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Abstract: Based on 4H, 6H and 8H diamond polytypes, novel extended lattice allotropes C10, C14 and
C18 characterized by mixed sp3/sp2 carbon hybridizations were devised based on crystal chemistry
rationale and first-principles calculations of the ground state structures and energy derived properties:
mechanical, dynamic (phonons), and electronic band structure. The novel allotropes were found
increasingly cohesive along the series, with cohesive energy values approaching those of diamond
polytypes. Regarding mechanical properties, C10, C14, and C18 were found ultrahard with Vickers
hardness slightly below that of diamond. All of them are dynamically stable, with positive phonon
frequencies reaching maxima higher than in diamond due to the stretching modes of C=C=C linear
units. The electronic band structures expectedly reveal the insulating character of all three diamond
polytypes and the conductive character of the hybrid allotropes. From the analysis of the bands
crossing the Fermi level, a nesting Fermi surface was identified, allowing us to predict potential
superconductive properties.

Keywords: diamond; polytypes; hardness; phonons; electron structure; hybridization; DFT

1. Introduction

Diamond is mainly known in the cubic form (space group Fd-3m); a less common form
is hexagonal one (space group P63/mmc) called lonsdaleite. Such structures are also adopted
by silicon carbide SiC known to crystallize in different structures called polytypes. This
appellation pertains to the stacking of layers generically named A/B/C: AB in 2H (2 layers;
hexagonal system), ABC in 3C (3 layers; cubic system), ABCB in 4H (4 layers; hexagonal
system), ABCACB 6H (6 layers; hexagonal system) [1]. Si and C are isoelectronic regarding
the external valence shell, and diamond possesses similar polytypes such as best known 3C
and 2H. The closeness of electronic structures, and despite the larger size of Si compared
to C, nanostructured diamond polytypes were epitaxially grown on silicon [2]. Other
diamond polytypes (8H and 9R; R for rhombohedral) were identified with calculated X-ray
diffraction data published by Ownby et al. [3]. Later, first-principles studies of diamond
polytypes were performed by Wen et al. [4], indicating the absence of phase transitions
between them.

In 3C and 2H diamond polytypes, the carbon hybridization is purely tetrahedral
sp3, characterizing ultrahard large band gap insulating electronic systems. The electronic
structure properties can be modified by introducing trigonal C(sp2). Indeed, recent works
showed that nanodiamonds with sp2/sp3 mixed carbon hybridization play an important
role in the design of advanced electronic materials [5]. Zhai et al. showed progress in
the electrochemistry of hybrid diamond/sp2-C nanostructures [6]. As for other carbon
hybridizations, mixed sp3-sp1 were recently identified in superhard “yne-diamond” cate-
gorized as semi-metallic [7].
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In this context, a model sp3/sp2 C5 was proposed as the simplest hybrid form with
3 C(sp3) and 2 C(sp2) atoms per unit cell characterized by ultrahardness close to that of
diamond and semi-metallic electronic structure due to the presence of C(sp2) [8]. The
purpose of the present work was to show the effects of introducing small amounts of
sp2 carbon into 4H, 6H and 8H diamond polytypes leading to increasingly extended
C(sp3)/C(sp2) networks exhibiting smaller amounts of trigonal carbon. The investigations
were based on crystal chemistry and first-principles calculations within the well-established
quantum mechanics framework of the density functional theory DFT [9,10].

2. Brief Presentation of the Computational Framework

The methodology was developed in the former works (cf. [8] and therein cited papers).
Summarizing the essentials, the search for the ground state structures with minimal energies
was carried out with unconstrained geometry optimizations using a DFT-based plane-wave
Vienna Ab initio Simulation Package (VASP) [11] with an energy cutoff of 500 eV. The
program uses the projector augmented wave (PAW) method for atomic potentials [12].
Within DFT, the effects of exchange and correlation were treated using a generalized
gradient approximation (GGA) scheme [13].

The relaxation of the atoms onto ground state geometry was done by applying a
conjugate-gradient algorithm [14]. Blöchl tetrahedron method [15] with corrections accord-
ing to the Methfessel–Paxton scheme [16] were applied for geometry optimization and
energy calculations, respectively. A special k-point sampling [17] was used to calculate
the Brillouin-zone (BZ) integrals. For better reliability, the optimization of the structural
parameters was carried out along with successive self-consistent cycles with increasing
Brillouin zone mesh up to kx = 22, ky = 22, kz = 4 until the forces on atoms were less than
0.02 eV/Å and the stress components below 0.003 eV/Å3.

Investigation of the mechanical properties was based on the calculations of the elastic
properties determined by performing finite distortions of the lattice and deriving the
elastic constants from the strain–stress relationship. The calculated elastic constants Cij
were then used to obtain the bulk (B) and the shear (G) moduli via Voigt’s [18] averaging
method based on a uniform strain. Besides the mechanical properties, the dynamic stability
was determined from the calculated phonon spectra. They are illustrated with phonon
band structures obtained using the “Phonopy” code [19]. The structure representations
were obtained by the VESTA visualization software [20]. For assessing the electronic
properties, the band structures were obtained by the all-electron augmented spherical wave
method (ASW) [21] using the GGA functional [13] and similar Brillouin zone meshes for
VASP calculations.

3. Crystal Chemistry Results

The three diamond polytypes 4H (C8), 6H (C12) and 8H (C16), where H stands for
hexagonal (space group P63/mmc, No. 194), are shown in Figure 1 in two representations:
ball-and-stick (left) and tetrahedral stacking (right). C8, C12 and C16 are, respectively, char-
acterized by four layers (ABAA’), six layers (ABCC’B’A’), and eight layers (ABCBACC’A’)
of C4 tetrahedra. Such tetrahedral representations allow a better illustration of the layers in
primed letters A’ and C’, designating upside-down tetrahedra of the A and C regular layers.

Introducing trigonal sp2 carbon was done through the occupation of 2a Wyckoff
position with two carbon atoms at 0,0,0 and 0,0, 1

2 in 4H and 8H polymorphs, and 2b
Wyckoff position with two carbon atoms at 0,0, 1

4 and 0,0, - 1
4 in 6H polytype. Since these

carbon atoms bring C(sp2) into the crystal structure, they are labeled ‘trig’ (trigonal), and
C10, C14, and C18 structures are labeled ‘hybrid’ (Table 1). The resulting structural templates,
as well as the pristine polytypes, were submitted to full geometry relaxation leading to
energy ground state structures. Fully relaxed C10, C14 and C18 structures are shown in Fig.
2. In the tetrahedral representations, they are characterized by four layers ABAB for hybrid
C10, seven layers ABB’CBB’A’ for hybrid C14, and eight layers ABB’CC’DD’A’ for hybrid
C18, respectively. However, the observed less compact stacking from the spacing of the
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tetrahedral layers compared to pristine structures allows one to expect different physical
properties such as larger compressibility as shown in the next sections, on the one hand,
and different crystal fingerprint versus SiC (or ZnS) polytypes, on the other hand.
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Figure 1. Sketches of hexagonal diamond polytypes (left) and their polyhedral representation (right):
(a) 4H (C8), (b) 6H (C12) and (c) 8H (C16).

In Table 1a, giving the resulting structural properties, the calculated values for pristine
4H and 8H polytypes (in parentheses) show good agreement with the literature, thus
providing reliability to the calculational framework (plane waves) and the GGA. In all
polytypes, there is a unique interatomic distance of ~1.54 Å, characteristic for diamond.
From the total energy, the atom averaged cohesive energy values are obtained by subtracting
the atomic energy of single isolated carbon (−6.6 eV in the present work), and all polytypes
possess the same magnitude of Ecoh/atom = −2.49 eV, also characterizing diamond.

Turning to hybrid C10, C14 and C18, there is a significant change in the lattice parame-
ters and atomic positions. The resulting large increase of the unit cell volumes is consistent
with less compact crystal structures (Figure 2). Besides interatomic C(sp3) characterizing
the pristine polytypes, there is now a shorter bond d{C(tet)-C(trig)} = 1.46 Å due to the
presence of C(sp2). The atom-averaged cohesive energy of hybrid allotropes is lower, but
interestingly, there is an increase in Ecoh/atom values along the series with a closer value of
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hybrid C18 to polytype 8H, illustrating the effect of a smaller sp2/sp3 ratio. Consequently,
it can be assumed that C(sp3) networks with a small amount of C(sp2) in extended hybrid
allotropes C10, C14 and C18 are models capable of approaching diamond nanostructures,
with better results with the latter. All three allotropes’ structures were deposited on CCDC
(Cambridge Crystallographic Data Center) database.

Table 1. Crystal structure parameters of hexagonal carbon polytypes and derived hybrid allotropes.

(a) 4H, 6H and 8H Polytypes [2] (Presently Calculated Values Are in Parentheses)

P63/mmc N◦194 Polytype 4H: C8 Polytype 6H: C12 Polytype 8H: C16

a, Å 2.522 (2.511) 2.522 (2.514) 2.522 (2.516)
c, Å 8.237 (8.279) 12.356 (12.394) 16.474 (16.505)

C1(4e) 0 0 z 0.0938 (0.093) 0.1875 (0.187) 0.0469 (0.047)
C2(4f ) 1/3 2/3 z 0.1563 (0.156) 0.5208 (0.521) 0.0781 (0.0780)
C3(4f ) 1/3 2/3 z – 0.6458 (0.645) 0.1719 (0.1710)
C4(4f ) 1/3 2/3 z – – 0.797 (0.797)

Volume, Å3 45.376 (45.25) 68.064 (67.87) 90.75 (90.45)
dC1(tet)-C2(tet), Å 1.544 1.544 1.544

Etotal, eV −72.68 −109.06 −145.43
Ecoh/atom, eV −2.49 −2.49 −2.49

(b) Hybrid C8, C14 and C16

P63/mmc No. 194 C10 C14 C18

a, Å 2.496 2.500 2.502
c, Å 11.178 15.233 19.396

C(2a) (trig) 0 0 0 – 0 0 0
C(2b) (trig) – 0 0 1

4 –
C1(4e) 0 0 z 0.3692 0.1541 0.0753

C2(4f ) 1/3 2/3 z 0.1807 0.5171 0.1035
C3(4f ) 1/3 2/3 z – 0.6180 0.1828
C4(4f ) 1/3 2/3 z – – 0.7903

Volume, Å3 60.307 82.451 105.14
dC1(tet)-C2(tet), Å 1.545 1.544 1.536
dC(tet)-C(trig), Å 1.462 1.462 1.461

Etotal, eV −84.94 −121.45 −157.73
Ecoh/atom, eV −1.89 −2.08 −2.16
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C 2023, 9, 11 7 of 15

4. Charge Density

Further qualitative illustration of the different types of carbon hybridization (sp3

and sp2) is obtained from the charge density projections shown by yellow volumes in
Figure 3. In C8, C12 and C16 diamond polytypes (Figure 3a,c,e, respectively), the sp3

hybridization is clearly observed as expected from the only presence of C(tet), with the
yellow volumes taking the shape of a tetrahedron; and like diamond all three polytypes are
perfectly covalent.
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Figure 3. Charge density projections (yellow volumes) of diamond polytypes 4H (C8), 6H (C12) and
8H (C16), and novel hybrid carbon allotropes: (a) 4H, (b) C10, (c) 6H, (d) C14, (e) 8H, and (f) C18.

Large changes are observed in hybrid C10, C14 and C18 (Figure 3b,d,f). Besides the
C(tet) tetrahedral charge density, there appears to be continuous charge density along
vertically arranged C=C=C fragments due to the inserted C(trig). In all three subfigures,
the charge density is no more localized as in covalent polytypes but rather continuously
distributed. Thus, we are dealing with a decrease in covalence from diamond polytypes to
hybrid C10, C14 and C18. Such observation will be further illustrated with the electronic
band structures.

5. Mechanical Properties from Elastic Constants

For assessing the mechanical characteristics, calculations of elastic properties were
carried out by performing finite distortions of the lattice. The elastic constants Cij were
derived from the strain–stress relationship in the large-scale statistically isotropic material
approximation. Subsequently, Cij were used to calculate the bulk (B) and shear (G) moduli
by averaging using Voigt’s method [18]. The calculated sets of elastic constants are given in
Table 2.
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Table 2. Elastic constants Cij and Voigt values of bulk (BV) and shear (GV) moduli of diamond
polytypes and novel hybrid carbon allotropes (all values are in GPa).

C11 C12 C13 C33 C44 BV GV

Polytype 4H: C8 1190 105 37 1271 542 445 557

Hybrid C10 922 101 39 1469 410 408 440

Polytype 6H: C12 1129 160 43 1256 485 445 502

Hybrid C14 972 93 69 1343 439 417 467

Polytype 8H: C16 1152 99 48 1211 526 432 539

Hybrid C18 1012 90 45 1325 461 412 488

All Cij values are positive, and their combinations obey rules pertaining to the mechani-
cal stability of the chemical system: C11 > C12, C11C33 > C13

2 and (C11+C12) C33 > 2C13
2. The

equations providing bulk BV and shear GV moduli are as follows for the hexagonal system:
BV = 1/9 {2(C11 + C12) + 4C13 + C33}
GV = 1/30 {C11 + C12 + 2C33 − 4C13 + 12C44 + 6(C11 − C12)}
Diamond polytypes C8, C12 and C16 have the largest BV and GV, close to the accepted

values for diamonds (BV = 445 GPa and GV = 550 GPa [22]). Regarding hybrid C10, C14
and C18, large BV and GV are obtained, but they are smaller than those of pristine diamond
polytypes. The larger moduli observed for C18 versus C10 can be attributed to the lower
C(trig)/C(tet), which leads to a mechanical behavior close to that of a diamond.

Vickers hardness (HV) of carbon allotropes was predicted using four modern theoreti-
cal models [23–26]. The thermodynamic model [23] is based on thermodynamic properties
and crystal structure, empirical Mazhnik–Oganov [24] and Chen–Niu [25] models use the
elastic properties, and the Lyakhov–Oganov approach [26] considers the topology of the
crystal structure, strength of covalent bonding, degree of ionicity and directionality. The
fracture toughness (KIc) was evaluated using Mazhnik–Oganov model [24]. Tables 3 and 4
present the hardness values calculated using all four models, as well as other mechanical
properties such as bulk (B), shear (G) and Young’s (E) moduli, the Poisson’s ratio (ν) and
fracture toughness (KIc).

Table 3 shows that X-ray density ρ systematically decreases in the C18–C14–C10 row of
hybrid allotropes, while pristine 4H, 6H and 8H polytypes have expected diamond density.
Obviously, the introduction of additional trigonal carbon atoms leads to the formation
of less dense phases. A similar trend is observed for bulk moduli of hybrid allotropes
calculated in the framework of the thermodynamic model (see Table 3).

As shown earlier [27], in the particular case of ultrahard compounds of light elements,
the thermodynamic model shows surprising agreement with available experimental data.
Moreover, its use is preferable in the case of dense hybrid carbon allotropes, for which
the Lyakhov–Oganov model usually gives underestimated hardness values, whereas the
empirical models are not reliable. As it follows from Table 3, Vickers hardness of all three
polytypes (HV = 97 GPa) is close to that of diamond, while the hardness of hybrids is
expectedly lower (94 GPa for C18 and C14, and 92 GPa for C10). Other used models of
hardness show similar trends between diamond polytypes and hybrids with respect to
hardness, Young’s modulus, Poisson’s ratio and fracture toughness. Concomitantly, E, ν
and KIc of all hybrids were found to be smaller than calculated for diamond polytypes.
Thus, all phases under study have exceptional mechanical properties and can be considered
prospective ultrahard phases [28].
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Table 3. Vickers hardness (HV) and bulk moduli (B0) of carbon allotropes calculated in the framework
of the thermodynamic model of hardness [23].

Space Group a=b (Å) c (Å) ρ (g/cm3) HV (GPa) B0 (GPa)

Polytype 4H: C8 P63/mmc 2.5221 8.2371 3.5164 97 443

Hybrid C10 P63/mmc 2.4960 11.1775 3.3073 92 417

Polytype 6H: C12 P63/mmc 2.5221 12.3557 3.5164 97 443

Hybrid C14 P63/mmc 2.5000 15.2330 3.3867 94 427

Polytype 8H: C16 P63/mmc 2.5221 16.47429 3.5164 97 443

Hybrid C18 P63/mmc 2.5019 19.3964 3.4146 94 430

Lonsdaleite P63/mmc 2.5221 † 4.1186 † 3.5164 97 443

Diamond Fd-3m 3.56661 ‡ 3.5169 98 445 §

† Ref. [3]; ‡ Ref. [29]; § Ref. [22].

Table 4. Mechanical properties of carbon allotropes: Vickers hardness (HV), bulk modulus (B), shear
modulus (G), Young’s modulus (E), Poisson’s ratio (ν) and fracture toughness (KIc).

HV B
GV E ** ν ** KIc‡

T * LO † MO ‡ CN § B0 * BV
GPa MPa·m1⁄2

Polytype 4H: C8 97 90 106 102 443 445 557 1179 0.058 6.5
Hybrid C10 92 79 82 74 417 408 440 971 0.103 5.4

Polytype 6H: C12 97 90 94 85 443 445 502 1094 0.090 6.2
Hybrid C14 94 72 88 80 427 417 467 1020 0.092 5.7

Polytype 8H: C16 97 90 103 100 443 432 539 1142 0.059 6.3
Hybrid C18 94 66 92 88 430 412 488 1050 0.075 5.7
Lonsdaleite 97 90 99 94 443 432 521 1115 0.070 6.2
Diamond 98 90 100 93 445 †† 530 †† 1138 0.074 6.4

* Thermodynamic model [23]; † Lyakhov–Oganov model [26]; ‡ Mazhnik–Oganov model [24]; § Chen–Niu model
[25]; ** E and ν values calculated using isotropic approximation; †† Ref. [22].

6. Dynamic Properties from the Phonons

Further confirmation of phase stability can be obtained from the phonon band struc-
tures, which are shown in Figure 4 for 4H, 6H and 8H diamond polytypes and the novel
C10, C14 and C18 allotropes along the high-symmetry lines of the hexagonal Brillouin zone
provided in Figure 4g as a guide for the eye. The vertical axis shows the frequencies given in
units of terahertz (THz). Since no negative frequency magnitudes are observed, expectedly
for diamond polytypes, as well as for hybrid carbon allotropes, all structures should be
considered dynamically stable. There are 3N-3 optical modes found at higher energy than
three acoustic modes that start from zero energy (ω = 0) at the Γ-point, the center of the
Brillouin Zone, up to a few Terahertz. They correspond to the lattice rigid translation modes
of the crystal (two transverse and one longitudinal). Flat bands (no band dispersion) that
can be observed in hybrid carbon allotropes correspond to the aligned C-C-C fragments.
The remaining bands correspond to the optical modes. They culminate atω ~ 40 THz in
C8, C12 and C16, the magnitude observed for diamond by Raman spectroscopy [30], and
ω ~ 42 THz in C10, C14 and C18 with flat bands corresponding to antisymmetric C-C-C
stretching as recently observed in allene (propadiene) molecule and tetragonal C6 [31].
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7. Electronic Band Structures and Density of States

The electronic band structures shown in Figure 5 along the high-symmetry lines of the
hexagonal Brillouin zone were obtained using the ASW method [21] and calculated crystal
parameters (Table 1a,b). For diamond-like insulating C8, C12 and C16, the energy levels are
referred to the top of the valence band (VB), EV. As a specific character of diamond, the
band gap is indirect along kz between ΓVB and ZCB with a magnitude close to 5 eV.
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Oppositely, hybrid C10, C14 and C18 behave as metals with the energy zero at the Fermi
level EF. EF is crossed with dispersed four bands due to the 2p electrons of the trigonally
coordinated carbon atoms. This feature was subsequently analyzed by calculating the
four corresponding Fermi surfaces (FS) of the C18 hybrid allotrope shown in Figure 6a.
While confirming the almost perfect two-dimensional nature of this allotrope, the Fermi
surface (especially the hexagonal ring in the center of the displayed FS) reveals a strong
tendency towards nesting, which is also obvious from the metallic bands in the band
structure that cross the Fermi energy almost halfway between the Γ-point and the M-point.
Hypothesizing that doubling of the in-plane cell vectors would bring the Fermi surface close
to the boundaries of the hexagonal Brillouin zone and may induce a charge density wave
and a concomitant lattice instability or pave the wave to a superconducting phase [32,33],
further calculations were done with 2 × 2 × 1 cell of C14 allotrope presenting fewer atoms
than C18. The corresponding FS presented in Figure 6b shows similar features of nesting
as in Figure 6a, but FS is closer to the BZ borders due to the supercell construction. The
observed results further stress the hypothesis of potential superconducting behavior with
2D character generalized to all three hybrid allotropes.
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8. Conclusions

The purpose of this work was to propose model carbon allotropes based on 4H, 6H and
8H diamond polytypes, modified through crystal chemistry rationale by the introduction
of trigonal (sp2) carbon, thus creating mixed C(sp3)/C(sp2) hybridizations in C10, C14 and
C18 hybrid allotropes. DFT calculations allowed us to identify the hybrid forms as cohesive
and stable both mechanically and dynamically, with very high hardness approaching that
of diamonds. The electronic band structures revealed metallic-like behavior due to the
trigonal carbons with nested Fermi surfaces indicative of potential superconductivity.
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