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Abstract: Molybdenum disulfide quantum dots (MoS2 QDs) are a unique class of zero-dimensional
(0D) van der Waals nanostructures. MoS2 QDs have attracted significant attention due to their unique
optical, electronic, chemical, and biological properties due to the presence of edge states of these
van der Waals QDs for various chemical functionalization. Their novel properties have enabled
applications in many fields, including advanced electronics, electrocatalysis, and biomedicine. In this
review, the various synthesis techniques, the novel properties, and the wide applications of MoS2

quantum dots are discussed in detail.

Keywords: molybdenum disulfide; two-dimensional materials; van der Waals; quantum dots;
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1. Introduction

Since the isolation of monolayered graphene from graphite in 2004, the field of two-
dimensional (2D) van der Waals materials has seen rapid development. This is due to the
remarkable opportunity of using various types of 2D materials and their van der Waals
heterostructures for electronic [1], optical [2], chemical [3], and biological [4,5] applications.
The lack of a fundamental band gap in graphene has prevented the use of graphene in
digital electronics. This has led researchers to explore van der Waals 2D materials beyond
graphene, including hexagonal boron nitride (h-BN), and transition metal dichalcogenides
(TMDCs). In contrast to the metallic graphene, and the electrically insulating h-BN, 2D
TMDCs have bandgaps close to that of silicon, which is essential for field-effect transistors
(FETs). TMDCs have seen application due to their feasible electronic, optical, mechanical,
chemical, and thermal properties [6]. In particular, tremendous research interest in the
transition of indirect bandgaps in bulk TMDCs to direct bandgaps in monolayer TMDCs
has been generated.

A further attraction of 2D TMDCs materials has recently been demonstrated when
their planar dimension is reduced below 100 nm to establish the edge effects. As the planar
dimension continues to reduce to several nanometers, the strong quantum confinement
effect enhances the characteristic photoluminescence (PL) of TMDCs, granting them high
utility in many fields. These spatially confined zero-dimensional (0D) TMDCs, known
as quantum dots (QDs), have started to gain attention for applications. In particular,
molybdenum disulfide (MoS2) QDs have been used in the fields of electrocatalysis [7], solar
energy production [8], energy storage [9], advanced electronics [10], chemical sensing [11],
bioimaging [12], photothermal cancer therapy [13], and more. For example, the edges of
MoS2 enable hydrogen absorption similar to platinum and other rare earth metals, making
it a cost-effective alternative for hydrogen evolution reactions (HERs) [7], as the increased
specific surface area and active edges enhance the catalytic activity. Additionally, the direct
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bandgap of MoS2 QDs along with their high biocompatibility have enabled many other
applications.

Research on MoS2 QDs is still in the infancy, but the number of publications on these
QDs per year has risen each year since 2013, as shown in Figure 1. Given recent motivation
to find alternatives to replace rare-earth-based materials [14] and heavy metals (such as
lead and cadmium), the development of less hazardous QDs will be increasingly important.
To support further development of this research area, a comprehensive review of MoS2
QDs is provided here. While articles of this nature have been published previously, none
have had the same focus; some have narrowed their view to biological applications [15],
while others broadened their scope to all 0D TMDCs [16]. In this article, the properties,
synthesis techniques, and applications of MoS2 QDs will be comprehensively reviewed.
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Figure 1. Annual publications on MoS2 Quantum Dots since 2014 from a Web of Science™ search
using search terms “Quantum Dot” AND (“Molybdenum Disulfide” OR “MoS2”). A steady rise is seen,
with the only dip occurring during the 2020 COVID-19 pandemic.

2. Properties

The physical, catalytical, and biological properties of MoS2 QDs are summarized here.
Many of these intrinsic properties are based on those of bulk and monolayer 2D MoS2,
which we have recently summarized [17,18]. Here, property differences of MoS2 QDs as
compared to those of bulk and monolayered MoS2 are discussed.

2.1. Structure

Molybdenum disulfide is a member of the TMDC family. TMDCs take the form of
MX2,w here M is a transition metal and X is a chalcogen. TMDCs have a layered hexagonal
structure with each monolayer being comprised of three stacked layers (X-M-X), and with
intralayer van der Waals bonding occurring between S atoms. MoS2 exists in three different
crystal structures: a trigonal phase (1T), a hexagonal phase (2H), and a rhombohedral
phase (3R). The numbers are representative of the number of layers in the unit cell while
the letters correspond to the crystal symmetry. The 2H and 3R phases are semiconductive
and are suitable for electronic devices. Conversely, the 1T phase is metallic, semistable,
and shows high catalytic properties. The 1T phase of MoS2 can be easily changed to the 2H
phase by heating it to over 300 ◦C [19]. Unless otherwise denoted, our discussion will be
focused on the 2H polytype.

In the 2H form, each Mo atom is covalently bonded to six S atoms, and each S atom
is bonded to three Mo atoms, as seen in Figure 2. The bulk MoS2 unit cell belongs to the
P63/mmc space group and is defined by the hexagonal lattice constant a = 3.16 Å, the out-



C 2021, 7, 45 3 of 41

of-plane lattice constant c = 12.58 Å and the internal displacement parameter z = 0.12 [20].
Noncovalent interactions have been demonstrated to be essential for interlayer bonding.
Figure 3 shows the binding energy of bilayer MoS2 as a function of the out-of-plane lattice
constant. The results of two ab initio density functional theory (DFT) calculations using
Perdew–Burke–Ernzerhof exchange functional are plotted; one using Grimme’s dispersion
corrections (filled black circles) and one without (red squares) [20]. Without the corrections
for noncovalent interactions, the binding energy is found to be positive (no binding), while
the results using the corrections correctly predict MoS2 bonding. This is due to these weak
interlayer bonds that mechanical exfoliation down to a single layer is possible.
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2.2. Electronic Properties

The electrical, optical, and vibrational properties of TMDC nanostructures are highly
dependent on interlayer coupling. Bulk, few- and monolayered MoS2 have been studied
using density functional theory and utilizing the general gradient approximation. It was
shown that bulk MoS2 is an indirect band gap semiconductor (1.2 eV), with the band gap
occurring at the Γ point in the valence band and the point halfway between the Γ and K
points in the conduction band. As the thickness decreased to monolayer, a direct bandgap
of 1.9 eV was formed at the K point. This phenomenon has been written about extensively
in the literature [21–30].

This indirect-to-direct transition can be explained by examining the bonding in bulk
and monolayer MoS2. Based on the density of states data, MoS2 has a filled dz2 valence band
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that overlaps the pz orbitals of the S atoms [24,31–38]. The conduction band is composed
of the degenerate dx2−y2 and dxy orbitals that overlap with the empty, antibonding pz

orbital of the S atoms. Near the K point, the conduction and valence bands are primarily
composed of the dx2−y2 and dxy orbitals of the Mo atoms. At the Γ point, the conduction
and valence bands are primarily composed of the d orbitals of the Mo atoms and the pz
orbitals of the S atoms. The S atoms experience more interlayer coupling than the Mo
atoms as the van der Waals bonds between two S atoms creates the layered structure. As
MoS2 is thinned from bulk to monolayer, the bonding attributed to the pz orbitals of the S
atoms weakens, increasing the gap near the Γ point. Conversely, since the band structure
near the K point is primarily attributed to in-plane bonding, the band structure near the
K point is affected only minimally. By decreasing the lateral size of MoS2, the bonding
attributed to the dx2−y2 and dxy orbitals of the Mo atoms decreases, which would increase
the band gap—this explains why smaller MoS2 QDs have larger band gaps. The changes
in electronic band structure through vertical confinement are documented in Figure 4.
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MoS2 QDs can be classified as n-type semiconductors. Vikraman et al. determined
the semiconductor type by constructing FETs using thin MoS2 QD layers [39]. The I-V
characteristics of the device are shown in Figure 5 and a more in-depth discussion of the
device can be found in Section 4.2.1.
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2.3. Optical Properties

Raman spectroscopy measurements are common for analyzing lower-dimensional
materials. MoS2 has two characteristic peaks at 382.5 cm−1 (E1

2g), due to in-plane optical
vibration of the MO -S atoms in the basal plane, and 407 cm−1 (A1g), due to out-of-plane
optical vibration of S atoms along the c axis [40,41]. Previously, the separation distance
between these peaks has been used to determine the thickness of a MoS2 nanosheet;
however, the distance of these peaks remains mostly invariant with QD size [42]. The
intensity of the two peaks changes with particle size–in particular, the ratio of the E1

2g and
A1g peaks is found to decrease with a decrease in particle size [42].

The effects of quantum confinement on MoS2 QDs are studied using optical absorption
and photoluminescence spectroscopies, as seen in Figure 6 [42]. The absorption spectrum
of MoS2 QDs is defined by four peaks, labeled A–D. The most prominent peaks at ~680 and
~618 nm (labeled A and B, respectively) result from the transition of spin–orbit coupled
electrons from the edges of the conduction and valence bands. The C and D peaks (at ~460
and ~395 nm, respectively) are indicative of a band nesting phenomenon commonly ob-
served in TMDCs. This band nesting feature is facilitated by strong Van Hove singularities,
which results in joint densities of states and higher transition gaps. As the QDs get smaller,
the C peak experiences a blue shift, which is readily explained by the increased band
gap with size reduction. The PL spectrum was found the be broad, and the smaller QDs
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exhibited larger intensities. The PL peak can be deconvoluted into two overlapping peaks
at ~420 and ~500 nm. The peak at 420 nm is the result of transitions between quantized
energy levels, and the 500 nm peak is caused by transitions mediated by defect states. With
increasing size, the ratio of the intensities of the 420 and 500 nm peaks increases, which is
caused by the decreased surface–volume ratio.
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The UV–Vis absorption spectra of MoS2 in both bulk and quantum dot forms were
compared, as shown in Figure 7. The characteristic peaks at 340, 430, 590, 650 nm in the
bulk form are absent from the spectrum of the QDs. The peaks at 590 and 650 nm of the
bulk form can be attributed to the K point of the Brillouin zone, and the remaining peaks
are attributed to transitions from the valence band to the conduction [42–45]. The only
peak shown in the QD spectrum can be explained by the excitonic features of the QDs [46],
and the blue shift can be explained through quantum confinement and edge effects [47].

2.3.1. Size-Dependent Emission

The recombination of excitons in semiconductor crystals results in the emission of a
photon with the same energy as the exciton. In a simple model, the energy of the photon is
the sum of the band gap energy, the confinement energies of the hole and electron, and
the bound energy of the exciton. As the confinement energy depends on the size of the
quantum dot, the emission wavelength is directly related to the dot’s size—the larger the
dot (less confined) the redder it is, and the smaller the dot (more confined), the bluer it
is. Recently, there seems to evidence that the shape of the quantum dot may play a role
in the emission color; however, more testing needs to be carried out to ensure this. The
fluorescence lifetime is also tied to the size of the quantum dot. Since larger dots have
closely spaced energy levels in which the electron-hole pair can be trapped, the fluorescence
lifetime is longer than in smaller QDs [42].
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Figure 7. UV–Vis spectra of MoS2 in both bulk and quantum dot forms synthesized from femtosecond
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2.3.2. Excitation-Dependent Emission

The photoluminescence (PL) of MoS2 QDs has been demonstrated to be dependent
on the excitation wavelength used as seen in Figure 8. There are two primary reasons
for this phenomenon. The first reason comes from the issue of size polydispersity—as
stated above, MoS2 QDs exhibit size-dependent emission. The varying sizes will emit
differently under varying excitation wavelengths, thus creating an excitation-dependent
emission spectrum. It is theorized that monodisperse QDs would exhibit significantly
less excitation-dependent emission. Another reason for this phenomenon is defect level
formation after oxygen adsorbs to the edges of the QD [49].
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2.4. Electrocatalytic Properties

2D materials have attracted massive interest due to their electrocatalytic activities [50].
The unsaturated Mo and S edges of MoS2 can serve as active sites where surface reactions
can be initiated. By reducing these sheets to QDs, the number of exposed edges per surface
area is increased, enabling a higher amount of hydrogen atoms to bond with photocatalysts,
increasing the photocatalytic activity for H2 generation. For MoS2, the turnover frequency
of the edge sites, sulfur vacancies, and grain boundaries have been determined to be 7.5, 3.2,
and 0.1 s−1, and the Tafel slopes to be 66–75, 65–85, and 120–160 mV/dec, respectively [15].
0D MoS2 has also been demonstrated to exhibit high catalysis in oxygen reduction reactions
(ORRs) [51].

2.5. Biological Properties
2.5.1. Cytotoxicity

MoS2 QDs have been found to have excellent biocompatibility. Zhou et al. conducted
methylthiazoleterazolium (MTT) assays in HeLa and RAW 264.7 cells and found high bio-
compatibility in micromolar concentrations [52]. The cell culture was made in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with Fetal Bovine Serum (FBS), penicillin,
and streptomycin at 37 ◦C in a 5% CO2 incubator. Cellular imaging was conducted in
the cell culture medium, and LysoTracker green and carbon QDs (C-dots) were used for
long-term cell imaging. Fluorescence imaging was performed in an inverted microscope
system. It was found that it was not essential for the MoS2 QDs to take help from any other
organic reagents to penetrate the cell wall to reach the perinuclear region, implying that
these QDs are compatible with aqueous biological systems. Research conducted by Xu et al.
used a similar MTT assay on HeLa cell lines and determined that cell viability dropped
by 1% and 12% with MoS2 concentrations of 250 and 2000 µg/Ml [43]. Sweet et al. (2017)
confirmed the high biocompatibility of MoS2 QDs by conducting MTT assays on Lymph
Node Carcinoma of the Prostate (LnCaP) and Cultured Human keratinocyte (HaCaT)
cells incubated in anti-prostate-specific membrane antigen (PSMA) antibodies conjugated
with MoS2 QDs and Trypan Blue [53]. These results showed a biocompatibility of 98%.
Furthermore, reactive oxygen species (ROS) assays were performed on the HaCaT cells.
Cell permeable fluorogenic probes were excited at 380 nm for 7 h, and no increase in
intracellular ROS was observed, again indicating high biocompatibility. Others have also
performed cytotoxicity tests to prove the biocompatible nature of MoS2 QDs [54–58].

2.5.2. Fluorescence Stability

When a biological cell detects a foreign substance such as nanoparticles or organic
dye, it works to pump those out. Since researchers need to monitor cells for several days,
retaining fluorescence markers on cells is required. Additionally, diffusion of the dyes
might be responsible for the reduction in the microscopic contrast. Therefore, the reactivity
of MoS2 QDs with bio-thiols was investigated to determine the long-term fluorescence
properties [29]. Phenyl isothiocyanate labeled cysteine (PITC-Cys) MoS2 QDs were mon-
itored using a self-assembled capillary electrophoresis system. Long-term fluorescence
stability at room temperature was attributed to the covalent locking of the QDs to the
thiols. The ability of MoS2 QDs to react with intracellular thiols such as proteins, amino
acids, etc., helps retain a long-term fluorescence in the live cells. The author cultured HeLa
cells with MoS2 dots, LysoTracker green, and C-dots for 48 h. Result suggests that MoS2
dots could retain their luminescence for days, whereas LysoTracker green faded in 2 h and
C-dots faded in 48 h. Supporting data with the MoS2 labeled neuronal Pheochromocytoma
(PC12) cells and the unlabeled mouse macrophage RAW 264.7 cells, also show excellent
intracellular retention for 24 h, and proving the long-term fluorescence nature of MoS2 dots.

3. Synthesis Techniques

Significant research efforts have been directed towards the development of effective
strategies for the synthesis of MoS2 QDs. As with most nanomaterials, there is the di-
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chotomy of “bottom-up” and “top-down” synthesis methods. Top-down methods begin
with bulk MoS2 and sculpt it to the desired size; common methods include mechanical
exfoliation and solvothermal techniques. In contrast, bottom-up methods begin with pre-
cursors that react to form the MoS2 QDs, with common techniques being hydrothermal
synthesis and chemical bath deposition.

3.1. Top-Down

Since the dawn of 2D materials, the mechanical exfoliation of nanomaterials has been
one of the more popular top-down techniques due to its ease of execution. Microme-
chanical cleaving—in particular, the Scotch Tape method [59]—has proven to be effective
for isolation of monolayer 2D materials; however, this method has difficulty producing
the small area domains characteristic of quantum dots. Leading methods of mechanical
exfoliation heavily rely on the sonication of bulk MoS2. Other popular top-down methods
include solvothermal synthesis, electrochemical synthesis, and thermal ablation.

3.1.1. Sonication-Assisted Exfoliation

MoS2 nanosheets can be readily obtained through the sonication of MoS2 powders.
Energetic ultrasonic waves can break bonds between and within sheets of MoS2 through
an acoustic cavitation process. The sound waves introduce pressure variations within the
material, forming high-temperature, high-pressure cavities that grow until they collapse.
The collapse of these cavities carries enough energy to separate sheets and break interlayer
bonds. In a typical experiment, MoS2 powder is added to a solvent and sonicated for
several hours to separate sheets. Then, the solution is often (but not always) refluxed to
further cleave the material into smaller area domains. Finally, the solution is centrifuged
and the supernatant is separated. This process is shown schematically in Figure 9.
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Figure 9. Schematic representation of the synthesis process to prepare MoS2 and WS2 quantum dots by using a liquid
exfoliation and solvothermal treatment approach. Reproduced with permission from [43]. Copyright WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim, 2015. Many solvents have been tested for their suitability for sonication-assisted exfoliation,
with successes including sulfuric acid [60], Dimethylformamide (DMF) [43,51,61], N-Methyl-2-pyrrolidone (NMP) [62], N,N′-
Dimethylethyleneurea (DMUE) [43], isopropyl alcohol (IPA) [63], and ethylene glycol [64,65]. Deionized (DI) water, ethanol,
and acetone have also been tested; however, they were unable to yield MoS2 QDs [43]. The preparation of MoS2 QDs
through ultrasonic exfoliation has been greatly studied, and prominent results are reported in Table 1.
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Table 1. Methods of sonication-assisted synthesis of MoS2 QDs and experimental parameters.

Solvents Notes Emission (Excitation) Size Reference

Ethylene Glycol

Natural molybdenite suspended in the solvent and sonicated
in a pressurized ultrasound reactor for 20 min, and then

refluxed at 193 ◦C for 24 h. Dispersion filtered using
Pragopor membrane.

440 nm (350 nm) 4–70 nm, 1 nm thick [65]

Sulfuric Acid
MoS2 powder suspended in sulfuric acid and sonicated at

65 ◦C for 20 h. The solution was centrifuged for 30 min,
dialyzed, and filtered.

425 nm (300 nm) 3.5 nm, 1–1.5 thick [60]

DMF, NMP, DMEU, DI water,
ethanol, acetone

Six solvents were tested. MoS2 powder suspended in a
solvent and sonicated for 3 h. The top two-thirds were

decanted and refluxed for 6 h below the solvent’s boiling
point. The solution was allowed to sit for several hours, then
centrifuged for 5 min. The supernatant was evaporated under

vacuum, and the QDs were resuspended in DI water.

DMF: 465 nm (390 nm)
NMP: 455 nm (380 nm)

DMF: 3.3 nm (avg.), 1.2 nm thick
NMP: 3.4 nm

DMEU: 3–4 nm
[43]

NMP

MoS2 powder dispersed in the solvent and sonicated it
continuously in an ice bath for 3.5 h before tip sonicating it for
another 3.5 h. The dispersion was left undisturbed overnight

and then centrifuged for 90 min.

575 nm (400 nm) 0.5–4.0 nm (2.5 nm avg.) [66]

Liquid Nitrogen + IPA

Heated MoS2 powder in a quartz boat to 340 ◦C under
ambient air and maintained it for 3 min. Immediately after, it
was quenched in a Dewar flask of liquid nitrogen. Once the
liquid nitrogen was fully evaporated, quenched MoS2 was

dispersed in IPA and sonicated for 30 min using a cycle of 7 s
“on” and 3 s “off”. The solution was centrifuged for 30 min.

440 nm (360 nm) 1.41 nm (avg.), 1.5 nm thick [67]
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Other modified techniques assist the sonication by carrying out thermal pretreat-
ments of the bulk MoS2. For example, Baby et al. heated MoS2 powder to an optimized
temperature of 340 ◦C before immediately quenching the powder in liquid nitrogen [67].
The temperature difference forms cracks in the bulk sample and causes the separation of
exfoliated layers.

3.1.2. Ion Intercalation-Assisted Exfoliation

A common way to assist exfoliation by sonication involves the intercalation of ions
(Li+ and Na+ being the most common) between sheets of layered materials (pictured in
Figure 10). These methods typically result in the 1T polytype of MoS2 being produced,
which is not ideal for electronic applications due to its metallic nature; however, additional
heat processing can cause a transition to the 2H phase [68].

For lithium intercalation, Qiao et al. immersed MoS2 powder in a n-butyl lithium
(n-BuLi)/hexanes solution for 2 days in an argon-filled flask [69]. LixMoS2 was retrieved
by filtration and washed repeatedly with hexanes. Immediately afterwards, the LixMoS2
was dispersed in water and sonicated. Hydrochloric acid was added following sonication
to flocculate the products, and then the mixture was washed with water until the pH was
neutralized and then centrifuged several times. The flocculation was dried in a vacuum
drying oven, and the whole process was repeated two or three times. Following the final
cycle, the remaining lithium hydroxide was filtered out using a dialysis bag, the remaining
solution was centrifuged, and the product was annealed in a bath sonicator at 90 ◦C. The
produced QDs had a size range of 1–5 nm with an average around 3 nm, with the vast
majority having a thickness of around 1.0 nm.

In the similar work carried out by An et al., MoS2 powder was dissolved into n-hexane,
and n-BuLi was added to the solution [68]. The solution was stirred for 12 h, inserting Li+

ions between layers, consequently resulting in the insertion of electrons into the host phase,
causing a transition from the 2H to the 1T phase. Following, the solution was diluted with
DI water and irradiated with an optimized femtosecond laser for 30 min to transition the
QDs back to the 2H phase. The resulting QDs had a size of ~10 nm.

Similar methods utilizing Na+ intercalation are also effective. Zhou et al. used the ion
intercalation method using Na+ ions by mixing MoS2 powder with sand [52]. The mixing
tube was vacuum-sealed, heated to 160 ◦C and maintained for 12 h to induce intercalation.
The intercalated sample was exposed to ambient air before being sonicated. The yellow
solution was filtered through coarse paper to collect unexfoliated MoS2. The collected
suspension was further concentrated using pressure distillation and then centrifuged. The
remaining Na ions were removed through a 3-day dialysis process. The yield of MoS2 QDs
from bulk was roughly 11% and the QDs were 2.0–5.5 nm in size.

3.1.3. Electrochemical Synthesis

A mechanism for electrochemical synthesis has been proposed by Gopalakrishnan et al. [44].
The generation of free radicals triggers the initial cleavage, which leads to further exfoliation
of the material. This is similar to the posed mechanism for the electrochemical synthesis of
graphene QDs and nanoribbons. When the highly diluted electrolytes have a DC voltage
applied to them, hydroxl and oxygen free radicals are formed. The MoS2 anode swells due to
the incorporation of the anions TFSI- (bis(trifluoromethane)sulfonimide) and Cl−3, and the MoS2
begins to dissolve in the electrolyte.

Gopalakrishnan et al. demonstrated electrochemical etching to be capable of size-
controlled synthesis of MoS2 QDs. MoS2 disks with a diameter of 1 cm were made from com-
mercial MoS2 powder. A constant DC potential was applied across these MoS2 disks in a
two-electrode cell in different concentrations of aqueous Lithium bis(trifluoromethanesulfonyl)
imide (LiTFSI) or 1-Butyl-3-methylimidazolium chloride ([BMIm]Cl). The reaction mixture
was collected after 3 h and was then centrifuged. The synthesis method is schematized in
Figure 11. The LiTFSI solution, at concentrations of 0.1 and 1 wt%, provided particles with
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sizes of 2.5 and 4.6 nm, respectively. Using the same concentrations of [BMIm]Cl yielded
larger particles with sizes of 2.8 and 5.8 nm, respectively.
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Figure 11. A schematic representation of the electrochemical exfoliation of MoS2 pellets in LiTFSI/[BMIm]Cl-based aqueous
electrolyte. Generated hydroxyl and oxygen free radicals trigger the initial cleavage of MoS2 sheets. As time progresses,
the MoS2 anode swells by the incorporation of TFSI− anions and MoS2 QDs dissolve in the electrolyte. Reproduced with
permission from [44]. Copyright The Royal Society of Chemistry, 2015.

Li et al. developed a method for synthesizing graphene oxide and MoS2 QDs using an
electro-Fenton reaction [71]. In the electro-Fenton process, the electrochemical generation of
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H2O2 occurs at the cathode as follows—O2 + 2e− + 2H+→H2O2. With the addition of ferrous
ions, hydroxyl radicals are formed as follows—Fe2+ + H2O2 + H+→ Fe3+ + OH + H2O, and
Fe3+ + e−→ Fe2+.

A solution with MoS2 nanosheets and FeSo4 was added to the electrolytic cell. The
pH of the mixture was adjusted to 3 by slowly adding single drops of sulfuric acid. A
potential of −0.5 V was applied and the solution was continuously saturated with O2 by
bubbling compressed air. The mass transfer was ensured by continuously stirring the
solution using a magnetic bar stirrer. The reaction was allowed to continue for one hour
before the products were collected and dialyzed in sulfuric acid to remove iron ions and
other impurities. An additional day of dialysis in ultrapure water was used to ensure the
removal of sediments induced by the hydrolysis of iron. The as-prepared QDs ranged from
3 to 8 nm laterally and most were below 2 nm thick, indicating mostly bi- and monolayer
quantum dots.

3.1.4. Thermal Ablation

Chemical vapor deposition (CVD) is a common technique used to synthesize 2D
materials; however, it has had minimal success with fabricating quantum dots. Park et al.
demonstrated a method to convert CVD-grown MoS2 to MoS2 QDs using the same CVD
equipment [72]. MoS2 nanosheets were grown on a SiO2/Si substrate using conventional
CVD techniques. Following the growth of the nanosheets, the substrates were placed in
a quartz tube and heated in a tube furnace to 500 ◦C in ambient air and maintained for
several days. The sizes of the MoS2 domains were decreased from µm to nm through this
annealing process, and the density of QDs on the substrate was determined to be 1011/cm2;
AFM images of these QDs can be found in Figure 12.
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3.1.5. Microwave Heating

Lu et al. pioneered a cost-effective, convenient, and eco-friendly way of synthesizing
MoS2 QDs and histidine-doped MoS2 QDs through a microwave heating process [73]. In
their work, MoS2 nanoflake solution, hydrogen peroxide, ethanol, and a stir bar were
loaded into a microwave tube with the frequency set to 2445 MHz. The tube was heated
to 200 ◦C and maintained for 30 min. The reaction solution was allowed to cool to room
temperature and was left undisturbed for one day. The solution was filtered with a syringe
filter (0.22 µm) and was then further purified by dialysis for 48 h. For the histidine-doped
QDs, the same procedure was followed with the alteration that L-histidine powders (molar
mass 155.157 g mol−1) were also added to the tube before heating.

3.2. Bottom-Up

The top-down approach of synthesizing MoS2 QDs is associated with some postpro-
cess treatments such as centrifuging, filtration, and dialysis. The bottom-up approach is
atom-by-atom manner using molybdenum and sulfur precursors giving respective ions to
form MoS2 QDs.

3.2.1. Hydrothermal Synthesis

Techniques of hydrothermal synthesis use high-temperature aqueous solutions and
high vapor pressures to crystallize precursors into the desired material. These techniques
typically use low-cost equipment (often only a stainless-steel autoclave and a furnace).
One downside of hydrothermal methods is that they can produce by-products that can be
difficult to separate from the desired product. Leading methods of hydrothermal synthesis
of MoS2 QDs use small sulfur-containing molecules to act as reduction agents to reduce
molybdate (MoO4).

For one example, Wang et al. synthesized MoS2 QDs hydrothermally by reacting
sodium molybdate (Na2MoO4 •2H2O) and glutathione (C10H17N3O6S) [74]. Sodium molybdate
was dissolved in water and sonicated. The pH of the solution was adjusted to 6.5 using
0.1 M HCl. Glutathione and additional water were added to the mixture and sonicated. The
mixture was transferred to a Teflon-lined stainless-steel autoclave and reacted at 200 ◦C for
24 h. After being allowed to cool naturally, the solution was centrifuged at 9000 rpm for
5 min and the supernatant containing the MoS2 QDs was collected.

Other researchers have used a similar process using L-cysteine [75], dibenzyldisul-
fides [76], thiourea [77], sodium sulfide [78], thioglycolic acid [79], and N-acetyl-l-cysteine [69], as
summarized in Table 2.

Table 2. Hydrothermal synthesis of MoS2 quantum dots with various precursors.

Precursors Emission (Excitation) Size Reference

Sodium molybdate + Glutathione 425 nm (340 nm) 2.7 ± 0.3 nm (avg.) spherical [74]

Sodium molybdate + L-cysteine 402 nm (308 nm) 3.5 nm, 1–1.5 thick [75]

Sodium molybdate + Dibenzyl-disulfides 280 nm (205 nm)
DMF: 3.3 nm (avg.), 1.2 nm thick
NMP: 3.4 nm
DMEU: 3–4 nm

[75]

Sodium molybdate + Thiourea 406 nm (250 nm) 0.5–4.0 nm (2.5 nm avg.) [77]

[(NH4)6Mo7O24 • 4H2O] + Sodium Sulfide 1.41 nm (avg.), 1.5 nm thick [78]

Molybdenyl acetylacetonate + Thioglycolic
Acid + Sodium Sulfide [79]

(NH4)6Mo7O24 + Thiourea + N-acetyl- l-cysteine 480 nm (380 nm) 2.1 nm (avg.) < 0.9 nm thick [69]

(NH4)2MoS + N2H4 400 nm (330 nm) 2.8 nm (avg.) 1.4–2.5 nm thick [80]

(NH4)2MoS + Oleylamine 575 nm (500 nm) 4.5 ± 0.5 nm (avg.) 3 nm thick [81]
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3.2.2. Chemical Bath Deposition

Vikraman et al. developed a low-cost and simple chemical bath deposition (CBD)
process to synthesize atomic layers of MoS2 [39]. A precursor bath was mixed using
10–30 mM ammonium molybdate and 0.5 thiourea. HCl was used to maintain the pH of the
bath at 10.0 ± 0.1. The reaction took place in the presence of 1.0 M hydrazine hydrate. The
deposition time was varied between 2 and 10 min to control the thickness of the layers. The
temperature of the bath was maintained at 90 ◦C. The solution pH, thiourea concentration,
bath temperature, and hydrazine concentration were optimized and fixed at the values
specified above. Following deposition, the substrates were annealed in an S environment to
improve the crystallinity. The annealing took place at 450 ◦C for 1h with a carrier gas flow
rate of 100 sccm at a constant pressure of 2 × 10−2 Torr. The reaction proceeds as follows:

1
7
(NH4)6Mo7O24 · 4H2O+ 2CH4N2S+

6
7

HCl
N2 H4→ MoS2 +

6
7

NH4Cl + 2CO2 + 2N2 + 5H2

4. Applications

Application of MoS2 QDs can be summarized into four major areas: (1) energy,
electronics, chemical sensing, and biomedicine, as schematically illustrated in Figure 13.
These applications will be discussed in the forthcoming subsections.
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4.1. Energy
4.1.1. Electrocatalysis

Hydrogen is a promising candidate to replace fossil fuels due to its high calorific value
(~143 kJ/g) and as the only combustion by-product is water. Of the various methods to
produce H2, the photocatalytic splitting of water is widely regarded as the greenest as the
process can be carried out at room temperature and atmospheric pressure under light radi-
ation. The redox reaction begins when electrons in the valence band of the photocatalysts
are excited to the conduction band via photoexcitation. These electrons are subsequently
consumed to produce H2. Thus, it is essential to develop efficient photocatalysts with
suitable redox potentials, broad absorption, and high photostability. Traditionally, noble
metals such as Pt, Au, and Ag have been used [84–88]; however, these materials are scarce
and expensive. It is thus essential to develop efficient photocatalytic systems free of costly
noble metals. An ideal replacement would possess a high exchange current density, low
Tafel slope, low overpotential, and catalytic stability.
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The free energy of atomic hydrogen bonding to MoS2 edges was found to be close to
that of conventional platinum. The electrocatalytic performance of MoS2 was found to be
tied to the number of exposed active sites, and thus the exposure of active sites (i.e., the
increase in surface–volume ratio) results in improved performance. A summary of the use
of MoS2 QDs for electrocatalysis can be found in Table 3.

Table 3. Use of MoS2 QDs in HER.

Material Overpotential (mV) Tafel Slope (mV/dec) Reference

MoS2 QDs in Aerogel 53 41 [89]
MoS2 QDs between MoS2 Nanosheets 190 74 [66]

MoS2 QDs on Glassy Carbon 210 60 [44]
MoS2 QDs 140 66 [48]

MoS2 QDs on Graphene Flakes 136 141 [90]
MoS2 QDs 160 59 [76]

Fe-doped MoS2 QDs 121 [91]
Li-doped MoS2 QDs 109 [91]

Mg-doped MoS2 QDs 91 [91]
MoS2 QDs on Au 130 94 [39]

MoS2 QDs 120 115 [44]

A promising low-cost and scalable approach to hydrogen evolution using MoS2 QDs
and graphene sheets was proposed by Najafi et al. [90]. The study used both the 1T
and 2H polytypes of MoS2. The HER electrocatalytic activity of these graphene/MoS2
QD structures were tested in 0.5 M H2SO4 on a glassy carbon electrode. The overpo-
tential at 10 mA/cm2 cathodic current density of the graphene/2H MoS2 QD structures
was lower than that of the 2H MoS2 flake structures (~60 mV), the 1T MoS2 structures
(~235 mV) and the graphene/1T MoS2 flake structures (~151 mV). The Tafel slopes of the
2H MoS2 flakes, 2H MoS2 QDs, and 1T MoS2 flakes were reported to be ~145, ~98, and
~78 mV/dec, respectively. This further demonstrates that, for the 2H MoS2 flakes, the
limited number of edge sites of flakes compared to quantum dots lowers electrocatalytic
performance. The Tafel slope of the 1T MoS2 flake structures further facilitates the posed
Volmer–Heyrovsky mechanism. The Tafel slopes (shown in Figure 14) of the graphene 2H
MoS2 flake, graphene 2H MoS2 QD, and graphene 1T MoS2 flake structures were reported
as ~163, ~141, and ~82 mV/dec, respectively—demonstrating increases of 0.13%, 0.44%,
and 0.05%, respectively.
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Figure 14. (a) Polarization curves of 2H-MoS2 flakes, 2H-MoS2 QDs, and 1T-MoS2 flakes on glassy carbon electrode (solid
lines) and graphene/2H-MoS2 flakes, graphene/2H-MoS2 QDs and graphene 1T-MoS2 flakes (dashed lines). Polarization
curves of glassy carbon and graphene flakes are also shown for comparison. (b) Tafel plots of the same MoS2-based
electrodes are shown in panel (a). Linear fits (red lines) and the corresponding Tafel slop values are reported. Inset:
photograph of a representative flexible hybrid graphene flakes/2H-MoS2 QD electrode. Reproduced with permission
from [90]. American Chemical Society, 2017.
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4.1.2. Solar Cells

Two-dimensional MoS2 films have previously found application in solar cells as
electron and hole transport layers (ETL and HTL, respectively) [92]. With this in mind and
with the increasing popularity of QD-based photovoltaic technology, it is without great
surprise that MoS2 QDs have begun seeing applications in solar cells. A brief summary of
the use of MoS2 QDs in solar cells can be found in Table 4.

Table 4. Uses of MoS2 QDs in solar cell technology and reported power conversion efficiencies.

Design PCE (%) Reference

MoS2 on F-doped SnO2 as a Counter Electrode 3.69 [93]
MoS2 QDs/InSe–FET 3.03 [94]

MoS2 QDs with UV–ozone on MoS2 Nanosheets 8.66 [95]
MoS2 QDs on Graphene Flakes 20.12 [82]

Organic–inorganic halide perovskite solar cells (PSCs) have gained a lot of attention
from the photovoltaic community as high power conversion efficiency (PCE) can be ob-
tained through low-cost, low-temperature processing with scalable potential [96–102]. The
theoretical PCE limit of PSCs has been determined to be ~31%, with a practical value of
29.5% [103,104]. Two-dimensional materials are emerging in interface engineering to boost
the PV performance. 2D materials offer useful electronic and optoelectronic properties that
are tunable via morphological modification. Najafi et al. reported a CH3NH3PbI3 PSC as
shown in Figure 15, with a PCE exceeding 20% that used MoS2 QDs with functionalized
reduced graphene oxide (f-RGO) hybrids as the HTL and active buffer layer (ABL) [82].
The MoS2 QDs exhibited both hole-extracting and electron-blocking properties, making
them ideal for the HTL and ABL. The effects of quantum confinement increase the optical
band gap of MoS2 from 1.2 eV in bulk to >3.2 eV for QDs, and this raises the minimum
energy of the conduction band of MoS2 above the lowest unoccupied molecular orbital
(LUMO) of methylammonium lead iodide (MAPbI3), which in turn blocks electron injection
in the HTL. The creation of MoS2: f-RGO hybrids is necessary for a homogenous HTL.
Reduced graphene oxide (RGO) was chosen to “plug the pinholes” in the MoS2 QD films
for two reasons: the first is that the (3-mercaptopropyl)trimethoxysilane (MPTS) molecules ef-
fectively anchor onto RGO, and the second being that exposed thiol moieties enable f-RGO
to participate in S-S van der Waals physisorption and/or S-vacancy passivation/filling.
As shown in Figure 16, the tested device exhibited a PCE of up to 20.12% with an average
PCE of 18.8%. Najafi et al. speculate that “graphene interface engineering” will play a
significant role in the future of efficient and stable perovskite solar cells [82].

The organic cations used in PSCs are hygroscopic and have led to device instabil-
ity. In addition to PSCs, bulk heterojunction (BHJ) organic solar cells (OSCs) have also
been at the forefront of photovoltaic research due to their low-cost production, flexi-
bility, and light weight. A typical BHJ cell is composed of electrodes to control the
charge flow, an active layer to absorb light, and interfacial layers for the extraction of
charge carriers. Traditionally, Poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) (PE-
DOT:PSS) has been used as the HTL or hole extraction layer (HEL) in OSCs. However,
PEDOT:PSS’s acidity [105] and hygroscopicity [106] limit device stability and practical
application. Recently, 2D materials have seen application as HEL in BHJ due to their
lamellar and electrical structures [107–119]. In the work carried out by Xing et al., UV–
ozone treated MoS2 (O-MoS2) with a tunable work function was used as an efficient HEL
material for high-performance BHJ OSCs [95]. The reported OSCs used different donor ma-
terials, Poly(3-hexylthiophene-2,5-diyl) (P3HT) and Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)
benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b] thiophene-)-2-
carboxylate-2-6-diyl)] (PTB7-Th), and the PCE for the PTB7-Th cell was 8.7%, which is slightly
higher than the PCE for OSCs with PEDOT:PSS as the HEL.
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Figure 15. (a) Illustration of the mesoscopic MAPbI3-based PSC exploiting MoS2 QDs:f-RGO hybrids
as both the hole transport layer and the active buffer layer. (b) Energy band diagram of the materials
used in the assembled sell. (c) Current and predicted PCE evolution for PSCs, demonstrating the
synergistic potential of graphene interface engineering. Reproduced with permission from [82].
American Chemical Society, 2018.
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Hybrid structures-based phototransistors have been used to achieve high-performance
optoelectronic devices. Ulganathan et al. fabricated a phototransistor with InSe nanosheets
decorated with MoS2 QDs (see Section 4.2.2) and used the device as the active layer in a
solar cell [94]. A schematic representation of the device can be found in Figure 17. In this
device, TiO2 was used at the ETL, and 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-
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spirobifluorene (Spiro-OMeTAD) was used as the HTL. The PCE of this hybrid solar cell was
determined to be 3.03%.

C 2021, 7, x FOR PEER REVIEW 20 of 43 
 

 
Figure 17. (a) Schematic and (b) band structure of the solar cells using InSe nanosheets decorated 
with MoS2 QDs and (c) the current-voltage characteristic. Reproduced with permission from [94]. 
Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019. 

  

Figure 17. (a) Schematic and (b) band structure of the solar cells using InSe nanosheets decorated
with MoS2 QDs and (c) the current-voltage characteristic. Reproduced with permission from [94].
Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019.



C 2021, 7, 45 20 of 41

4.1.3. Energy Storage

Conventional lithium-ion battery (LIB) technology uses graphite-based materials as
the anode, but the low capacity of graphite (~372 mA h g−1) prevents current LIBs from
seeing application in electric vehicles and load leveling of power grids. To address this, the
search for novel anode materials broadened, revealing that metal sulfides are capable of
achieving high reversible capacity and long cycle life [120,121]. MoS2 is readily intercalated
by Li+, enabling a lithium storage capacity that is 80% higher than graphite (~670 mA g−1).
Due to its low electrical conductivity, high volume change during lithiation, and slow
lithium storage kinetics, MoS2 has not been readily applied as a LIB anode material.
However, when MoS2 is combined with graphene nanosheets, the nanostructure results in
a shortened charge transport path and a high strain tolerance, which shows promise for LIB
applications. Wang et al. studied MoS2 nanoparticle-bonded graphene sheets as LIB anode
materials [9]. The researchers began with synthesizing MoO2 QDs onto graphene sheets,
and then used a sulfide treatment to convert the MoO2 to MoS2. These MoS2/graphene
composites were found to have a higher capacity of 1497 mA h g−1 at 100 mA g−1 with
remarkable rate retention and cycling stability.

In addition to LIB, supercapacitors are a promising candidate for flexible energy
storage devices due to their high durability, quick charge–discharge ability, long cycling
stability, and high power density [122–128]. Supercapacitors using TMDCs (specifically
MoS2) and conducting polymer polyaniline (PANI) have recently been used [129–133]. MoS2
sheets easily aggregate due to the interlayer van der Waals interactions, so it is necessary
to use other materials to improve dispersion. PANI hydrogels exhibit high electrical
conductivity, high porosity, and high specific surface area. In a recent work, Das et al.
synthesized a 3D nanostructured conductive PANI MoS2 hydrogel for the fabrication of a
high energy density supercapacitor device [134]. The prepared gel had a high capacitance
value of 791 F/g at 1.0 A/g in a three-electrode system. Using a similarly prepared gel in a
two-electrode all-solid-state device, the capacitance remained relatively high at 331.2 F/g
at a current density of 1.0 A/g. This hybrid xerogel was demonstrated to have a high
energy density of 29.4 Wh/kg at a power density of 398 W/kg and high cyclic stability of
84.2% retention after ten thousand cycles. The all-solid-state device’s practical utility was
demonstrated by powering various LEDs.

4.2. Electronic and Optoelectronic Devices
4.2.1. FETs

Transistors fabricated with MoS2 monolayers demonstrate excellent on/off ratios and
high mobilities, making them suitable candidates for next-generation transistors [135–140].
Additionally, atomically thin MoS2 crystals have been shown to exhibit mechanical and
optical properties that make them useful for backplane thin-film transistors for flexible,
transparent displays [141].

Vikraman et al. fabricated bottom-gated 2D FETs from MoS2 QDs [39]. The device
structure and contacts were accounted for by patterning contact points using photolithog-
raphy and reactive ion SF6/O2 plasma etching. Source and drain electrode patterns with
Ti/Au (10/50 nm) were deposited on top of the MoS2 film via e-beam evaporation. After
forming the electrode contacts, the device was annealed at 200 ◦C for 2 h in a vacuum
tube under 100 sccm Ar flow to remove residual photoresist and to reduce the contact
resistance. The electrical properties were measured using a two-probe method at room
temperature in a vacuum chamber. The MoS2 QD devices exhibit typical n-type behavior.
The linear IDS-VDS characteristics can be attributed to the reduced charge injection Schottky
barriers. At VDS = 1 V, the on/off ratio was measured at ~105, the transconductance was
measured at ~2.49 × 10−8 S, and the field-effect mobility was measured at 0.21 cm2V−1s−1.
These values are comparable to monolayer MoS2 devices made by more conventional and
expensive methods [142–144].
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4.2.2. Photodetectors and Phototransistors

Phototransistors based on hybrids of 2D materials have recently been demonstrated
to have high detection sensitivity and wide wavelength response, providing potential
for frontier photodetector technology. As shown in Figure 18, Ulganathan et al. com-
bined MoS2 QDs with indium selenide nanosheets (henceforth denoted as MoS2/InSe) and
used the hybrid nanostructure as the conducting channel of a high-performance broad-
band photodetector [94]. In an earlier study [145], Ulaganathan et al. demonstrated the
photoresponsitivity of an InSe FET to be 12.3 A W−1. The MoS2/InSe device exhibited
photoresponsivity almost one thousand times as high, recorded at 9304 A W−1. This
photoresponsivity enhancement was studied in the NIR and visible regions. Under this
radiation, the junction interfaces and trap states of the MoS2/InSe FET capture only one
type of charge carrier to delay the recombination of electron-hole pairs in the wake of
photoabsorption. As only one type of carrier can be captured, the other charge carriers
have prolonged lifetimes and can make several transits in the InSe channel, leading to a
high photoconductive gain. Additionally, the photoinduced electrons in the MoS2 QDs can
transit to the InSe channel as additional charge carriers.
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Figure 18. (a) Schematic illustration of the InSe-FET device. (b) AFM image of the conducting channel of an InSe-FET
device. Inset shows the thickness of the InSe nanosheets. (c) Schematic illustration of a hybrid MoS2/InSe-FET device
under photoresponsive measurements. (d) The ISD-VSD curve of the InSe-FET and MoS2/InSe-FET devices in both dark and
illuminative states. Inset demonstrates good contact between the InSe channel and electrodes. Reproduced with permission
from [94]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019.

π-Conjugated polymers have gained interest in semiconductor devices due to their
tunable conductivities and engineerable band gaps [146–151]. P3HT is one such polymer
that is a p-type semiconductor and hole-transport material for optoelectronic applica-
tions [143–151]. A major setback with P3HT is that its photoconductivity has proven
difficult to tune. In their 2018 work, Nair et al. demonstrated a method of controllably con-
fining monodisperse MoS2 QDs in P3HT fibers, leading to the enhancement and tunability
of the photoconductivity of the QD-P3HT hybrid [152]. The encapsulation of MoS2 QDs in
the P3HT fibers assists with defect healing of the fibers, and the charge transfer process
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introduced by the QDs results in a tunable photoconductivity. The increased lifetime of
charge carriers leads to an increased hole concentration in the P3HT fibers, consequently
leading to a higher excited state population in the QDs. The combination of these effects
provides enhanced fluorescence in the QDs, and enhanced photoconductivity in the QD-
P3HT hybrid. The maximum photoconductivity of this hybrid occurred under an excitation
wavelength of 360 nm and corresponds to an 82% enhancement of electric conductivity in
comparison to pristine P3HT, as shown in Figure 19. This photoconductivity enhancement
is of high interest in organic photovoltaics and optoelectronics as it paves the way for higher
efficiency P3HT solar cells, and in a broader view, this work provides new opportunities
for hybrid low-dimensional material design [152].
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Figure 19. (a) Wavelength-dependent I-V measurements on the QD-P3HT hybrid with excitation
from 310 to 360 nm (in increments of 10 nm); (b) wavelength-dependent emission from 360 to 390 nm
(in increments of 10 nm); (c) percentage change in photoconductivity (with respect to dark conditions
for that material) in P3HT fibers, QD-P3HT and NS hybrid as a function of wavelength; (d) high
magnification TEM showing MoS2 QDs embedded inside a P3HT fiber. Reproduced with permission
from [152]. Copyright The Royal Society of Chemistry, 2018.

4.2.3. LEDs

QD-LEDs have been an attractive area of research due to their potential uses as low-
cost backlighting for LCD displays with good color saturation and white lighting with
a high color rendering index. QD-LEDs have high color purity (narrow full-width, half-
maximum), easily processable solutions, and good stability. As the wavelength of emitted
light is controlled by the size of the QDs, it is possible to synthesize QDs that cover the
whole visible light spectrum. White LEDs (WLEDs) consist of RGB QDs and they are
attractive due to their small size, light weight, high efficiency, low power consumption, and
long working lifetime [153–155]. Conventional QD-WLEDs use cadmium-based molecules,
and due to the toxicity of cadmium, new QD emitters are needed for mass adoption of
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QD-LED technology. Recently, researchers have made progress fabricating QD-LEDs with
MoS2 QDs [73,156].

Histidine-doped MoS2 QDs exhibit a broadband emission property with emission
intensities much higher than undoped pristine MoS2 QDs. In the work by Lu et al., the
authors fabricated a proof-of-concept histidine-doped MoS2 QD-WLED [73]. PEDOT:PSS
solutions were spin-coated onto ITO-coated glass at 2000 rpm for 30 s and baked at
140 ◦C for 30 min before depositing the next layer. The histidine-doped MoS2 QDs were
similarly spin-coated at 2000 rpm for 30 s and baked at 80 ◦C for 30 min. The TPBi (2,2′,2′′-
(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) and Ag electrode was deposited using
a thermal evaporation system through a shadow mask under vacuum at a pressure of
1.5 × 10−5 torr. The final device had an area of 0.05 cm2 defined by the overlapping area of
the ITO and Ag electrode. The device exhibited strong broadband white-light emission,
with Commission Internationale de l’Eclairge chromaticity coordinates of (0.30, 0.36).

Biopolymer-based materials have recently been used in organic LEDs (OLEDs) [156–158].
When embedded in DNA hydrogels, QDs can act as pseudo-cross-linkers that enhance the
gel strength and the melting temperature. As shown in Figure 20, Pandey et al. embedded
MoS2 QDs in a DNA hydrogel matrix to fabricate OLEDs [156]. The formed nanocomposite
hydrogels exhibited enhanced gel strength and higher melting temperatures. Furthermore,
the gel exhibited blue fluorescence. As shown in Figure 21, the device achieved a maximum
luminance of 37,420 cd/m2 and exhibited a current efficiency of 19 cd/A. The systematic
enhancement of the properties of polyanionic hydrogels caused by colloidal particles of the
same polarity is poorly understood; however, these hybrid materials have great potential
due to the unusual properties demonstrated here.
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Silicon-based optoelectronics are limited due to silicon’s indirect band gap [159],
and so III-V group materials are predominantly used in these devices. However, III-V
technologies have difficulty coupling to silicon platforms and they suffer from heat dis-
sipation [160]. It would prove useful to develop LEDs that could be readily integrated
into existing silicon electronics. Shrivastava et al. incorporated MoS2 QDs with porous
silicon (PS) to enhance the electroluminescence properties of PS nanostructures [160]. The
PS/MoS2 QD nanostructures exhibit excitation-dependent bands due to the partial oxi-
dation of PS. The incorporation of MoS2 greatly enhanced the F-band due to the charge
transfer of photo-generated carriers of MoS2 QDs to PS nanocrystals, resulting in increased
radiative recombination. The incorporation of the MoS2 QDs also resulted in the complete
suppression of the S-band due to the blocking of the irradiation centers on the PS surface.
The MoS2 QD embedded PS exhibited concentration-dependent electroluminescence in
the blue region—this is due to the increase in the number of injected charge carriers for
radiative recombination. Remarkable electroluminescence enhancement was observed.

4.2.4. Resistive Switching/Memory Devices

As discussed earlier, MoS2 exists in many allotropes; the 2H form being semicon-
ducting with a thickness-dependent bandgap between 1.2 and 1.9 eV, and a metallic 1T
phase [30,161,162]. The 1T phase can form when alkali ions or metal nanoparticles are
intercalated between MoS2 nanosheets [163–168]. This is because the electron transfer
from the intercalated atoms to the MoS2 destabilizes the 2H structure and favors the 1T
coordinated Mo atoms [162–164]. It has previously been reported that the 2D crystals
can be transformed from metallic to semiconducting phases via photoinduction with sub-
picosecond dynamics [169]. Fu et al. demonstrated a reversible 2H-1T phase transition
of a MoS2 nanosheet/QD (2D/0D) structure controlled by photoexcitation of the QDs,
and used the transition as a dynamic photoresistive memory device [170]. The QD and
nanosheet dispersion was deposition between two graphene electrodes on a SiO2/Si chip.
As shown in Figure 22, when the structure is illuminated, photoresistive switching can be
observed at lower voltages due to the additional transfer of excited electrons from the QDs
to the nanosheets. These memristive states are maintained when voltage is applied across
the electrodes. This resistive switching allows for similar devices to be implemented in
artificial neural networks configured with a wide optical range.
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graphene/MoS2 QDNS/graphene structure with ≈5.5 × 104 QDs µm−2 in the dark. The insets show diagrams of the
formation of filaments from the 1T phase. Reproduced with permission from [170]. Copyright WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim, 2019.

Using the MoS2 QDs synthesized in an earlier section, An et al. fabricated a resistive
switching device based on the oxygen movements in oxidized QDs [68]. The operating
mechanism of the device can be explained in terms of ion drift, conducting filament for-
mation and rupture, and the trapping and detrapping of charge carriers. As pristine 2H
MoS2 does not have intrinsic resistive switching behavior, it is necessary to functionalize
the QDs to use them in such a device. Oxidation is one of the simplest forms of func-
tionalization, and conveniently the QDs in this study underwent spontaneous oxidation
during the laser exfoliation process described in Section 3.1.2. A Au/Poly[bis(4-phenyl)(2,4,6-
trimethylphenyl)amine (PTAA)/MoS2 QD/TiO2/FTO resistive device was fabricated and its
electrical properties characterized as shown in Figure 23. Following continuous cycling
of bias voltages ranging from ±2.2 V, constant hysteresis loops were observed. From 0 to
~1.9 V, the current was fairly low, corresponding to the OFF state, and at around 1.9 V the
current suddenly and substantially increased to the ON state. Under the opposite bias,
the current remained high until ~1.8 V (ON), until it dramatically decreased (OFF), which
is characteristic of unipolar resistive switching. The characteristics were identical but in-
verted for negative biases. The retention time of the ON and OFF states was approximately
10 s, which is short compared with 2D MoS2 devices. The resistances of the states were
calculated using Ohm’s law using the average current, and their values were 9.72 ± 0.14 Ω
and 354.55 ± 11.04 Ω for the ON/OFF states, respectively. Similar devices without the
inclusion of the MoS2 QDs did not exhibit this behavior. Past studies suggest that the
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resistive switching behavior of most MoS2-based devices is mostly caused by ion drift
across oxygen, and many MoS2-based devices exhibit bipolar characteristics [171–174]. The
unipolar behavior of this device can be similarly explained.
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4.3. Chemical Sensors

2D materials have seen use as chemical sensors due to their high surface areas and
reactivity. MoS2 QDs have the added utility of tunable photoluminescence. Chemical
detection using MoS2 QDs is often carried out using fluorescence quenching techniques
via photoexcited electron transfer (PET) [175] and is occasionally assisted by exploiting
the Förster resonance energy transfer (FRET) [78,176] mechanism. Using FRET to detect
requires that absorption spectra of the desired material overlap with the PL spectra of the
sensor [177–179]. By reducing the size of the MoS2 QDs, the photoemission wavelength
can be tuned, making these QDs ideal for the chemical sensors. The use of MoS2 QDs as
chemical sensors is summarized in Table 5.

Table 5. Chemical Sensing Capabilities of MoS2 QDs.

Chemical Selectivity Concentration Reference

2,4,6–trinitrophenol F0/F = 1.42 10.0 µm [75]
2,4,6–trinitrophenol F/F0 = 0.95 1.0 mM [78]

Pb (F- F0)/F0 > 0.9 5.0 µm [77]
S (F- F0)/F0 > 0.3 10.0 µm [77]

Tetracycline hydrochloride (F- F0)/F0 > 0.4 0.05 mM [79]
Glucose (F- F0)/F0 = 0.17 0.5 mM [74]

Al (F- F0)/F0 > 2.7 1.0 mM [83]
Fe (F- F0)/F0 > 0.5 1.0 mM [83]

Global security concerns and environmental protection have made the detection of
nitro aromatic explosives—particularly 2,4,6,-trinitrotoluene (TNT) and 2,4,6-trinitrophenol
(TNP)—incredibly important [180–184]. Wang et al. demonstrated the capability of MoS2
QDs to detect TNP; however, their sensor was tested in the presence of metal ions and not
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in the presence of other nitro explosives save TNT [75]. A few years after that publication,
Haldar et al. fabricated sensors capable of sensing without the presence of metal ions and
of sensing TNP in the presence of other nitro explosives [78]. The experiments were carried
out by adding 4.5 mL of 1,4-Diaminobutane capped MoS2 QDs in a 5 mL quartz tube at
neutral pH. Varied concentrations (0.1–0.8 µm) of the explosive analytes were gradually
added to the MoS2 QD solution, and the PL quenching spectra were measured with a
340 nm excitation wavelength. As shown in Figure 24, the highest PL quenching was
shown with only 50 µL of TNP, and the PL intensity of the MoS2 QDs was reduced by
roughly 50%. When other aromatic nitro compounds were added to the MoS2 QD and
TNP solution, the PL quenching remained high, as shown in Figure 24, demonstrating the
high selectivity of these functionalized QDs towards TNP.
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In addition to nitro explosives, MoS2 QDs were also used for the detection of other
organic molecules. For example, Huang et al. reported on the utilization of MoS2 QDs
as a fluorescent detector of tetracycline hydrochloride (Tc) [79]. Using a time-correlated
single-photon counting technique, the excitation behavior of MoS2 QDs in the presence of
Tc was studied. As shown in Figure 25, fluorescence quenching was observed and might
be attributed to a nonradiative energy transfer from excited states in the QDs to the Tc
structure. The fluorescence quenching of other antibiotics was tested; however, minimal
quenching was observed.

As another example, MoS2 QDs were used for glucose sensing. Glucose has a vital
role in living systems—particularly, blood glucose levels—and thus being able to accurately
measure blood glucose levels is of high importance. Conventional blood glucose moni-
toring technology is hindered by high cost, complicated testing equipment, and complex
sample preparation techniques [185,186]. Contrastingly, fluorescence assays have been
demonstrated to be inexpensive, sensitive sensors. The glucose sensing capabilities of
water-soluble MoS2 QDs were demonstrated by Wang et al. [74]. As with other MoS2
QD chemical sensors, the primary sensing mechanism was fluorescence quenching. In
their sensor, the PL spectra of the MoS2 QDs were quenched in the presence of H2O2, a
compound formed through the oxidation of glucose by dissolved oxygen in the presence of
glucose oxidase. The concentration of glucose can be determined indirectly by examining
the intensity of the fluorescence quenching caused by the amount of H2O2 formed (see
Figure 26). To further demonstrate the viability of this sensor, the researchers tested it in
fetal bovine serum samples and the results agreed with their controlled study.
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F )) at 454 nm titrated with

Tc; excitation wavelength is 360 nm. Effect of a series of antibiotics and common ions on the PL intensity of (e) MQDs
and (f) MQDs-Tc (0.05 × 10−3 M). Each concentration of Tc, RM, FF, CRO, SMM, AM, Na+, K+, SO4

2−, Cl−, and NO3
−

is 0.05 × 10−3 M. Excitation and emission wavelengths are 360 and 454 nm, respectively. Reproduced with permission
from [79]. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015.

Functionalized MoS2 QDs were also applicable for selective sensing of metallic ions
and heavy metals. Heavy metal pollution poses a threat to environmental health and
is known to lead to many biological and physiological conditions in humans. Cysteine-
functionalized MoS2 QDs have been demonstrated to be highly selective dual-model
sensing capabilities of Fe3+ and Al3+ [83]. In the presence of Al3+, the PL intensity of
the QDs rose tremendously, while the intensity roughly halved in the presence of Fe3+.
The PL intensity was also measured in the presence of other common metals, and no
significant quenching or enhancement was observed, demonstrating the high selectivity of
the cysteine-functionalized MoS2 QDs. The capabilities of the sensor were tested with tap
water, lake water, and living cells to great success.
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Figure 26. (A) Fluorescence spectra of MoS2 QDs with different concentrations of hydrogen peroxide.
(B) Linear relationship between the fluorescence intensity and H2O2 concentration. Reproduced with
permission from [74]. Copyright Elsevier B.V., 2017.

Label-free sensing of heavy metal pollution such as Pb was also demonstrated by
the use of small-area MoS2 nanosheets [77]. In the presence of Pb2+, MoS2 nanosheets
experienced a significant enhancement of fluorescence due to the formation of PbSO4 on
the surface of the nanosheets. The selectivity of the sensor was assessed by measuring the
fluorescence response of 17 common metal ions at a concentration of 5.0 µm, and Pb2+ had
a significantly greater enhancement than others (Figure 27). The feasibility of the sensor
was tested using water from Longten Lake (Nanchang, China) and the performance was
satisfactory. This study reinforces the heavy metal sensing capabilities of MoS2.
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4.4. Biological Applications

Given their high biocompatibility and photostability, MoS2 QDs are great candidates
for biological applications.

4.4.1. Bioimaging

Xu et al. use MoS2 QDs to perform bioimaging tests on HeLa Cells [43]. For this,
HeLa cells were incubated in DMEM containing MoS2 QDs for 7 h to determine the cell
permeability. As shown in Figure 28, intracellular fluorescence was observed in a confocal
laser scanning microscope (CLSM). The overlapping of the fluorescence of MoS2 probes and
LysoTracker in cells indicates that MoS2 QDs entered the cells by endocytosis. Additionally,
the QDs were found in the cytosol of the perinuclear region, which proves MoS2 QDs
can penetrate the cell wall but cannot penetrate the nucleus. This reduces the risk of
aberrant genetic mutation. Lin et al. also confirm that the fluorescent signal comes from the
cytoplasmic region, indicating the usefulness of MoS2 QD probes in cellular imaging [81].
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Furthermore, Dai et al. used intracellular microribonucleic acid (miRNA) in HeLa and
HaCaT cells as a model, to demonstrate the feasibility of MoS2 QDs for intracellular
molecular imaging analysis [60]. In this case, a molecular beacon (MB) probe of miRNA-21
was loaded in the MoS2 QDs via the van der Waals forces between the nucleobases and
the basal plane of MoS2 QDs. The intrinsic blue PL from MoS2 QDs and the red PL from
the MB hybridization with the miRNA-21 can be differentiated, which suggested specific
recognition of the miRNA-21 target.

C 2021, 7, x FOR PEER REVIEW 31 of 43 
 

HeLa and HaCaT cells as a model, to demonstrate the feasibility of MoS2 QDs for intra-
cellular molecular imaging analysis [60]. In this case, a molecular beacon (MB) probe of 
miRNA-21 was loaded in the MoS2 QDs via the van der Waals forces between the nu-
cleobases and the basal plane of MoS2 QDs. The intrinsic blue PL from MoS2 QDs and the 
red PL from the MB hybridization with the miRNA-21 can be differentiated, which sug-
gested specific recognition of the miRNA-21 target. 

 
Figure 28. (a) CLSM image of HeLa live cells stained in LysoTracker, (b) CLSM image of HeLa live 
cells incubated in DMEM culture medium containing MoS2 QDs, (c) corresponding bright-field 
image, (d) overlapped image of the living cells. Reproduced with permission from [43]. Copyright 
2015 WILEY-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany). 

MoS2 QDs were also used for tumor cell imaging. For example, Shi et al. did fluo-
rescent imaging in vivo and in vitro of SW480 tumor cells [187]. Gluthathione (GSH)–
MoS2 QD probes were injected into mice with colon cancer via their tail veins. Fluores-
cence imaging was performed on several organs before and after the injection. The fluo-
rescence intensity and therefore the concentration of the QDs in the liver, heart, and 
spleen was increased for 24 h after the injection, whereas the concentration of QDs was 
increased for an hour and decreased after 24 hrs in the lungs and kidney. The possible 
clearance pathway of QDs in the latter case could be from liver to bile and feces. The 
clearance and the biodistribution of the QDs are organ-specific. Additionally, it depends 
on several other factors such as hydrodynamic size, surface charge, and surface modifi-
cations of the QDs [187]. 

Additionally, Chen et al. performed intracellular fluorescence imaging of GSH in 
HeLa cells [54]. The study showed 6-mercaptopurine functionalized monolayer MoS2 
QDs are better probed than other QD probes for GSH detection in terms of sensitivity, 
selectivity, practicality, and quantification [54]. In addition to these studies, many other 
researchers have also used MoS2 QD probes for bioimaging [61,188–191,67]. 

On the other hand, blue PL can be observed under the excitation at 700 nm, sug-
gesting that MoS2 QDs could serve for multiphoton imaging labeling. Since the excitation 
light is in the near IR region, it can prevent damages on living cells or biosystems that are 
often caused by UV or blue excitations. Dai et al. performed multiphoton imaging in the 
HeLa and HaCaT cells incubated with MoS2 QDs [60]. As the PL property of MoS2 QDs is 
not sensitive to the NIR excitation, no change was observed in the PL brightness even 
after continuous excitation over 30 min. Additionally, a negligible change was observed 
in cell morphology when excited at 700 nm, in contrast to the case when cells are exposed 
to UV irradiation for 30 min where apoptotic vesicles started to emerge. This result sug-
gests that near IR excitation is less harmful than UV excitation for living cells (mul-
tiphoton is less harmful than single-photon excitation) [60]. 

Since MoS2 QDs showed extremely high two-photon brightness, good biocompati-
bility, and high photostability, Sweet et al. used anti-PSMA (prostate-specific membrane 
antigen) attached MoS2 QDs for multiphoton imaging of live prostate cancer cell [53]. In a 
series of selectivity tests, i.e., enzyme-linked immunosorbent assay was used in different 
cell lines, it was inferred that MoS2-based two-photon imaging in biological II window is 
capable of distinguishing targeted LnCaP cells from nontargeted cells. 

Figure 28. (a) CLSM image of HeLa live cells stained in LysoTracker, (b) CLSM image of HeLa live cells incubated in
DMEM culture medium containing MoS2 QDs, (c) corresponding bright-field image, (d) overlapped image of the living cells.
Reproduced with permission from [43]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany).

MoS2 QDs were also used for tumor cell imaging. For example, Shi et al. did fluores-
cent imaging in vivo and in vitro of SW480 tumor cells [187]. Gluthathione (GSH)–MoS2
QD probes were injected into mice with colon cancer via their tail veins. Fluorescence
imaging was performed on several organs before and after the injection. The fluorescence
intensity and therefore the concentration of the QDs in the liver, heart, and spleen was
increased for 24 h after the injection, whereas the concentration of QDs was increased
for an hour and decreased after 24 hrs in the lungs and kidney. The possible clearance
pathway of QDs in the latter case could be from liver to bile and feces. The clearance
and the biodistribution of the QDs are organ-specific. Additionally, it depends on several
other factors such as hydrodynamic size, surface charge, and surface modifications of the
QDs [187].

Additionally, Chen et al. performed intracellular fluorescence imaging of GSH in
HeLa cells [54]. The study showed 6-mercaptopurine functionalized monolayer MoS2 QDs
are better probed than other QD probes for GSH detection in terms of sensitivity, selectivity,
practicality, and quantification [54]. In addition to these studies, many other researchers
have also used MoS2 QD probes for bioimaging [61,67,188–191].

On the other hand, blue PL can be observed under the excitation at 700 nm, suggesting
that MoS2 QDs could serve for multiphoton imaging labeling. Since the excitation light is
in the near IR region, it can prevent damages on living cells or biosystems that are often
caused by UV or blue excitations. Dai et al. performed multiphoton imaging in the HeLa
and HaCaT cells incubated with MoS2 QDs [60]. As the PL property of MoS2 QDs is not
sensitive to the NIR excitation, no change was observed in the PL brightness even after
continuous excitation over 30 min. Additionally, a negligible change was observed in cell
morphology when excited at 700 nm, in contrast to the case when cells are exposed to UV
irradiation for 30 min where apoptotic vesicles started to emerge. This result suggests that
near IR excitation is less harmful than UV excitation for living cells (multiphoton is less
harmful than single-photon excitation) [60].

Since MoS2 QDs showed extremely high two-photon brightness, good biocompati-
bility, and high photostability, Sweet et al. used anti-PSMA (prostate-specific membrane
antigen) attached MoS2 QDs for multiphoton imaging of live prostate cancer cell [53]. In a
series of selectivity tests, i.e., enzyme-linked immunosorbent assay was used in different
cell lines, it was inferred that MoS2-based two-photon imaging in biological II window is
capable of distinguishing targeted LnCaP cells from nontargeted cells.



C 2021, 7, 45 31 of 41

4.4.2. Photothermal Therapy (PTT) and Photodynamic Therapy (PDT) and Radiation
Therapy (RT)

Current PDT agents/photosensitizers are suffering from the issues of photobleaching
and low oxygen production rate. Since MoS2 QDs are capable in producing highly reactive
oxygen, singlet oxygen (1O2), [55] and are relatively photostable, they are proposed to be
an excellent candidate as a PDT agent [55]. Additionally, MoS2 QDs exhibit an enhanced
antibacterial activity than MoS2 nanosheets. As demonstrated by Tian et al., MoS2 QDs can
produce more electron-hole pairs than MoS2 nanosheets when illuminated with simulated
solar light [57]. These electron-hole pairs can produce reactive oxygen species (ROS) in the
presence of water and oxygen to destruct the antioxidant defense system for enhancing
the antibacterial activity. A feasibility study was performed on mice using Gram-negative,
Escherichia coli (E. coli). Mice were found to be bacteria-free for 7 days after the treatment
with MoS2 QDs. Several mice organs were inspected and find no organ damage after
being treated with MoS2 QDs and the light illumination, thereby proving their effective
photodynamic antibacterial activity [57].

Li et al. have explored the use of MoS2 QDs for combined PDT and PTT effect [58].
Nanohybrids of MoS2 and disulfide SiO2 (MoS2@ss-SiO2) are conjugated with hydraulic
acid (HA) and chlorin e6 (Ce6) for the combined PTT and PDT treatment of tumor cell.
These integrated MoS2@ss-SiO2-Ce6/HA nanohybrids were used for multimodel imaging,
which includes fluorescence/CT/MSOT imaging (CT: computed tomography, MSOT:
multispectral optoacoustic tomography). Since all the components in this nanohybrid
are biocompatible/biodegradable, these nanoparticles could later be cleared through the
renal route, which was later proved by CT imaging. The increased Hounsfield unit (HU)
from 119.3 ± 24 to 225.2 ± 41.2 suggested predominant CT imaging capability and tumor-
targeting capability of the MoS2@ss-SiO2-Ce6/HA nanohybrid. Additionally, the MSOT
signal intensity is also depicted linearly with the formulation concentration (1 to 8 mg/mL)
of this nanohybrid, which suggests that this nanohybrid is a suitable MSOT contrast
agent. This means the nanohybrid can be used to track tumors efficiently. Moreover, the
performance of the Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay test on these
nanohybrids showed the production of ROS generation, a requirement for PDT. The efficacy
of the photothermal conversion efficiency was found to be 22.34%. When the tumor-bearing
mice were irradiated with NIR radiation (808 nm, 1.5 W/cm2), the temperature at the tumor
site in the MoS2@ss-SiO2-Ce6/HA treatment group rapidly increased from 25 to 55.2 ◦C
within 5 min, along with the suppression of the tumor size, proving the efficiency of the
PTT effect. Additionally, the insignificant weight loss of the mice after 21 days shows the
tumor inhibition activity. Additionally, the hematoxylin and eosin (H&E) staining of the
organ tissue slices, depicted no significant necrotic cells in major organs in the mice treated
by MoS2@ss-SiO2-Ce6/HA nanoparticle, whereas tumor tissues had more necrosis and
apoptosis in the combined therapy (PTT/PDT) for the control group [58].

Wang et al. studied the effect of MoS2 QDs@polyaniline (MoS2@PANI) nanohybrids
as photothermal adsorbing agents and radiosensitizer [191]. There had been studies for
TMDC QDs, but not for this kind of organic–inorganic hybrid. MoS2 was chosen as a
radiosensitizer, as it offers a high atomic number, whereas PANI offers great photothermal
conversion efficiency, photostability, and biocompatibility. As a result, this nanohybrid ex-
hibits a strong X-ray attenuation capability and a high NIR absorption efficiency. Therefore,
these nanohybrids can be used for a combined PTT and Radiation Therapy (RT) on 4T1
tumor-bearing mice. For this study, PTT was carried out with laser irradiation at 808 nm
(1.5 W cm−2, 5 min), and RT was performed by X-ray radiation at a dose of 6 Gy. As
shown in Figure 29, different control groups were used to inspect the enhanced efficacy
of the treatment with MoS2@PANI with the combined PTT/RT technique. H&E staining
was studied to further confirm the antitumor efficiency. Severe destruction of tumor cells
was detected with no noticeable sign of toxicity with the combined PTT and RT treatment.
Additionally, effective reduction in tumor hypoxia was observed in different parts of a
mice body due to enhanced oxygenation under hyperthermia immediately after mild PTT
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treatment. This combination therapy showed remarkably enhanced oxygenation in tumors
immediately after PTT treatment [191].
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MoS2 QDs were used to detect dopamine and GSH in erythrocytes and live cells and nitro 
groups, respectively [37,77]. 

Fluorescence quenching can occur by various pathways, including electron transfer 
(ET) [77], FRET [193], and PET [78]. Fluorescence quenching that happened between 
PANI and MoS2 QDs was due to FRET. This was used to detect bovine serum albumin 
(BSA) [193], where fluorescence will be recovered upon success detection. Several other 
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Figure 29. (a) Photothermal images of 4T1 tumor-bearing mice under NIR laser irradiation (808 nm)
with Phosphate Buffer Saline (PBS), MoS2 and MoS2@PANI nanohybrid. (b) Tumor growth in
different group of mice in different time frames. (c) Immunofluorescence image of tumor slice of
nuclei stained with 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI, blue), blood
vessels stained with anti-CD31 anti body (red), hypoxia stained with antipimonidazole antibody
(green) and the overlay image. (d) H&E staining of various organs of mice treated differently under
NIR laser irradiation and X-ray irradiation. Reproduced with permission from [191]. Copyright 2016
from the American Chemical Society.

4.4.3. Biosensing

One of the biosensing mechanisms is switching of fluorescence quenching of the
bioreceptor-transducer after the detection of the analyte. Based on the same mechanism,
MoS2 QDs were used to detect dopamine and GSH in erythrocytes and live cells and nitro
groups, respectively [37,77].

Fluorescence quenching can occur by various pathways, including electron transfer
(ET) [77], FRET [192], and PET [78]. Fluorescence quenching that happened between
PANI and MoS2 QDs was due to FRET. This was used to detect bovine serum albumin
(BSA) [192], where fluorescence will be recovered upon success detection. Several other
organic and nonorganic molecules were used to inspect its selectivity [192]. Additionally,
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1,4-di-aminobutane functionalized MoS2 QDs were used as the fluorophores to detect the
presence of the nitro group in an aqueous medium with >90% selectivity [78]. This high
selectivity is due to the proton exchange between the electron-deficient nitro group and the
functionalized MoS2 QDs.

Swaminathan et al. suggested that spectrum overlap of the electron donor and
acceptor molecules is needed for FRET to occur [192]. Ha et al. reported that MoS2 can
play the roles of both acceptor and donor [193]. The authors suggested that MoS2 is a FRET
donor with 11.73% of efficiency at a distance of 4.42 nm and can also act as a fluorescence
quencher acceptor. For this dual function, an Alexa Flour 430 dye molecule was labeled
with a double-stranded deoxyribonucleic acid (DNA) with a Guanine (G) base at the end
and conjugated with MoS2 QDs. The donor–acceptor distance in the nanoconjugate Alexa
Flour 430-DNA-MoS2 QDs was used to study the dual nature of MoS2 QDs. The G base
was used to tune the distance between the MoS2 and the dye molecule. When there was no
space between the molecules, MoS2 acted as a fluorescence quencher acceptor whereas, in
the increased distance up to 13 bases (of G) in between, it acted as a donor [193].

In addition to molecular sensing, MoS2 QDs were exploited for use in DNA sequencing.
Faramarzi et al. used time-dependent density functional theory and quasi-static finite
and time-domain approach to show that Graphene oxide (GO) QDs and MoS2 QDs can
be used to sequence DNA [12]. It was proposed that the wavelength of the emitted light
is the function of incident light and each type of DNA nucleobase can shift the emission
wavelength by 1 to 130 nm. Additionally, this concept helps to figure out the unknown
DNA nucleobase. The sensitivity and selectivity of this wavelength shifting in the presence
of the DNA nucleobase method are higher than the ones with ionic, plasmonic, tunneling,
and Raman methods.

4.4.4. Other Theranostic Applications

MoS2 QDs offer an excellent platform for theranostic applications. In 2020, Yang et al.
performed numerous analyses including cell cytotoxicity, cell survival analysis, enzyme-
linked immunosorbent assay, immunoblotting assay ROS assessment, lysosomal contents
and stability assessment, flow cytometry assay, and immunofluorescence [56]. From these
studies, it was determined that MoS2 QDs caused cell death of microglia cells, as MoS2
QDs induce caspase-1-dependent pyroptosis of microglia cells. Results showed that the
nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes were activated
in microglia, as MoS2 QDs trigger it. This can harm the stability of the central nervous
system. Additionally, the mitochondria-derived reactive oxygen species (mtROS) triggers
autophagy. This autophagy was found to diminish the activation of MLRP3 activation. It is
suggested to use MoS2 QDs rationally for theranostic use in neuroscience as it was found
that autophagy prevented MoS2 QD treated microglia from pyroptotic cell death.

Additionally, due to its biocompatibility and excellent performance as a biosensor,
MoS2 has been a promising candidate for drug delivery. Chen et al. performed a feasibility
study by conjugating thiol-related anticancer drug and thiolated doxorubicin (DOX-SH) on
monolayer MoS2 QDs. The authors demonstrated in vitro and in vivo tests on the release of
DOX-SH in the presence of GSH [54]. Additionally, Liang et al. [194] theoretically studied
antituberculosis drug delivery, whereas Liu (2020) [195] and Dong (2018) [190] figured out
the feasibility of chemotherapeutic drug DOX, using MoS2 QDs.

5. Conclusions

Since the successful synthesis in 2014, MoS2 QDs have gained a lot of attention for their
photochemical properties, photostability, and biocompatibility. All the publications so far
have shown that the synthetic route is simple and cost-efficient; however, more creativity is
needed to scale-up the synthesis techniques to a much larger scale for real-world application
of MoS2 QDs. Thus far, the method of thermal ablation seems the most promising as it
uses the same equipment as a large-area synthesis method of MoS2 nanosheets [72,196].
Regarding potential applications, we are expecting to see more advances in electronic and
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photovoltaic applications of MoS2 QDs. For example, one may attempt to use composite
materials, i.e., combining 2D van der Waals materials with MoS2 QDs, or QDs of various
TMDCs in tandem, to broaden the absorption range for next-generation photovoltaics.
Many of the current chemical sensing applications rely on fluorescence quenching (i.e.,
a turn-off method), and novel techniques using a fluorescence turn-on method could
improve the accuracy of chemical detection. For the further development of biomedical
applications, researchers should look for synthetic routes with higher quantum yields and
longer fluorescence emission wavelengths, as many of the current QDs have low quantum
yields and high-energy, blue emissions.

There is no doubt that MoS2 QDs have already shown immense potential in sensors,
bioimaging, phototherapy, photocatalysis, and biomedicine. We are expected to see cre-
ativity in the use of MoS2 QDs for many other applications, for example, based on edge
functionalization of these van der Waals nanostructures, and solar energy harvesting based
on the broad light absorption nature of these environmentally friendly QDs. All these will
rely on the high-yield synthesis of MoS2 QDs with controllable sizes. Breakthroughs in
large-scale synthesis and real-world applications will promote the future science, engineer-
ing, and real-world application of MoS2 QDs.
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