even though [5.5.5.5]hexaene is highly nonplanar, the double and single bonds of the outer
[12]annulene ring exhibit bond length alternation, indicating a partly delocalized π-system.
The double C=C bonds are of similar lengths to those of typical C=C bonds, namely, 1.360
and 1.343 Å, and the single C–C bonds are shorter than typical single C–C bonds, namely,
1.441 and 1.468 Å (Figure 1). For comparison, the length of the conjugated double bonds in
cyclopentadiene is 1.346 Å, i.e., in between the lengths of the double bonds in 1, and the
length of the single bond sandwiched between the two double bonds in cyclopentadiene is
1.468 Å.
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Figure 1. Top and side views of the optimized B3LYP/6-31G(2df,p) structures of (a) 1 ([5.5.5.5]hexaene,
D2 symmetry), (b) planar transition structure for structural inversion of 1-TSinv (D2h symmetry), and
(c) transition structure for the double-bond shift in 1-TSshift (C2v symmetry); bond lengths are given
in Å (black font), and angles are given in degrees (green and red font). See Table 1 for the relative G4
enthalpies at 298 K.
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[5.5.5.5]hexaene and related systems have been initially proposed in the quest to
form a tetracoordinate carbon with a planar configuration [1–4,55–57]. Indeed, the outer
conjugated annulene imposes, to some extent, a planar configuration around the central
sp3 carbon. This is demonstrated by bond angles around this carbon being smaller than
the ideal tetrahedral angle. The two bond angles around the central carbon are 96.4◦ and
98.1◦. The planarity of the central carbon can be assessed by examining the angle between
the planes of the two opposite cyclopentadiene rings, which is 56.0◦ (cfr. to an angle of 90◦

in a perfect tetrahedral configuration). We note that the angle between the planes of the
two opposite cyclopentene rings is very similar and amounts to 56.9◦.

The above geometrical parameters show that the central carbon in [5.5.5.5]hexaene
is closer to planarity than a tetrahedral carbon; it is therefore of interest to examine the
reaction barrier height for the skeletal inversion in this structure. The inversion transition
structure is completely planar and has a D2h symmetry (see Figure 1b and Scheme 3a).
The four bonds between the central carbon and the carbons of the [12]annulene ring are
significantly elongated relative to the equilibrium structure (1, Figure 1a). All of the bonds of
the [12]annulene ring are slightly shortened relative to the equilibrium structure; therefore,
the bond length alternation in the [12]annulene ring is maintained. As expected, the skeletal
inversion has a high barrier height of ∆H‡

298 = 249.2 kJ mol−1 at the G4 level, demonstrating
the high configurational stability of [5.5.5.5]hexaene towards skeletal inversion. The high
energy of the planar TS for the skeletal inversion may be attributed to two factors: (i) the
strain energy associated with a planar structure of four fused five-membered rings sharing
a central carbon atom, and (ii) the antiaromaticity of this planar TS, which involves 12 (4n)
π-electrons [5,58].
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reactions in [5.5.5.5]hexaene.

It is of interest to examine whether the conjugated [12]annulene ring can undergo a
π-bond shift reaction (illustrated schematically in Scheme 3). Figure 1c shows the optimized
transition structure for this reaction. The geometric configuration of the central carbon
atom in this transition structure is very similar to that in the equilibrium structure. The
bond length alternation in this TS is significantly reduced, with the difference in length
between the two types of bonds being merely 0.039 Å. The activation energy for the π-bond
shift reaction is ∆H‡

298 = 67.6 kJ mol−1 at the G4 level. Therefore, this process is expected
to proceed rapidly at room temperature.

Finally, it is useful to examine the performance of a representative selection of DFT
methods across the rungs of Jacob’s Ladder in order to accommodate future computational
investigations of larger fragments of penta-graphene and related structures. Table 2 gives
the root mean square deviations (RMSDs), mean absolute deviations (MADs), mean signed
deviations (MSDs), and largest deviations (LDs) for the considered DFT methods. We
begin by noting that highly unsaturated hydrocarbons have been shown to be an extremely
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challenging target for most DFT functionals [20,59]. Let us begin with examining the
performance of the pure GGA methods. BLYP-D3BJ results in an unacceptably large RMSD
of 87.7 kJ mol−1, which is mostly attributed to the poor performance of the LYP correlation
functional. Replacing the LYP functional with either the P86 or PBE correlation functionals
results in significant improvements in performance. Namely, the BP86-D3BJ and BPBE-D3BJ
methods result in RMSDs of 27.8 and 23.6 kJ mol−1, respectively. We note that PBE-D3BJ
results in a similar performance to BP86-D3BJ, albeit PBE-D3BJ is associated with a much
smaller MSD of merely −2.2 kJ mol−1 (Table 2). The considered meta-GGA methods (TPSS-
D3BJ and MN15-L) do not offer an improvement over the best-performing GGA methods.
Moving on to the hybrid-GGA methods, B3LYP-D3BJ shows poor performance, which is
considerably improved by the range-separated CAM-B3LYP method. PBE0-D3BJ results
in an RMSD of 23.1 kJ mol−1, which is a noticeable improvement over the pure PBE-D3BJ
method. Overall, the hybrid-GGA B3PW91-D3BJ provides the best performance of all
the considered DFT methods with an RMSD of 14.9 kJ mol−1. Moving on to the hybrid
meta-GGA methods, M06-2X provides poor performance with an RMSD of 47.9 kJ mol−1.
Interestingly, its predecessor M05-2X results in an RMSD of just 22.0 kJ mol−1. We note
that both M05-2X and M06-2X include similar amounts of exact Hartree–Fock exchange,
namely, 56% and 54%, respectively. However, M06-2X is more heavily parametrized than
M05-2X, which seems to work less well for the highly challenging isomerization energies at
hand. Both MN15 and PW6B95-D3BJ do not offer an improvement over the performance
of M05-2X. However, BMK-D3BJ results in a significantly lower RMSD of 16.2 kJ mol−1

(which is similar to that of B3PW91-D3BJ for which we obtain an RMSD of 14.9 kJ mol−1).

Table 2. Statistical analysis for the performance of selected DFT procedures for calculating the relative
energies of the isomers in Scheme 2 relative to the electronic ∆Ee reference values from G4 theory
(in kJ mol−1) a,b.

RMSD MAD MSD LD

BLYP-D3BJ 87.7 79.8 −76.2 −143.4
BP86-D3BJ 27.8 24.3 −11.0 −52.2
PBE-D3BJ 27.4 24.1 −2.2 −42.5
BPBE-D3BJ 23.6 19.9 1.8 −34.2
TPSS-D3BJ 38.4 32.8 −26.3 −69.6
MN15-L 30.6 27.9 −16.9 −58.7
B3LYP-D3BJ 62.0 57.9 −54.1 −91.8
CAM-B3LYP-D3BJ 38.5 37.0 −35.1 −50.2
PBE0-D3BJ 23.1 17.8 17.4 38.8
B3PW91-D3BJ 14.9 13.3 2.7 22.0
M06-2X 47.9 45.7 −45.7 −61.3
MN15 24.7 22.6 −22.6 −36.5
PW6B95-D3BJ 28.8 22.8 −22.8 −46.8
M05-2X 22.0 20.7 −19.8 −34.0
BMK-D3BJ 16.2 15.2 11.5 −22.2

a RMSD = root mean square deviation, MAD = mean absolute deviation, MSD = mean signed deviation, and
LD = largest deviation. b the cumulenic isomer 14 is highly challenging for DFT methods and is excluded from
the evaluation dataset.

4. Conclusions

In this work, we use the high-level G4 composite ab initio method to investigate the
thermodynamic and kinetic properties of the smallest prototypical hyperbolic paraboloidal
hydrocarbon—[5.5.5.5]hexaene (1). We find that this system is energetically stable relative
to its isomeric forms. For example, isomers containing a phenyl ring with one or more
acetylenic side chains are higher in energy on the enthalpic potential energy surface at
298 K by ∆H298 = 17.5–51.4 kJ mol−1, whereas long acetylenic carbon chains are higher
in energy by as much as ∆H298 = 277.3–488.2 kJ mol−1. [5.5.5.5]hexaene can undergo
skeletal inversion via a completely planar transition structure; however, the activation
energy for this process is relatively high, being ∆H‡

298 = 249.2 kJ mol−1 at the G4 level.
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This demonstrates the high structural stability of [5.5.5.5]hexaene. Finally, we find that
the transition structure for the π-bond shift reaction of the conjugated [12]annulene ring is
relatively low-lying with an activation energy of ∆H‡

298 = 67.6 kJ mol−1. Therefore, this
process is expected to proceed rapidly at room temperature. We hope that these accurate
theoretical results will inspire further experimental explorations of [5.5.5.5]hexaene.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/c9020041/s1: G4(MP2) reaction energies and barrier heights for
all the reactions considered in the present work (Table S1); optimized geometries for all the species
considered in this work (Table S2).
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