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Abstract: Carbon materials such as graphene, carbon nanotubes, fullerene, and graphene nanoflakes
(GNFs) are used for hydrogen storage. The doping of alkali metals to these materials generally
increases the accumulation density of molecular hydrogen (H2). However, the reason why the
doping enhances the ability of the H2 storage of GNF is not clearly known, although there are some
explanations. In addition, the information on the storage capacity of GNF is ambiguous. In the
present review article, we introduce our recent theoretical studies on the interaction of GNF with
H2 molecules carried out to elucidate the mechanism of hydrogen storage in alkali-doped GNFs.
As alkali metals, lithium (Li), sodium (Na), and potassium (K) were examined, and the abilities
of hydrogen storage were discussed. Next, the mechanism of Li-diffusion on GNF, which plays
a crucial role in Li-battery, was presented. There are several unanswered questions. In particular,
does lithium diffuse randomly on GNF? Or is there a specific diffusion path? We present our study,
which elucidates the factors governing lithium diffusion on GNF. If the dominant factor is known,
it is possible to arbitrarily control the diffusion path of lithium. This will lead to the development
of highly functional battery materials. Finally, the molecular design of H adsorption–desorption
reversible storage devices based on GNF will be introduced. Elucidating the mechanism of hydrogen
storage, Li-diffusion on GNF, and molecular design of storage device is important in understanding
the current molecular devices and provide a deeper insight into materials chemistry.

Keywords: molecular design; reaction dynamics; surface effect; graphene; ab initio MD

1. Introduction

Molecular hydrogen (H2) is the ultimate clean energy that is abundant in the form of
water [1–3]. The thermal efficiency of the combustion process of H2 is more than three times
higher than that of gasoline (143 vs. 44 MJ/kg) [4]. However, H2 has a wide explosion limit
concentration range in air (4–75%) [5], and the volume efficiency of H2 is significantly lower
than that of gasoline (0.011 vs. 34.9 MJ/kg). Hence, the safe transportation of hydrogen and
high-density H2-storage must be technologically developed quickly to shift to a hydrogen-
energy-based society [6–8]. Currently, efficient hydrogen storage is a key challenge for the
hydrogen economy due to the lack of effective large-capacity hydrogen carriers [9,10].

Carbon nanostructures such as graphene nanoflakes (GNFs) and carbon nanotubes
(CNTs) have been widely studied as hydrogen storage media due to their large surface
area and light weight [11–16]. Single-walled CNTs are known to absorb ca. 5–10 wt% of
hydrogen at low temperature (134 K) [12]. However, at room temperature, CNTs are not
suitable for H2 storage due to the low binding energy and weak interaction with H2 [17,18].

Recently, alkali metal-doping of carbon nanostructures has attracted attention for
its ability to enhance hydrogen storage capacity [19–26]. It was found experimentally
that the doping of Li to CNT produces an increase of up to 14 wt% of H2 at room tem-
perature [19]. This value is comparable or greater than those gained in cryoadsorption
and metal hydride systems. The Li-doped CNTs have a high hydrogen-uptake capac-
ity and the adsorption–desorption cycle can be repeated with negligible decreases in the
adsorption capacity.
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Theoretical calculations for systems consisting of Li-doped carbon materials and H2
have been carried out by several groups to elucidate the binding structures and adsorp-
tion energies [27–32]. Using the density functional theory (DFT) method, Kolmann et al.
calculated the binding energy of H2 to the Li-decorated benzene molecule (Li-Bz) in 2008:
the binding energy obtained was 4.7 kcal/mol, where Bz is a model of GNF. This calculation
was the first original work regarding the carbon material–Li–H2 system [33].

More recently, D’Arcy et al. carried out quantum Monte Carlo simulations to the
Bz-Li-(H2)n system (n = 1, and 2), and binding energies were obtained to be 4.5 kcal/mol
(n = 1) and 3.2 kcal/mol (n = 2) [34,35]. Using a polycyclic aromatic hydrocarbon (PAH)
composed of 14 benzene rings, Zhu et al. calculated the binding energy of the Li atom.
The Li atom adsorbed to the surface with a binding energy of 14.8 kcal/mol (n = 1) [21].

In the present review article, we introduce our recent theoretical studies on the in-
teraction between the GNF and H2 molecules. To understand the mechanism of alkali
metal-activation in GNFs, the interactions of H2 molecules with metal-doped GNFs were in-
vestigated using the DFT method. In particular, a solution to the activation effects of metal
doping to GNF is clearly presented. The small to large GNFs composed of 7–37 benzene
rings were used. These sizes were similar to those of the real GNFs. As metals, lithium,
sodium, potassium, and magnesium were used and the abilities of H2 storage were dis-
cussed. Additionally, the mechanism of the Li-diffusion on GNF, which plays a crucial role
in the Li-battery, is presented. Does lithium diffuse randomly on GNF? Or is there a specific
diffusion path? The factors governing lithium diffusion derived from a quantum chemical
point of view are shown. Finally, the molecular design of a H2 adsorption–desorption
reversible storage device is proposed. We would like to clearly show that GNFs are useful
as hydrogen storage and molecular devices.

2. Hydrogen Storage in Lithium (Li) Doped Graphene Nanoflake (GNF)

Lithium–graphene systems have been utilized as Li-ion batteries [36] and Li-sulfur
batteries [37]. In particular, the Li–sulfur battery is expected as next-generation energy
storage devices. Carbon materials such as GNFs, CNTs, and fullerene can be used for
hydrogen storage. Alkali doping to these materials generally increases their H2-storage
density. However, the effects of Li on the H2 storage mechanism and capacity of GNF are
not clearly understood. In this section, DFT studies on the mechanism of hydrogen storage
due to GNFs doped by Li-metals are presented [38].

PAH was used as a model molecule for GNF, as shown in Figure 1. A GNF composed
of 37 benzene rings was used as a model of a GNF, and GNF–M–(H2)n and GNF–M+-(H2)n
(M = Li and Na, n = 0–12) clusters were used as hydrogen storage systems. DFT calcula-
tions were performed using a Coulomb-attenuating exchange-correlation energy functional
(CAM-B3LYP) with a 6-311G(d,p) basis set, which are expressed as CAM-B3LYP/6-311G(d,p).

First, the structure of GNF was optimized, and then M (or M+) was placed in the
central region of the GNF. The structures of the GNF–M and GNF–M+ were optimized,
where all atoms of the GNF–M+/M were fully optimized. The binding energy of M to GNF
is defined as follows:

− Ebind(M) = E(GNF−M)− [E(M) + E(GNF)] (1)

where E(X) is the total energy of X. If Ebind(M) is positive, M can bind exothermally to GNF.
The binding energy of H2 to GNF–M (per one H2 molecule) is defined as follows:

− Ebind(n) = [E(GNF−M− (H2)n)− [E(GNF−M) + nE(H2)]]/n (2)

If Ebind(n) is positive, the H2 molecule can bind to GNF–M as an exothermic reaction.
The atomic and molecular charges were calculated by the natural population analysis
(NPA) method.



C 2022, 8, 36 3 of 21

C 2022, 8, x FOR PEER REVIEW 3 of 21 
 

If Ebind(n) is positive, the H2 molecule can bind to GNF–M as an exothermic reaction. 
The atomic and molecular charges were calculated by the natural population analysis 
(NPA) method.  

 
Figure 1. The graphene nanoflakes used in the present calculations. GNF(m) is the graphene 
nanoflake composed of m benzene rings. GNF(7), GNF(19), and GNF(37) are coronene (C24H12), 
circumcoronene (C54H18), and circumcircumcoronene (C96H24), respectively. 

2.1. Structures of the Li Doped–GNF 
The structures of GNF–M and GNF–M+ (M = Li) were fully optimized. The opti-

mized distance of M from the GNF surface (i.e., height, h) is shown in Table 1. Both the 
atom and ion (Li and Li+) bond to the hexagonal site of GNF, where six carbon atoms of 
GNF in the central region orient equivalently to Li and Li+. The heights of Li and Li+ from 
the graphene surface were h = 1.736 and 1.771 Å, respectively, suggesting that both spe-
cies are located in similar positions from the surface. The binding energies of Li and Li+ 
were 17.1 and 52.8 kcal/mol, respectively, indicating that the binding of Li+ to GNF was 
three times stronger than that of Li. The NPA atomic charges on Li and Li+ were +0.929 
and +0.937, respectively, indicating that the net charge of Li on GNF was similar to that of 
Li+. A large electron transfer (0.929e) occurred from Li to GNF after binding to the sur-
face. These results strongly indicate that the electronic state of the Li atom on GNF was 
significantly close to that of the Li+ ion on GNF because the Li atom was changed to the 
Li+ ion on GNF.  

The height of the Li atom was slightly lower than that of the Li+ ion. This is due to 
the fact that Coulomb interaction between Li+ and GNF− is formed by electron transfer 
from Li to GNF after the binding of Na to GNF: Li + GNF → (Li)+(GNF)− in the case of the 
Li atom. This interaction causes a shorter Li-GNF distance. In contrast, only charge 
transfer takes place in the Li + ion: Li+ + GNF → (Li-GNF)+.  

  

Figure 1. The graphene nanoflakes used in the present calculations. GNF(m) is the graphene
nanoflake composed of m benzene rings. GNF(7), GNF(19), and GNF(37) are coronene (C24H12),
circumcoronene (C54H18), and circumcircumcoronene (C96H24), respectively.

2.1. Structures of the Li Doped–GNF

The structures of GNF–M and GNF–M+ (M = Li) were fully optimized. The optimized
distance of M from the GNF surface (i.e., height, h) is shown in Table 1. Both the atom and
ion (Li and Li+) bond to the hexagonal site of GNF, where six carbon atoms of GNF in the
central region orient equivalently to Li and Li+. The heights of Li and Li+ from the graphene
surface were h = 1.736 and 1.771 Å, respectively, suggesting that both species are located
in similar positions from the surface. The binding energies of Li and Li+ were 17.1 and
52.8 kcal/mol, respectively, indicating that the binding of Li+ to GNF was three times
stronger than that of Li. The NPA atomic charges on Li and Li+ were +0.929 and +0.937,
respectively, indicating that the net charge of Li on GNF was similar to that of Li+. A large
electron transfer (0.929e) occurred from Li to GNF after binding to the surface. These results
strongly indicate that the electronic state of the Li atom on GNF was significantly close to
that of the Li+ ion on GNF because the Li atom was changed to the Li+ ion on GNF.

Table 1. The binding energies of M (or M+) to GNF (Ebind in kcal/mol, M = Li, Na, and K), heights of
M from the GNF surface (h in Å), and NPA-determined atomic charges for M on GNF, calculated at
the CAM-B3LYP/6-311G(d,p) level.

Ebind Height (h) NPA

GNF–Li 17.1 1.736 +0.929
GNF–Li+ 52.8 1.771 +0.937

GNF–Na 4.4 2.247 +0.978
GNF–Na+ 37.5 2.288 +0.979

GNF–K 5.3 2.649 +0.979
GNF–K+ 27.3 2.756 +0.982

The height of the Li atom was slightly lower than that of the Li+ ion. This is due to the
fact that Coulomb interaction between Li+ and GNF− is formed by electron transfer from
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Li to GNF after the binding of Na to GNF: Li + GNF→ (Li)+(GNF)− in the case of the Li
atom. This interaction causes a shorter Li-GNF distance. In contrast, only charge transfer
takes place in the Li + ion: Li+ + GNF→ (Li-GNF)+.

2.2. Binding Structures of the Hydrogen Molecules to GNF–Li

GNF–Li has the ability for the storage of H2 molecules. The binding structures of H2
to GNF–Li are illustrated in Figure 2, where the geometry optimization of GNF–Li–(H2)n
(n = 1–12) were carried out at the CAM-B3LYP/6-311G(d,p) level. In n = 1, H2 binds to
the Li atom of GNF–Li with a side-on structure. The distance of H2 from Li was 2.027 Å.
The binding structures for n = 2 and 3 were also side-on, where the distances of H2 from Li
were about 2.080 Å.
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Figure 2. The optimized structures of the GNF(37)–Li(atom)–(H2)n (n = 1, 2, 3, 4, 7, and 11). The calcu-
lations were performed at the CAM-B3LYP/6-311G(d,p) level. Reprinted with permission from [38].
Copyright 2019 American Chemical Society.

The binding distance is 4.080 Å (n = 4), meaning that the first coordination shell is
saturated by three H2 molecules (n = 3). In contrast, the fourth hydrogen molecule is
weakly bound to the hydrogen molecules in the first coordination shell (n = 1–3). The fifth
and sixth hydrogen molecules, (H2)5 and (H2)6, were also bound to H2 in the first shell
(n = 1–3). (H2)7 and (H2)11, the seventh and eleventh hydrogen molecules, were located
far from the Li atom.

In the case of the lithium ion system GNF–Li+(ion)-H2, similar binding structures and
electronic states were obtained due to the fact that the electronic state of GNF–Li+(ion) is
very similar to that of GNF–Li(atom).
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2.3. Binding Energy of H2 to GNF–Li

Li-doped GNF can store the H2 molecules, as shown in the previous section. This
section discusses the bond energy of H2 to GNF–Li. The binding energy of H2 to GNF–Li is
given in Figure 3, which is plotted as a function of n. The binding energies for n = 1, 3, and
7 were 3.83, 2.85 and 1.43 kcal/mol (per H2 molecule), respectively. The energy decreased
gradually as a function of n and reaches to a constant value at n = 12. These trends strongly
suggest that GNF–Li is effective to use as a H2 storage material. GNF–Li can store H2 up to
the second coordination shell (n = 1–7), if the threshold of binding energy is assumed to be
1.4 kcal/mol.
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Figure 3. The binding energies of H2 to GNF(37)-Li and GNF(37)-Li+ (per H2 molecule) plotted
as a function of the number of hydrogen molecules (n). The open squares represent the bind-
ing energies of H2 to the Li atom without GNF, Li(H2)n. Calculations were performed at the
CAM-B3LYP/6-311G(d,p) level. Reprinted with permission from [38]. Copyright 2019 American
Chemical Society.

In the GNF–Li+–(H2)n lithium ion system, similar energetics were observed. The bind-
ing energy in the GNF–Li+(ion) is slightly larger than the Li atom because the magnitude
of ionic charge in the GNF–Li+(ion) is slightly larger than GNF–Li(atom).

Next, we considered the effect of the GNF surface on the electronic states of Li. Does
graphene promote or decrease the adsorption of hydrogen onto lithium? This is a topic that
needs to be elucidated. To understand the effect of GNF on the binding energy between Li
and H2, the binding energy of H2 to bare Li was calculated without GNF and the results are
plotted in Figure 3 (open squares). The binding energy of H2 to the Li atom is defined as

− Ebind(n) = [E(Li− (H2)n)− [E(Li) + nE(H2)]]/n (3)

The binding energies of Li-(H2)n without GNF were significantly lower than those of
GNF–Li–(H2)n: 1.35 kcal/mol (n = 4), 0.82 kcal/mol (n = 7) and 0.50 kcal/mol (n = 12).

These results indicate that the lithium is activated by GNF due to electron capture,
and the lithium atom behaves as a lithium ion on the GNF surface.

3. Hydrogen Storage in Sodium (Na) Doped GNF

In the previous section, the hydrogen storage mechanism in the GNF–Li system
was presented. The Li atom and Li+ ion act as high-efficient hydrogen storage materials.
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Unfortunately, Li is an expensive metal because of its high shipping cost. In this regard,
sodium (Na) is an inexpensive metal despite its similar chemical properties to Li. In
this chapter, DFT studies on the hydrogen storage mechanism of Na-doped GNF are
presented [39].

3.1. Structures of Na-Doped Graphene Nanoflake

The structures of GNF–Na and GNF–Na+ were optimized at the CAM-B3LYP/6-311G(d,p)
level. Both Na and Na+ were bound to the hexagonal sites on the GNF surface. The sites
were the same as those of Li on GNF. The Na–surface distance (height of Na from GNF,
h), Na–GNF binding energy, and NPA atomic charge of Na are listed in Table 1 together
with those of Na+. The heights were calculated to be h = 2.247 (Na) and 2.288 Å (Na+).
The positions of the Na atom and Na+ ion were similar to each other, although Na was
slightly closer to the surface than Na+. This is due to the Coulomb interaction between Na+

and GNF− in the case of the Na atom. The heights of the Na species were higher than those
of the Li species due to the difference in the ionic radii.

The binding energies to GNF were 4.4 (Na) and 37.5 kcal/mol (Na+), respectively,
indicating that the binding of Na+ was about nine-times stronger than Na. This is caused by
the large electron transfer from Na to GNF after binding (0.98e). The NPA atomic charges
were +0.978 (Na) and +0.979 (Na+), respectively. The net atomic charge of Na on GNF was
very similar to that of Na+ on GNF. The feature of electron transfer was in good agreement
with the GNF–Li (Li+) systems, as summarized in Table 1, where the NPA atomic charges
on the Li and Li+ adsorbed on GNF were +0.929 and +0.937, respectively.

3.2. Binding Structures of the Hydrogen Molecules to GNF–Na

The structures of H2 bound to GNF–Na (n = 1–6) are illustrated in Figure 4. The ge-
ometries of GNF–Na–(H2)n (n = 1–12) were calculated at the CAM-B3LYP/6-311G(d,p)
level. The first H2 molecule (n = 1) was bound to Na with a side-on structure, and distance
of H2 from Na was 2.415 Å, where two hydrogen atoms of H2 were equivalently bound
to Na.
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The similar side-on structures were found from the second to fourth H2 molecules,
(H2)2-(H2)4. The fifth H2 molecule, (H2)5 was bound to Na from the orthogonal position of
the surface when n = 5, with a distance of 2.833 Å, which was longer than those of (H2)1–4;
clearly, the first coordination shell was saturated at n = 4. The fifth and sixth H2 molecules
were bound to H2 molecules in the first shell. (H2)5 and (H2)6 were not directly bound
to Na (the distances between the sixth H2 molecule and Na and the nearest H2 molecule
were 5.037 and 3.625 Å, respectively. Side-on coordination structures were observed in all
clusters (n = 7–12).

3.3. Binding Energies of H2 to GNF–Na

Figure 5 shows the binding energy of H2 to GNF–Na (per H2 molecule) plotted as a
function of n. The first addition of H2 (n = 1) to GNF–Na caused the binding energy of
2.72 kcal/mol. The energy decreased gradually with increasing n. The values of binding
energies were 2.67 (n = 2), 2.50 (n = 3), 2.34 (n = 4), and 2.01 kcal/mol (n = 5). In larger
systems, the binding energies for n = 8, 10, and 12 were 1.45, 1.22, and 1.03 kcal/mol,
respectively. Thus, the binding energies in the larger systems were larger than 1.0 kcal/mol,
suggesting that the GNF–Na system can store H2 molecules.
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The binding energies of CHF-Na+ (ion) are slightly larger than those of CNF-Na
(atom), and the curve of binding energies are similar to each other. Both atom and ion can
bind H2 as storage, as well as the Li system.

4. Hydrogen Storage in Potassium (K) Doped GNF

The adsorption mechanism of H2 to GNF–M (Li and Na) was presented in the previous
sections. Both Li and Na can trap efficiently H2 molecules. Potassium (K) is also an alkali
metal. In this section, the adsorption of H2 to GNF–K is discussed.

4.1. Structures of K-Doped GNF

The optimized structures of GNF–K–(H2)n are illustrated in Figure 6. The first hy-
drogen molecule, (H2)1, was bound to K with a side-on form (n = 1). The distances of
the hydrogen atoms of (H2)1 were 3.035 and 3.126 Å from K on GNF. In n = 2, two H2
molecules were bound to K with the side-on forms as well as n = 1. The distances of (H2)1
and (H2)2 from K were R1 = 3.043 and R2 = 3.044 Å, which were close to those of n = 1
(3.035 Å). The coordination structures and distances for n = 1 to 5 were similar to each other.
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The sixth and seventh H2 molecules, (H2)6-7 were oriented from the vertical position of
GNF–K, as shown in Figure 6 (n = 6 and 7). However, the distances of (H2)6-7 from K were
3.163 Å, which was also close to those of n = 1–5, meaning that these hydrogen molecules
are located in the first coordination shell around K.
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The drastic change in the bond distance took place at n = 8, where the distance of
(H2)8 from K was 4.121 Å, indicating that the first coordination shell was saturated at n = 7.

In the case of K+ (ion), similar binding structures were also obtained. This was due to
the fact that the K atom is changed to the K+ ion when K binds to the GNF surface as well
as Li and Na.

4.2. Comparison of Binding Energies in GNF–M–H2 (M = Li, Na, and K)

The binding energies of H2 to GNF–M or GNF–M+ (M = Li, Na, and K) are summarized
in Figure 7, which are plotted as a function of n (per H2 molecule). In GNF–Li–H2, the bind-
ing energies were 3.83 (n = 1), 3.29 (n = 2), 2.85 (n = 3), 2.20 (n = 4), and 1.83 kcal/mol (n = 5).
The corresponding energies in the GNF–Na–H2 system were 2.72 (n = 1), 2.67 (n = 2),
2.50 (n = 3), 2.34 (n = 4), and 2.01 kcal/mol (n = 5).

These features suggest that the interaction of H2 with GNF–Li is stronger than that
of GNF–Na for n = 1–3. The interactions were comparable for both Li and Na at n = 4. In
the larger systems (n = 5–12), GNF–Na interacted strongly with H2. Thus, GNF–Na had a
higher H2-storage ability than GNF–Li. The Na+ ionic system, GNF–Na+-(H2)n, showed
similar features (Figure 7).

In the case of the Na–(H2)n system without GNF, the binding energies of (H2)n to
Na were close to zero, suggesting that GNF clearly enhances the binding nature through
electron transfer from Na to GNF. The reaction is expressed as GNF + Na→ (GNF)−-Na+.

Thus, it can be clearly demonstrated that GNF–Na is a suitable candidate for efficient
H2 storage for various applications in the hydrogen economy. It can be concluded that
sodium is an alternative to lithium for this purpose.
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Figure 7. The binding energies of H2 to GNF–M (per H2 molecule) plotted as a function of n
(M = Li, Li+, Na, Na+, and K+). Calculations for M = Li, Li+, Na, Na+ were carried out at the
CAM-B3LYP/6-311G(d,p) level and for M = K+, it was at the CAM-B3LYP/6-31G(d) level. Reprinted
with permission from [39].

For comparison, the hydrogen adsorption capacity of K+ was examined [40]. The bind-
ing energy of H2 to GNF–K+ is plotted in Figure 7. The binding energies in GNF–K+ were
lower than those of GNF–Li+ and GNF–Na+. However, the values were always higher in
energy than 1.0 kcal/mol, which was also higher than the binding energy of H2 to GNF
without K. These features indicate that GNF–K+ is also possible as a H2 storage [40].

The DFT calculations demonstrated that alkali metal (Li, Na, and K) decorated
GNFs can be utilized as H2 storage materials. In particular, Li and Na showed efficient
storage capacities.

5. Diffusion of Li and Li–(H2)n on GNF Surface

In the Li-ion battery, Li can diffuse on the surface of carbon materials and is stored in
binding sites. Therefore, the elucidation of the mechanism of diffusion of Li on a graphene
surface is important in developing a high-performance Li-battery. In particular, does
lithium diffuse randomly over GNF? Or is it directional? The dominant factors of lithium
diffusion will be discussed. In this section, the diffusion mechanism of Li and Li including
H2 molecules on the GNF surface will be discussed [41–44].

5.1. Diffusion of Li Species on GNF

Figure 8A represents the potential energy curves (PECs) along the low energy diffusion
paths of the Li+ ion and Li atom on GNF. Heights of Li+ and Li were set to the optimized
geometries for binding sites (1.777 and 1.729 Å, respectively). The diffusion barriers for
Li+ and Li atom derived from the PECs were 9.5 and 11.5 kcal/mol, respectively. In both
species, saddle points were located in the bond center between the carbon–carbon (C–C)
atoms of GNF. These points correspond to the node of the highest occupied molecular
orbital (HOMO) of GNF–Li+. A diffusion for the Y-axis direction was higher in energy than
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that for the X-axis. In a previous paper [42], we proposed a diffusion model where the Li+

ion diffuses along the node of HOMO. The present results support our model.
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Figure 8. (A) The potential energy curves for the diffusion of the Li+ ion and Li atom along the
points a → b path on the surface. The heights of the Li+ ion and Li atom were set to 1.777 and
1.729 Å, respectively. Optimized transition state structures for the diffusion of the (B) Li+ ion and
(C) Li atom on GNF(37). The height (h) of Li is given in Å. All calculations were carried out at
the CAM-B3LYP/6-311G(d,p) level of theory. Reprinted with permission from [41]. Copyright
2020 Elsevier.

The accurate barrier heights were calculated using the full geometry optimizations
of the transition state (TS). The optimized structures of the TSs for Li species on GNFs
are shown in Figure 8B (Li+ ion), and Figure 8C (Li atom), and the barrier heights for Li
species are given in Table 2. Both the Li+ ion and Li atom were located at the centers of the
C–C bonds of GNF, and the heights of the Li+ ion and Li atom from the surface of GNF
were calculated to be h = 2.025 and 2.070 Å, respectively. The imaginary frequencies were
154.6 i and 154.7 i cm−1 (for the Li+ ions and Li atoms, respectively). The diffusion barriers
including zero-point energies (ZPEs) were calculated to be 5.90 (Li+) and 6.84 kcal/mol
(Li) on GNF. These lower barriers suggest that the Li species could diffuse easily on the
graphene surface at room temperature. The size dependence on the diffusion barrier was
small in the GNF–Li system.

The HOMO of the GNF–Li+ is illustrated as an iso-surface in Figure 9, together with
a trajectory of the Li+ diffusion on GNF (i.e., diffusion path), which is given as a dotted
red curve. The trajectory was calculated at 300 K by means of the direct ab initio molecular
dynamics (AIMD) method [42]. At time zero, Li+ was located at the center of GNF. The Li+

ion started to diffuse when temperature was applied. Then, it reached the edge region of
the GNF after 1.0 ps.
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Table 2. The diffusion barriers (Ediff in kcal/mol) of the Li species (Li+ ions and Li atoms) on GNFs
of several sizes, (GNF(m), m = 14, 19, and 37), where m is the number of benzene rings comprising
the GNF. The Ediff + ∆ZPE values (in kcal/mol) are the diffusion barrier values after the zero-point
energy (ZPE) corrections. All calculations were carried out at the CAM-B3LYP/6-311G(d,p) level
of theory.

m Ediff (Li+) Ediff(Li+) + ∆ZPE Ediff(Li) Ediff (Li) + ∆ZPE

14 6.17 5.74 6.11 5.59
19 6.35 5.83 6.55 6.06

37 6.26 5.90 7.33 6.84
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Figure 9. (Left) Sample trajectory of Li+ on GNF at 300 K (dotted red curve), spatial distribution
of HOMO of GNF–Li+, and the phases of HOMO (green and brown colors). (Right) A schematic
illustration of the interaction of molecular orbitals between Li+ and GNF during the diffusion.
The trajectory calculation was carried out using the direct ab initio molecular dynamics (MD) method.
The Li+ ion diffuses along the node of HOMO of the GNF–Li+ system. Reprinted with permission
from [42]. Copyright 2006 American Chemical Society.

By comparing the diffusion path with the HOMO, it was found that the Li+ ion
diffuses along a node of HOMO of GNF–Li+. This is due to the fact that the 2p orbital of
Li+ (precisely, Li+ takes a sp2-like orbital on GNF, as shown in Figure 9 (right)) interacts
strongly with HOMO during the diffusion process. The orbital degeneracy in GNF is solved
by thermal activation and interaction with the Li+ (the high symmetry of GNF is broken).
Thus, the Li+ ion does not move as a random walk, but diffuses regularly along the node
of HOMO. With increasing temperature, the diffusion of Li+ approaches random walking
because HOMO is being replaced by several orbitals due to the thermal activation.

5.2. Diffusion of Li–H2 Species on GNF

As shown in the previous section, the lithium ion can diffuse on the GNF surface
under the thermal condition due to a low diffusion barrier. The Li+ ion diffuses along the
node of HOMO of GNF–Li+ due to the low energy path. In this section, the effects of H2
on the diffusion barrier of Li+ on the GNF surface are examined. Namely, the diffusion of
hydrogenated lithium, Li+–(H2)n, is discussed [38].

The structures of GNF–Li+–(H2)n (n = 0–4) in the binding state and transition state
(TS) were optimized at the CAM-B3LYP/6-311G(d,p) level. The optimized structures for
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n = 3 are illustrated in Figure 10 as a representative example. The low energy diffusion
takes place from point A → point B via TS. In the case of n = 3, the height of Li+ from
the surface was h = 1.883 Å. The H2 molecules were bound to Li+ on GNF with the mean
intermolecular distance of R = 2.192 Å. In the TS, Li+ was located at the center of the C–C
bond with h = 2.144 Å. The distance of H2 was R = 2.082 Å, which was significantly shorter
than that of the binding state (2.192 Å). Thus, the Li+ ion in TS was strongly coordinated by
H2 molecules.
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Figure 10. The optimized structures of GNF(19)–Li+–(H2)n (n = 3) in the (upper) binding state and
(lower) transition state (TS) calculated at the CAM-B3LYP/6-311G(d,p) level. Bond distances are
given in Å. Reprinted with permission from [38]. Copyright 2019 American Chemical Society.

The diffusion barriers calculated for n = 0–4 (activation barriers) are listed in Table 3.
Imaginary frequencies were obtained for all TS structures (n = 0–4), and the normal mode
of imaginary frequency corresponded to the translational mode of Li+(H2)n between the
benzene rings (A to B positions). The activation barriers for n = 0, 1, 2, 3, and 4 were
calculated to be 6.35, 6.35, 4.95, 3.73, 3.62 kcal/mol, respectively, indicating that the diffusion
barrier decreased with increasing numbers of hydrogen molecules (n) and became saturated
at n = 3–4. The saturation of the first coordination shell at n = 3 resulted in decreased
activation energies.

The binding energies of (H2)n to Li+ were calculated for the binding state and TS, and
the differences in solvation energies (denoted as ∆Ebind) are listed in Table 3. The results
suggest that the binding energies in TS were larger than those in the binding state. In
particular, the binding energy in TS was the largest at n = 3, and the overall trend showed a
decreasing activation energy with an increasing n up to n = 3.
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Table 3. The diffusion (activation) barriers of Li+(H2)n (n = 0–4) on the GNF(19) surface (Ea in
kcal/mol) calculated at the CAM-B3LYP/6-311G(d,p) level. The term ∆Ebind refers to the differences
in binding energies in the transition state (TS) and binding state (per H2 molecule in kcal/mol).

n Ea/kcal mol−1 ∆Ebind/kcal mol−1

0 6.35 0.0
1 6.35 0.01

2 4.95 −0.70
3 3.73 −0.87
4 3.62 −0.68

6. Molecular Design of Reversible Hydrogen Storage Device

In the previous sections, the hydrogen storage of the Li, Na, and K-doped GNFs were
introduced. In this section, the molecular design of reversible hydrogen storage device
based on GNFs is presented. Magnesium has three valence states as neutral, mono, and
divalent states expressed as Mg, Mg+, and Mg2+. Here, the molecular devices composed of
GNF–Mg were examined as the reversible hydrogen storage device [45].

6.1. Structures of Mg-Doped GNFs

The optimized structures of GNF–Mgm+ (m = 2, 1, and 0) showed that Mg species were
bound to the hexagonal site of GNF. The binding energies for m = 0, 1, and were 0.3, 39.9,
and 159.8 kcal/mol, respectively, implying that the binding energy is strongly dependent
on the charge of Mg. The distances of Mgm+ from the GNF surface (h) were 4.339 (m = 0),
2.214 (m = 1), and 1.806 Å (m = 2), respectively. The binding distance of Mg2+ was shorter
than that of Mg+. The binding of Mg was very weak.

The NPA atomic charges on the Mg species were −0.001 (m = 0), +0.960 (m = 1), and
+1.882 (m = 2), suggesting that a slight electron transfer occurred from GNF to Mgm+ (m = 1
and 2) after binding. However, the magnitude of electron transfer was negligibly small
compared with those of Li and Na.

6.2. Binding Structures and Energies of H2 to GNF–Mgm+ (m = 1 and 2)

The geometries of the GNF–Mg2+–(H2)n systems (n = 1–6) were fully optimized at
the CAM-B3LYP/6-311G(d,p) level. Figure 11A shows the binding structures of H2 to
GNF–Mgm+ (m = 2). The H2 molecules were bound to Mg2+ with a side-on structure.

The binding energy of H2 to GNF–Mgm+ is plotted in Figure 11B as a function of n.
The binding energy of the first addition of H2 to GNF–Mg2+ (n = 1) was 13.22 kcal/mol
(per H2 molecule), which gradually decreased as a function of n. The binding energies
of the system were 9.99 (n = 3), 6.79 (n = 5), and 5.03 kcal/mol (n = 7). In contrast,
the binding energies of GNF–Mgm+–(H2)n (m = 1) were significantly lower than those for
m = 2. The binding energies of the system were 0.31 (n = 1), 0.28 (n = 3), 0.26 (n = 5), and
0.24 kcal/mol (n = 7).

These trends strongly indicate that GNF–Mg2+ can be used as a H2 storage mate-
rial, whereas the ability of GNF–Mg+ was significantly low. Thus, the H2 absorption
ability of the GNF–Mgm+ system was significantly changed by the charge of GNF–Mg.
The adsorption–desorption was controlled by the molecular charge in the GNF–Mgm+–(H2)n
system (m).
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Figure 11. (A) The optimized structure of the GNF(7)-Mg2+ calculated at the CAM-B3LYP/6-311G(d,p)
level. Notation h means the height of Mg species from the GNF surface (in Å). (B) The binding
energies of H2 to GNF(7)–Mg2+ and GNF(7)–Mg+ (per H2 molecule) plotted as a function of the
number of H2 molecules (n). Dashed lines indicate the binding energies of H2 to GNF(37)–Mgm+

(m = 1 and 2). Reprinted with permission from [45]. Copyright 2021 American Chemical Society.

6.3. Electron Capture Dynamics of GNF–Mg–H2

The structure of the GNF–Mg–H2 system is largely dependent on the charge of Mg,
as shown in the previous section. This specific property makes the GNF–Mg–H2 system
suitable for use as a H2 storage device with adsorption–desorption reversible properties.
In the following sections, the direct AIMD calculations [46–48] for the electron and hole
capture processes of the GNF–Mg–H2 system are described [45].

The result of the dynamics calculation for the electron capture of GNF–Mgm+–(H2)4
(m = 2) is given in Figure 12. The snapshots and the potential energy of GNF–Mg+–(H2)4
(m = 1), following vertical electron capture of m = 2, are shown in Figure 12A,B, respectively.
The optimized structure of GNF–Mg2+–(H2)4 was chosen as the initial structure at time
zero. The average distance between the Mg and H2 molecules was <R> = 2.253 Å at
time = 0 fs (before electron capture). The distance between Mg and the GNF surface was
h = 1.908 Å. The charge on Mg was suddenly changed from Mg2+ to Mg+ by electron
capture. Afterward, the structure was drastically changed as a function of time.

At 51.7 fs, the distance of H2 from Mg+ was slightly increased to <R> = 2.327 Å, and the
distance between the Mg+ and the GNF surface was slightly decreased (h = 1.820 Å). The po-
tential energy of the system was varied as a function of time. The zero level corresponded
to the total energy of GNF–Mg+–(H2)4 at the vertical electron capture point (time = 0 fs).
After the electron capture, the energy was slightly decreased at time = 0–50 fs because a
slight structural deformation occurred in this time region. Namely, the meta-stable form of
GNF–Mg+–(H2)4 was formed at time = 0–51.7 fs. After that, the energy decreased suddenly
up to −45 kcal/mol because the meta-stable form was broken and changed to a stable form.
The elongation of the GNF–Mg+ bond and release of H2 from Mg+ occurred. The geometry
was changed from meta-stable to stable forms of GNF–Mg+–(H2)4. At 85.9 fs, H2 molecules
leaved away from Mg+, where the average distance was <R> = 3.034 Å. At the final stage
of the reaction (100 fs), H2 molecules were released from GNF–Mg+ to the gas phase,
<R> = 4.014 Å. The interaction of H2 with Mg+ was negligible in this region. Thus, the elec-
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tron capture of GNF–Mg2+–(H2)4 resulted in the dissociation of H2 from GNF–Mg+–(H2)n,
and the time scale of the dissociation was very fast (ca.100 fs). The reaction of electron
capture was expressed as follows:

GNF-Mg2+-(H2)n (adsorption) + e− → GNF-Mg+-(H2)n (H2 in the gas phase).

Thus, H2 molecules were released into the gas phase after the electron capture.
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(B) Time evolution of potential energy of GNF–Mg+-(H2)4. Direct AIMD calculations were carried
out at the CAM-B3LYP/6-31G(d) level. The initial geometry was taken from the optimized structure
of GNF–Mg2+–(H2)4 (CAM-B3LYP/6-31G(d) level). The distances and heights are in Å. Reprinted
with permission from [45]. Copyright 2021 American Chemical Society.

6.4. Hole Capture Dynamics of Dissociation System

The hole capture dynamics of GNF–Mgm+–(H2)4 (m = 1) is given in Figure 13. One of
the dissociation structures of GNF–Mg+–(H2)4 (in gas phase) was selected as the initial
structure at time zero. The selected geometry is shown in Figure 12B by an arrow. Before
the hole capture (time = 0 fs), all H2 molecules leaved from Mg+, and the position of Mg2+

leaved from GNF: the average distance of H2–Mg was <R> = 3.704 Å, while the height
of Mg+ was h = 2.472 Å. The atomic charge of Mg was drastically changed from Mg+ to
Mg2+ by hole capture. Therefore, the whole structure of GNF–Mg–H2 was significantly
changed to a relaxed geometry. Of particular importance were the change in the position of
hydrogen from Mg and that in the height of Mg from GNF.
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Figure 13. (A) The snapshots of the GNF–Mg2+–(H2)4 following the hole capture of GNF–Mg+–(H2)4.
(B) The time evolution of the potential energy of GNF–Mg2+–(H2)4. Direct AIMD calculations
were carried out at the CAM-B3LYP/6-31G(d) level. The initial geometry was taken from one of
the structures in the simulation of GNF–Mg+-(H2)4 (indicated by “selected point” in Figure 12).
The distances and heights are in Å. Reprinted with permission from [45]. Copyright 2021 American
Chemical Society.

After hole capture, Mg2+ gradually approached the surface of the GNF and collided
with the GNF at 57.7 fs (height was h = 1.451 Å). At the final stage of the hole capture
process (86.6 fs), the distance of Mg from the GNF surface was h = 2.102 Å. The potential
energy decreased gradually from 0.0 to −29.0 kcal/mol (time = 0–40.2 fs), as shown in
Figure 13B. The energy increased up to −8.0 kcal/mol due to the collision (57.7 fs) and
decreased again to −30.0 kcal/mol at the stable point (86.6 fs).

Together with the collision of Mg+ to GNF, H2 molecules were assembled at the center
Mg2+. The distance of H2 from Mg2+ was varied as a function of time: <R> = 3.704 Å
(time = 0 fs), 3.636 Å (40.2 fs), 3.540 Å (57.7 fs), and 2.787 Å (86.6 fs). Thus, the H2 molecules
were fully bound to Mg2+ at 86.6 fs, and the structure was recovered by the addition of H2
to GNF–Mg2+: the average distance was <R> = 2.787 Å. These features indicate that the
reverse reaction was completed within 100 fs and is a fast process. The reaction is expressed
as follows:

GNF-Mg+ + (H2)n (gas phase) + hole→ GNF-Mg2+ − (H2)n (adsorption).

The direct AIMD calculations strongly demonstrated that the charge switching of the
GNF–Mg (cation/dication) can control the adsorption–desorption reversible reaction of H2.



C 2022, 8, 36 17 of 21

6.5. Molecular Design of H2 Adsorption–Desorption Reversible Device

As a summary of this section, a schematic potential energy diagram for the H2-reversible
device is given in Figure 14. The initial point of reaction is expressed by point-a: GNF–Mg2+

is surrounded by H2 molecules. The H2 molecules bind strongly to Mg2+ on GNF. If this
state can capture an excess electron, the energy level of GNF–Mg2+ is vertically shifted
to GNF–Mg+ at point-b. The reaction point is spontaneously lowered from point-b to
point-c. H2 molecules are dissociated from GNF–Mg+ to the gas phase at point-c. When
GNF–Mg+ takes place in hole capture, the energy state is shifted from points c to d, where
the GNF–Mg2+ is formed again. GNF–Mg2+ can strongly capture H2 molecules. The H2
molecules are trapped by GNF–Mg2+. Thus, the control of the electronic states of GNF–Mg
allows for a H2 adsorption–desorption reversible device.
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7. Comparison with Previous Studies

In 1999, Chen et al. reported that H2 molecules are efficiently trapped by alkali-metal
doped CNTs. Since then, many experimental works have been carried out to investi-
gate the hydrogen adsorption on CNTs. The mechanism of H2 binding has also been
proposed [49–51]. Froudakis proposed a model for the enhancement of alkali doping to
CNTs on the basis of the exponential decay of the binding energy [52]. First, the charge
transfer from the alkali metal to CNTs occurs by doping, and metal ion polarizes the H2
molecule. This charge-induced dipole interaction causes the higher hydrogen uptake of the
doped CNT.
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In transition metals (TMs), there are two important interactions between H2 and
GNF–TM. One is that the electron in the d-orbital of TM donates to the σ* orbital of H2.
The second is that the σ-electron of H2 donates to the unoccupied molecular orbital (LUMO)
of TM. These features are dependent on metals.

In the case of the GNF–M–H2 system, a similar electron transfer from M to GNF was
found and the metal becomes M+ ions on GNF. The electron of the sigma-orbital of H2
donates slightly to GNF–M+. Next, the charge resonance between M+ and H2 takes place.
The binding of H2 is caused by the charge resonance effects.

In the present review article, we introduced the calculated results using PAH. As an
analogous study, Seenithurai and Chai calculated the binding energies of H2 to Li-adsorbed
acenes using the DFT method [53]. They showed binding energies of 4.8–9.6 kcal/mol (per
one H2). These values are slightly larger than those of PAH.

Not only alkali metals but also TMs have recently been tried. Chi et al. reported
that the graphene doped by Al metal had a higher capacity for H2 molecules than a bare
graphene without metal [54]. Cortés-Arriagada et al. suggested that the Fe-doped graphene
exhibited an effective ability for the adsorption of gas molecules such as CO, CO2, SO2,
and H2S [55]. Thus, the interactions between the gas molecules and the graphene-based
materials could be significantly improved through being doped with metal atoms. A variety
of materials are expected to be used in the future.

8. Conclusions

In the present review article, the mechanism of hydrogen storage in alkali doped GNFs
were introduced. Three alkali metals, namely, lithium (Li), sodium (Na), and potassium
(K), were examined as atoms and ions. In the Li and Na atoms and its ions, H2 was stored
efficiently in doped GNFs, indicating that the GNF–Li and GNF–Na systems are effective as
hydrogen storage devices. In contrast, the binding energy of H2 to the GNF–K system was
lower than those of the Li and Na atoms. However, the binding energy in the GNF–K–H2
system was larger than 1.0 kcal/mol and that of GNF–H2 without K. The K atom and
ion enhanced the H2 storage ability of GNF. Therefore, GNF–K can be utilized as a H2
storage device.

As for the diffusion of Li+, the Li+ ion moves along the node of HOMO of GNF–Li+

because the phase of the molecular orbitals of the GNF corresponds to that of Li+. In
other words, Li+ diffuses in a regular manner, and the usual classical MD calculation
cannot describe this description and it is possible only with MD calculations based on the
ab initio level. At higher temperatures, the concept of orbitals disappears and diffusion
becomes random.

Next, the molecular design of H2 adsorption–desorption reversible storage device was
presented. The molecular device composed of GNF and Mg, GNF–Mg, was examined as
the reversible device. Magnesium takes three valence states, neutral, mono, and divalent
states expressed as Mg, Mg+, and Mg2+, respectively. GNF–Mg2+ can efficiently store
hydrogen molecules, whereas GNF–Mg+ releases H2 molecules to the gas phase. The direct
AIMD calculations demonstrated that the reversible process was completed within 100
fs, suggesting that the GNF–Mg system can be utilized as a H2 adsorption–desorption
reversible device.

As above-mentioned, GNFs can take on a wide variety of electronic states and reactiv-
ity. GNFs show many characteristic properties in materials chemistry. The development of
new materials based on GNFs is expected to continue in the future.

The ab initio and DFT calculations are powerful tools for the theoretical design of
H2 storage materials. However, as shown in this review, we introduced an ideal system
composed of a single molecule of GNF and a single metal atom. In a realistic system,
the metal would not be a single atom, but rather several clusters of metal on the GNF
surface. In the future, calculations with two or more metals are expected to be performed
to approximate the actual system.
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In this review article, only hydrogen was treated as an adsorbed molecule. The GNF–metal
system could be potentially used for the storage of other molecules. For example, ammonia
(NH3), CO, and CO2 are possible adsorbed molecules. Future developments are expected
to include diverse applications of graphene–metal systems.
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