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Abstract: The present research aims to study the process of immobilization of lipase from Burkholderia
cepacia by physical adsorption on graphene oxide derived (GO) from grape seed biochar. Additionally,
the modified Hummers method was used to obtain the graphene oxide. Moreover, Fourier transform
infrared spectroscopy, Raman spectrum, X-ray diffraction, and point of zero charge were used for the
characterization of the GO. The influences of pH, temperature, enzyme/support concentration on
the catalytic activity were evaluated for the immobilized biocatalyst. The best immobilization was
found (543 ± 5 U/g of support) in the pH 4.0. Considering the biochemical properties, the optimal
pH and temperature were 3.0 and 50 ◦C, respectively, for the immobilized biocatalyst. Reusability
studies exhibited that the immobilized lipase well kept 60% of its original activity after 5 cycles of
reuse. Overall, these results showed the high potential of graphene oxide obtained from biochar in
immobilization lipase, especially the application of nanobiocatalysts on an industrial scale.

Keywords: lipase; biochar; graphene oxide

1. Introduction

The agro-waste requires the search for appropriate solutions for its destination in order
to guarantee sustainable development and make this waste with greater added value. In
this way, pyrolysis is one of the most used alternate ways for the use of agro-industrial
waste, which consists of the thermal decomposition of biomass in the absence of oxygen,
which generates bio-gas, bio-oil, and a solid carbon-rich residue (biochar) [1,2]. The biochar
among the products generated is considered a multi-functional material in which it can be
used for soil conditioner [3], adsorbent [4], support for enzyme immobilization [5], or as a
precursor to activated carbon [6] and graphene oxide [7].

Graphene oxide (GO) can be produced from graphite by the Hummers method [8].
Graphene oxide showed great potential for application in different industrial sectors due to
its properties such as high specific surface area, superior chemical resistance, good electrical
and thermal conductivity, flexibility, and impermeability [9]. Among these applications,
sensors, transparent conductive films, and enzymatic immobilization are included [10]. The
use of immobilized biocatalysts is an alternative that enables their use in several industrial
applications, as these catalysts can be easily separated from the product [10]. The recent
development of nanostructured materials, such as graphene oxide (GO), that are materials
with a greater surface area and different sizes and shapes, has enabled suitable support for
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the immobilization of enzymes with different properties without compromising function-
ality, creating a novel nanobiocatalyst [11,12]. Different studies have been carried out to
improve immobilization methods on organic and inorganic supports in order to reduce
cost and improve thermal stability and performance of immobilized biocatalysts [12–14].
Accordingly, depending on the type of interaction between the enzyme and the support, it is
possible to improve the biochemical, mechanical, and kinetic properties of the immobilized
biocatalyst, and, for each type of support and enzyme, an appropriate immobilization
method can be selected [15].

Therefore, the scientific community seeks alternatives of sustainable materials to
support synthesis for enzyme immobilization utilizing nanobiocatalysts. In this sense,
there are studies that used biomass residues to produce graphene oxide, as the study by
Goswami et al. [16] that used rice straw biomass (RSB) to produce graphene oxide and
applied in the adsorption of dyes. Thus, the present work aims to evaluate the potential of
graphene oxide derived from grape seed biochar as a support for the immobilization of
Burkholderia cepacia lipase (BCL) by physical adsorption (PA) using experimental data and
enzyme protonation calculations. This study provided a theoretical basis with results for
the future application immobilization of lipases on graphene oxide derived from biochar in
the oil industry and others.

2. Materials and Methods
2.1. Materials and Reagents

The grape seed sample was kindly provided by Vitivinícola Quintas São Braz, located
in the municipality of Petrolina, Pernambuco (Brazil). Burkholderia cepacia lipase (BCL) was
purchased from Sigma Chemical Co. (St. Louis, MO, USA). Sulfuric acid P.A. (98%) was
obtained from Vetec (São Paulo, Brazil); potassium permanganate P.A. (99%) was obtained
from Vetec (São Paulo, Brazil); hydrogen peroxide P.A. (35%) and deionized (DI) water were
obtained from Dinâmica (Rio de Janeiro, Brazil). The other chemicals were of analytical
grade and used as received.

2.2. Biochar Production

The pyrolysis conditions for obtaining the grape seed biochar were performed on a
laboratory scale as described by Santos et al. [17], with modifications. The conditions used
were the following: temperature = 700 ◦C, heating rate = 30 ◦C min–1, final time = 5 min
and N2 flow = 1 mL.min−1.

2.3. Synthesis of Graphene Oxide

The synthesis of graphene oxide was carried out with some modifications as described
by Goswami et al. [16]. The technique consists of contacting 5 g of the biochar in 100 mL of
sulfuric acid (H2SO4) stored in a conical flask kept in an ice bath for a period of 1 h. After
this period, 15 g of potassium permanganate was added slowly and left under stirring at
room temperature for a period of 20 h. Then 400 mL of distilled water was added slowly
and kept under stirring at 90 ◦C for a period of 1 h. Then 25 mL of hydrogen peroxide
(H2O2) was added. After the system reached room temperature, the washing process was
carried out with distilled water and then the material was taken to an oven at 60 ◦C.

2.4. Characterization of Graphene Oxide

To characterize the obtained graphene oxide, Fourier Transform Infrared Spectroscopy
(FTIR) Analysis was performed. The samples of graphene oxide and biochar were ana-
lyzed on the FTIR Analysis equipment (BOMEM MB-100 FTIR Spectrophotometer). The
spectra were obtained in the wavelength range from 400 to 4000 cm−1. Raman spectra
were recorded from 750 to 3500 cm−1 on a Raman Renishaw 2000 Microprobe Confocal
(Rhenishaw Instruments, England) using a 514.5 nm argon ion laser. For recording XRD
patterns, a diffractometer with Cu Kα radiation operating at 40 kV with 40 mA was used
while 2θ values tested for ranged between 5 and 80◦. Point of zero electric charge of the
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graphene oxide was determined by a simple electrolyte addition method [18]. Briefly, 0.1 g
of graphene oxide was immersed into 10 mL 0.05 M of different pH solutions and was
shaken at a constant speed for 24 h, and the final pH of the solutions was measured.

2.5. Lipase Immobilization on Graphene Oxide by Physical Adsorption

The immobilization by physical adsorption (PA) of BCL on graphene oxide was
accomplished by the methodology of Brito et al. [19] with little modifications. Adsorption
experiments were conducted for 180 min at 25 ◦C with continuous stirring. The effect of
pH and initial lipase concentration on the adsorption of lipase onto graphene oxide was
investigated. pH values varied from 4.0, 6.0, 7.0,8.0 to 10.0 (buffer sodium acetate–pH 4.0
buffer sodium phosphate–pH 6.0, 7.0, 8.0 and buffer sodium carbonate–pH 9.0) at 0.1 M.
Enzyme concentrations in g enzyme/g support (0.15, 0.225, 0.3, 0.375 and 0.45) were studied in
the immobilization process by physical adsorption to determine the best amount of lipase
on the support.

2.6. Determination of Hydrolytic Activity

Hydrolytic activities were performed according to Soares et al. [20]. The entire assay
was carried out under agitation, using 2 mL of used sodium phosphate buffer (0.1 M,
pH 7.0), 100 mg of free or immobilized enzyme, and 5 mL of emulsion (olive oil with gum
arabic solution (7% (w/v)), incubated for 10 min for immobilized or 5 min for free, at 37 ◦C.
To interrupt the reaction, 2 mL of acetone:ethanol:water (1:1:1) was added. Phenolphthalein
was applied as indicator for the titration process performed with potassium hydroxide
solution (0.04 M). The evaluation of the hydrolytic activities performed for the lipase
(free and immobilized) was used to determine the immobilization yield (%) according to
Equation (1). Furthermore, it was defined that the amount of enzyme that released 1 µmol
of free fatty acid per minute of reaction is equivalent to one unit (U) of enzymatic activity

RI (%) =
US
U0

× 100 (1)

where US is the total enzyme activity recovered on the support and U0 is the enzyme units
offered for immobilization.

2.7. Computational Analysis

The Protein Data Bank (PDB) was used to obtain the crystal structure of BCL (PDB:
3 LIP). Water molecules and ligands were removed from the input PDB file, which was up-
loaded into the ProteinPrepare application (PlayMolecule web server–playmolecule.org) [21]
to identify the titratable residue calculations. Computational analysis was performed at
pHs 4, 7, and 10 to the pKa calculation. The output PDB files and protonation tables were
downloaded and analyzed. The multigrid calculation of sequential focus automatically
configured in the Adaptive Poisson–Boltzmann Solver (APBS) was used to determine the
electrostatic properties.

2.8. Effect of pH and Temperature on Activity

The effect of pH on the activity of immobilized lipase was determined in buffer of
values between pH 2.0 and 10. The buffers used were 0.1 M citric acid-sodium citrate
(pH 2.0–5.0), 0.1 M potassium phosphate (pH 6.0–8.0), and 0.1 M bicarbonate-carbonate
(pH 9.0–10). The optimal temperature for activity of immobilized lipase was assayed in the
25–80 ◦C range in the same 0.1 M potassium phosphate buffer (pH 3.0).

2.9. Thermal Stability and Reusability

The thermal stability of immobilized lipase was determined by incubating the biocata-
lyst in sodium phosphate buffer solutions (0.1 M, pH 3.0) for 3 h (with sampling each 1 h)
at 50 ◦C. The reusability of the immobilized systems was assayed by running hydrolysis
reactions in consecutive batches using the same biocatalyst. The time of each hydrolysis
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reactions was 10 min at a temperature of 50 ◦C and pH of 3.0. After each reaction, the
biocatalyst was rinsed once with hexane and reused for the next cycle of hydrolysis and
the activity of the biocatalyst after the first cycle was considered 100%.

3. Results and Discussion
3.1. Characterization of Graphene Oxide

The FTIR spectrum of GO from grape seed biochar (Figure 1) that was observed was
similar to the FTIR spectrum of the GO from commercial graphite. The strong peak around
3400 cm−1 can be attributed to the O–H stretching vibrations of the C–OH groups and
water [22], band in the 2970 cm−1 region that are associated with the symmetric elongation
of CH2 [23], the C=C=O stretching vibrations at 2359 cm−1 [7], the vibration band of epoxy
group (1300 cm−1) [7,23], as well as the strong band located at 1151 cm−1 (C–OH stretching
vibrations) [24].
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Figure 1. Fourier transform infrared spectroscopy (FTIR) spectrum of graphene oxide.

The Raman spectrum and X-ray diffraction (XRD) of graphene oxide synthesized from
grape seed biochar are displayed in Supplementary Materials (Figures S1 and S2). The
Raman spectrum displays two peaks at 1350 and 1586 cm−1 denominated as the band D
and band G, respectively. These bands are related to the structural defects and the sp2

graphitized structure, respectively. These Raman results are observed in typical graphene
oxide materials, which is in line with past studies [7,24]. The X-ray diffraction (XRD) of
graphene oxide synthesized from grape seed biochar is shown the peak at 2θ = 11.6◦, and
the interlayer distance of 0.79 nm is in accordance with the results of previous studies [24].

The point of zero charge (pHzpc) was determined to investigate the surface charge of
the graphene oxide. The graphene oxide derived from the biochar of seed grape showed
acidic pHzpc, with a value of 2 (Figure 2). The determination of the pHzpc is important
because the pH affects the adsorption process. In solutions with a pH below the point
of zero charge, the surface of the graphene oxide is positively charged; consequently, the
opposite behavior on the solution pH is greater than the pHzpc, and the surface of the
graphene oxide is negatively charged [19].
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Figure 2. Point of zero charge for graphene oxide.

3.2. Effect of pH on Immobilization Process

The influence of the pH on the physical adsorption immobilization process of the BCL
on the GO is shown in Figure 3. The pH of the solution changes the surface charge of the
support and the electrostatic charge on the surface of the BCL, showing a significant param-
eter that affects the immobilization process. Higher activity in the derivative (543 ± 52 U/g
of support), displayed in Supplementary Materials (Table S1), was observed at a pH 4.0,
showing a decreasing profile with increasing the pH. The point of zero charge, the pHzpc
of graphene oxide, was found to be 2.0, and the surface is negatively charged when the
solution pH is greater than the pHzpc. The isoelectric point of this lipase was 6.22 [25].
Consequently, the charges of the BCL residues are expected to be primarily positive at a
a pH lower than 6.22 and negative at a higher pH. Consequently, the charges of the BCL
residues are found to be mainly positive at an acidic pH and the contrary at an alkaline pH.
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Figure 3. Effect of pH variation on BCL immobilization process.

According to experimental results obtained, the effect of the pH on the BCL immo-
bilization showed that lower pHs (acidic environment) increase the enzyme adsorption
capacity. On the other hand, at higher pHs (>7) the enzyme adsorption decreases, reaching
the lowest value at pH 10. Thus, to obtain information about the BCL charge at various
pHs, the enzyme protonation states were calculated. Figure 4 shows the charge distribution
along the structure of the BCL, composed of a sequence of 320 amino acids, at pH 4, 7, and
10. At pH 4, below the isoelectric point of the enzyme, the identification of a quantity of
42 positively charged amino acids (Table S2), corresponds to the blue areas in Figure 4.
With the increase in the pH, it is possible to identify the variation in the amounts of charges
distributed in the structure, and at pH 7 (slightly above the isoelectric point) there is a
decay of the total value of the positive charges to 32, causing a decrease in the blue surface
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of Figure 4. For the pH 10 range, it is possible to notice that the enzyme surface presents
mainly negative charges (red areas), totaling 29 positive charges only.
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Figure 4. Electrostatic charge at the BCL surface calculated for pHs 4, 7, and 10. Red–white–blue
scale refers to minimum (−5 kT/e, red) and maximum (5 kT/e, blue) surface potential.

Thus, according to the results obtained, it became possible to prove the influence of
protonation in the immobilization process, showing that the capacity of attraction and
repulsion of the support charges with the BCL surface charges influences the result of the
immobilized biocatalyst. Similar results have been reported in the immobilization of the
TLL adsorption on Amino–SiO2 [26] and lipase from porcine pancreas type II onto the
activated carbons [27].

3.3. Effect of Enzyme/Support Ratio on Immobilization Process

To determine the best enzyme/support concentration, the results obtained were
calculated according to the relative activity. Figure 5 shows that the maximum relative
hydrolytic activity of the BCL immobilized by the physical adsorption was obtained with
0.375 genzyme/gsupport with about a 36% immobilization yield and 457 U/g hydrolytic
activity; the others are displayed in the Supplementary Materials (Table S3). The profile
obtained may be due to the saturation of the support with the lipase, showing a decrease in
activity above 0.375 genzyme/gsupport. This decrease in relative activity can be attributed to
the formation of a multilayer protein structure blocking or inhibiting access to the enzyme’s
active sites [28]. Therefore, the concentration of 0.375 g was selected for the following
stages of this work. Enzymatic adsorption on the graphene oxide occurs through weak
bonds, such as van der Waals forces, ionic interactions, or hydrophobic interactions [29].
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Similar behavior was observed in the literature [28–31] regarding the enzyme con-
centration variation on the immobilization study in different tips of support. The same
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profile was found for Zang et al. [31] in the study with graphene oxide for the immobiliza-
tion for ROL. The highest immobilization yield was obtained at low ROL concentrations
(100–500 µg mL−1), with an increasing soluble ROL concentration (7.5–15.0 mg mL−1). A
significant drop in ROL yield immobilization was observed, and the values were the same
for the two supports studied. Activity recovery drastically decreased with increasing the
ROL concentration, which could be a consequence of protein–protein interactions occurring
at a high enzyme load.

Table 1 presents the enzymatic load values (g/g of support) and activity recovery (%)
of the different enzymes and supports. This work using graphene oxide produced using
grape seed biochar, which is a material derived from agroindustrial waste, gives this waste
an added value and an environmentally friendly destination. The production of biochar is
carried out by pyrolysis, which also generates bio-gas and bio-oil of industrial interest. In
this study, the immobilization of LBC by physical adsorption on graphene oxide produced
from grape seed biochar showed a recovered activity of 100% % for this work, which shows
to be promising support when compared to other studies that use graphene oxide [32] or
magnetic graphene oxide [33,34] that show a recovered activity of less than 100%. Other
types of supports used for the immobilization of lipases showed recovery activity less
than 100%.

Table 1. Enzyme loading values (g/g of support) and activity recovery (%) of different enzymes
and supports.

Enzyme Support Activity
Recovery (%)

Enzyme Loading
(g/g support)

Ref.

Lipase from Burkholderia cepacia Graphene oxide derived from
grape seed biochar 100 0.375 This Work

Lipase from Rhizopus oryzae Graphene oxide 25 0.02 [32]
Lipase from Thermomyces

lanuginosa Magnetic Fe3O4 nano-particles 70 0.250 [33]

Lipase from Candida rugosa Graphene oxide encapsulated
Fe3O4

64 0.02 [34]

Lipase from Thermomyces
lanuginosa

Graphene oxide functionalized
with lysine 150 0.115 [35]

Lipase from Burkholderia cepacia Resin NKA 96 0.110 [36]

Lipase from Candida rugosa Magnetic
microspheres with hydrophilicity 64 0.100 [37]

Lipase from Burkholderia cepacia PST microspheres 50 0.252 [38]

Zhou et al. [35] used GOs functionalized with amino acids for the immobilization of
lipase from Thermomyces lanuginosa adsorption, and the results showed an improvement
in the enzymatic activity, obtaining a recovered activity of 150%. This demonstrates that
the functionalization of GOs can increase the activity recovered from the present work that
uses graphene oxide from grape seed biochar. Thus, future work will be carried out with
the aim of increasing the activity recovered from the present study using other enzyme
immobilization protocols.

3.4. Effects pH and Temperature of the Immobilized BCL on Graphene Oxide

Figure 6 shows the effect of the pH on the lipase activity of the immobilized BCL. The
optimum pH for the free lipase from Burkholderia cepacia is 7.0 [27]. It can be noted that
for the immobilized BCL, the ideal pH was changed to a more acidic pH of 3.0 (462 U/g).
Other pHs are provided in the Supplementary Materials (Table S4). Changes in the ideal
pH for the immobilized enzymes have been reported for the different sources of lipase and
types of transporters [29]. A study by Carvalho et al. [27] on Burkholderia cepacia lipase
immobilized on xerogel silica showed a change in the pH optimum to 3.0, whereas the pH
optimum of the free lipase was 7.0. This alteration was due to the properties of the support
and the method of immobilization.
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In general, lipases immobilized on polycationic supports tend to change the optimal
pH to more acidic values [39]. In the study by Pereira et al. [39], a change from the
optimal pH of 7.0 of the free lipase of Candida rugosa to the optimal pH of 6.0 for the
lipase immobilized by PA in chitosan was observed. This was due to imbalances in the
microenvironment of the immobilized enzyme caused by the electrostatic interactions
between the enzyme and the support. According to Abdulla and Ravindra [40], the surface
of the enzymes contains numerous acidic and basic groups, and the charge of these groups
changes depending on the pH of the medium, resulting in enzymatic activity, structural
stability, and solubility may change.

The reaction speed depends on the temperature, which is a very important parameter.
This is because, with increasing temperature, more kinetic energy is observed in the reactant
molecules, increasing the number of productive collisions per unit of time. However, the
enzyme-catalyzed reactions require that the tertiary and secondary structures of the enzyme
remain intact to maintain the same catalytic activity. It is important to evaluate the effect of
temperature on the microenvironment of the immobilized biocatalysts, as high temperature
can lead to excess energy absorption, leading to disruption of this structure and consequent
denaturation of the enzyme [41].

The effect of temperature on the catalytic activity of the immobilized biocatalyst can
be seen in Figure 7. The free lipase of Burkholderia cepacia shows an optimum temperature
to 50 ◦C [27]. The maximum activity of the immobilized biocatalysts occurred at 50 ◦C
(661 U/g); the other temperature values are presented in the Supplementary Materials
(Table S5). This was probably due to the process of immobilization of the lipase to the
support, which reduces mobility by restricting contact with the substrate, resulting in
a reduction in activity. In studies using inorganic supports for the BCL immobilization
supported on mesoporous silica, maximum activity was observed at 50 ◦C [27]. Likewise, it
was also seen in studies involving organic supports developed by Cabrera-Padilla et al. [42],
who used a natural biopolymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) for
the immobilization of Candida rugosa lipase, presenting an optimal immobilized tempera-
ture range of 37–45 ◦C. The immobilized bicatalizers showed a high hydrolytic activity at
higher temperatures compared to the free enzymes, which can be suggested due to the more
rigid conformation of the immobilized enzymes because of the electrostatic interactions
and hydrogen bonds between the enzyme and the support [42].
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3.5. Thermal Stability and Operational Stability of the Immobilized BCL on Graphene Oxide

The thermal stability of the immobilized biocatalyst was investigated by incubating
them at 50 °C in different time durations (30 to 180 min), and the evaluation of their residual
activities is shown in Figure 8. The residual activity of the immobilized biocatalyst, which
was incubated at 50 ◦C for 0 min, was considered as the control with 100% activity; the other
values are displayed in the Supplementary Materials (Table S6). As shown in Figure 7, the
residual activity of the immobilized biocatalyst was decreased by increasing the incubation
time, and it maintained its residual activity above 50% after 120 min of incubation time.
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Figure 8. Thermal stability of the immobilized biocatalyst incubated at 50 ◦C.

According to the literature, this profile is reported in other works that used graphene
oxide as support for enzyme immobilization. For example, the work carried out by Ne-
matian et al. [30] used graphene oxide with different activation processes for the ROL
immobilization and observed the same behavior with a reduction in residual activity with
increasing the incubation time.

Operational stability is one of the main parameters evaluated for the application of the
biocatalyst on an industrial scale, as the reuse of the immobilized enzyme reduces the cost
of the process. The operational stability of LBC immobilized on graphene oxide was tested
in an olive oil emulsion hydrolysis reaction for 10 min at 50 ◦C, as seen in Figure 9. LBC
immobilized on graphene oxide by physical adsorption can be reused 5 times maintaining
above 50% of its initial activity; the other values are shown in Supplementary Materials
(Table S7).
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This fact may be related to the hydrophobicity of graphene oxide. This is because
lipases are characterized by a lid at the catalytic site that changes conformation depending
on the environment, an open conformation at the water/oil interface, and a closed con-
formation for aqueous media. Knežević et al. [43] reported that the lipases recognize the
hydrophobic surfaces similar to the natural substrates and are activated during immobiliza-
tion at the interface, creating an open active site accessible to the substrates. This greatly
enhances the activity of most lipases when adsorbed onto hydrophobic supports.

In addition, the immobilization of lipases by physical adsorption is simple and in-
expensive, and it is often possible to regenerate the immobilized biocatalysts because
the interactions between the enzyme and the support are mediated by direct interactions
(mainly van der Waals, hydrogen bonds, and interactions hydrophobic). In recent re-
search, the lipase was immobilized on the magnetic amino-functionalized graphene oxide
nanocomposites. The reported results after 5 cycles were that 70% remained active for its
temperature range, whose activity was about 40–60 °C, and for its recyclability [30].

4. Conclusions

In the present work, the use of grape seed biochar was described as an alternative
to an ecological and low-cost material to produce graphene oxide to replace graphite in
production using the modified Hummers method. Promising results were obtained for
the process of immobilization of lipase from Burkholderia cepacia by physical adsorption
on graphene oxide derived from grape seed biochar. The study of the immobilization
parameters made it possible to evaluate the forces involved in the enzyme/support bind-
ing, thus establishing the best immobilization conditions for obtaining a biocatalyst with
high hydrolytic activity. The graphene oxide obtained has potential to be employed in
lipase immobilization, given that the immobilized enzymes showed good enzyme activity.
Therefore, this promising biocatalyst shows new development opportunities for application
in several industrial sectors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/c9010012/s1, Figure S1:Raman spectrum of GO obtained from
grape seed biochar. For Raman spectra were recorded from 750 to 3500 cm-1 on a Raman Renishaw
2000 Microprobe Confocal (Rhenishaw Instruments, England) using a 514.5 nm argon ion laser.;
Figure S2: X-ray diffraction (XRD) pattern of graphene oxide from grape seed biochar. For recording
XRD patterns, a diffractometer with Cu Kα radiation operating at 40 kV with 40 mA was used while
2θ values tested for ranged between 5–80◦.; Table S1: Effect of pH variation on BCL immobilization
process; Table S2. Distribution of amino acids of the BCL and their respective charges for pH 4,
7, and 10; Table S3. Immobilization Yield (%), Hydrolytic activity (U/g) and Relative activity (%)

https://www.mdpi.com/article/10.3390/c9010012/s1
https://www.mdpi.com/article/10.3390/c9010012/s1
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as a function of enzyme/support ratio during immobilization of the BCL on graphene; Table S4
pH effect on the activity the immobilized BCL by physical adsorption (PA) onto Graphene Oxide;
Table S5. Temperature effect on the immobilized BCL by physical adsorption (PA) onto graphene
oxide; Table S6. Thermal stability of the immobilized biocatalyst incubated at 50 ◦C.; Table S7.
Operational stability of the immobilized biocatalyst.
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