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Abstract: In an attempt to push the boundary of miniaturization, there has been a rising interest in
two-dimensional (2D) semiconductors with superior electronic, mechanical, and thermal properties
as alternatives for silicon-based devices. Due to their fascinating properties resulting from lowering
dimensionality, hexagonal boron nitride (h-BN) and graphene are considered promising candidates to
be used in the next generation of high-performance devices. However, neither h-BN nor graphene is a
semiconductor due to a zero bandgap in the one case and a too large bandgap in the other case. Here,
we demonstrate from first-principles calculations that a hybrid 2D material formed by cross-linking
alternating chains of carbon and boron nitride (HCBN) shows promising characteristics combining
the thermal merits of graphene and h-BN while possessing the electronic structure characteristic of a
semiconductor. Our calculations demonstrate that the thermal properties of HCBN are comparable
to those of h-BN and graphene (parent systems). HCBN is dynamically stable and has a bandgap
of 2.43 eV. At low temperatures, it exhibits smaller thermal contraction than the parent systems.
However, beyond room temperature, in contrast to the parent systems, it has a positive but finitely
small linear-thermal expansion coefficient. The calculated isothermal bulk modulus indicates that at
high temperatures, HCBN is less compressible, whereas at low temperatures it is more compressible
relative to the parent systems. The results of our study are important for the rational design of a 2D
semiconductor with good thermal properties.

Keywords: density functional perturbation theory (DFPT); linear thermal expansion coefficient;
bulk modulus; hybrid material; graphene; hexagonal boron nitride (h-BN); specific heat capacity at
constant pressure

1. Introduction

Two-dimensional (2D) semiconductors with good thermal properties are at the fore-
front of nanoscience research as replacements for silicon-based devices. Graphene (sp2

hybridized carbon atoms) and hexagonal boron nitride (h-BN) (sp2 hybridized boron and
nitrogen atoms) are considered as potential 2D materials for the next generation of elec-
tronics [1–4] due to their excellent electronic [5–9], mechanical [10,11], and thermal [12–15]
properties. Despite the fascinating properties of these 2D materials, in pristine form they
are not suitable for applications in devices in which semiconductors are required. This
is because graphene is a zero-band-gap [16,17] material, while h-BN is an insulator with
a large bandgap [16]. Due to these limitations, vigorous research is ongoing to explore
the physical properties of other exciting 2D materials such as h-MoS2 [8], h-MoSe2 [18],
borene [19], BC3 [20,21], BC5 [22], BC7 [21], and recently h-BN-graphene hybrid [16,23,24],
a layered material with regions of carbon and boron nitride.

Ever since the synthesis by Ci et al. [25], the h-BN-graphene hybrid has been the
subject of intensive studies due to the unique, tailorable, and complementary properties to
the h-BN and graphene. C, B, and N atoms can be mixed atomically together to form an
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array of thermodynamically stable BCN layered materials with varying properties. For
example, as a result of the similar lattice constants, h-BN and graphene can be synthesized
as a layer-by-layer heterostructure [26–28]. Theoretical computations have revealed that a
slight bandgap can be opened by depositing graphene on a h-BN substrate [29]. Another
form of h-BN-graphene hybrid is an atomically thick material consisting of h-BN and
graphene (2D-BNC) phases. This type of hybrid heterostructure is interesting because its
physical properties can be tuned by varying the size of the domains and geometries of
the h-BN domain with respect to the graphene or vice versa [23,24,30,31]. In one of our
reports, we demonstrated the tunability of the thermodynamic and electronic properties of
a 2D h-BN-graphene hybrid by changing the domain size of the h-BN [16]. In other studies,
transport [32,33], magnetic [24], optical [34], and mechanical [35] properties have also been
reported to be tunable by changing the concentration and shape of h-BN or graphene
domains in the hybrid material. However, despite many reports on 2D-BNC, the linear
thermal expansion coefficients (LTECs) of these materials, which is one of the fundamental
quantities for heat management, have not been investigated.

Although reports on the LTEC of 2D-BNC are lacking, there is quite a number of
studies on the LTEC of h-BN and graphene. All of them consistently indicate that h-BN
and graphene both exhibit negative LTEC. Employing density functional perturbation
theory (DFPT) within quasiharmonic approximation (QHA) [36], Mounet et al. [37] studied
the LTEC of graphene at room temperature and observed that the value is approximately
−3.6 × 10−6 K−1. Moreover, they indicated that the LTEC of graphene remains negative
even beyond 2000 K. In another study, Zakharchenko et al. [38,39], employing the Monte
Carlo method with the empirical bond order potential [40], reported a slightly different
average value of around −5.0 × 10−6 K−1 within the interval of 0 to 300 K and negative
LTEC up to 900 K. Contrary to the theoretical estimates, an experimental investigation by
Bao et al. [41] found negative LTEC only up to 350 K, and the value at room temperature
was −7.0 × 10−6 K−1. In another experimental study, in which the substrate effect was
carefully excluded, Yoon et al. [42] measured the LTEC of graphene at 200–400 K and
reported different results from the earlier reports. At variance to measurements of ref. [41],
they found the LTEC to be negative in the whole temperature range. The LTEC of h-BN was
estimated in a theoretical study by Sevik [18], using DFPT and QHA, in the temperature
interval of 0 to 300 K as −6.6 × 10−6 K−1.

As stated earlier, in contrast to h-BN and graphene, the LTECs of h-BN-graphene
hybrids are lacking in the literature. However, the knowledge of the LTEC of the h-
BN-graphene hybrid is important due to its potential application in ultra-fast integrated
electronic devices. In this study, our aim was to characterize the LTEC of one type of
h-BN-graphene hybrid, namely cross-linked alternating chains of carbon and boron nitride
(HCBN). Currently, not much is known about HCBN, and to the best of our knowledge,
the thermodynamic properties have not been reported elsewhere. For a comprehensive un-
derstanding of the material, other properties computationally predicted in this study were
the electronic density of states, specific heat capacity at constant pressure, and isothermal
bulk modulus. We also calculated the corresponding properties for h-BN and graphene in
order to highlight how the properties of HCBN relate to the parent systems.

2. Computational Methods

VASP code [43,44] was employed to perform electronic structure calculations based
on density functional theory (DFT). The projected augmented wave (PAW) method [45]
was used to describe the interactions between the valence and core electrons. We applied
the local density approximation (LDA) [46] and the generalized gradient approxima-
tion (GGA) [47] in the parameterization of Perdew, Burke, and Ernzerhof (PBE), for the
exchange–correlation energy functional. While LDA was used for the phonon calculations,
PBE was employed for structural optimization as well as to compute the density of states
(DOS) of the two-dimensional systems in this study. It is worth mentioning that LDA and
PBE fundamentally lower the bandgaps of semiconductors. In view of this, we applied
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a hybrid functional (HSE06) [48] by Heyd–Scuseria–Ernzerhof to improve the result of
the bandgap. The Brillouin zone (BZ) sampling was done using the Monkhorst–Pack
scheme [49] and the 9 × 7 × 1 k-point mesh for the total energy calculations, while denser
k points of 21 × 11 × 1 were employed to compute the density of states (DOS). The phonon
dispersion relation was calculated along a sampling route that connects the unique symme-
try points in the BZ as shown in Figure 1. We used 520 eV as the cutoff in the plane-wave
expansion while treating fractional occupancies using the tetrahedron method with Blöchl
corrections. The cohesive energy Ecoh was calculated at the PBE level using Equation (1),

Ecoh =
−ECBN + nCEC + nBEB + nN EN

Nat
(1)

where ECBN , EC, EB, and EN denote the total energies of HCBN, free C, B, and N atoms,
respectively. The number of C, B, and N atoms present in the supercell are denoted by
nC, nB, and nN , respectively, while Nat is the total number of atoms in the supercell. Note
that with this definition, the cohesive energy is a positive number.
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Lattice dynamics was calculated by the density functional perturbation theory (DFPT).
Supercells with 50 atoms were used for h-BN and graphene, while the supercell of HCBN
was composed of 48 atoms. The force constants were computed followed by the construc-
tion of a dynamical matrix. We obtained phonon frequencies through the diagonalization
of the dynamical matrix. Thermal properties were calculated using quasiharmonic approx-
imation (QHA) [50]. For a harmonic crystal, the Helmholtz free energy F is expressed as a
sum of the ground-state energy and the vibrational free energy. The phonon contribution
to the free energy is given by Equation (2):

Fvib =
1
2 ∑

q,v
}ωq,v + kBT ∑

q,v
ln[1− exp(−}ωq,v/(kBT))] (2)

where q and v represent the wave vector and the band index, respectively. ωq,v denotes
vibrational frequency at q and v. T, kB, and } are the temperature, Boltzmann constant, and
reduced Planck constant, respectively. The heat capacity Cv and the entropy S at constant
volume were calculated using Equations (3) and (4), respectively:

Cv = ∑
q,v

kB

(}ωq,v

kBT

)2 exp
( }ωq,v

kBT

)
[
exp

( }ωq,v
kBT

)
− 1
]2 (3)

and

S = − 1
T ∑

q,v

}ωq,v

exp
( }ωq,v

kBT

)
− 1
− kB ∑

q,v
ln[1− exp(−}ωq,v/(kBT))] (4)
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We computed the heat capacity at constant pressure Cp using Equation (5),

Cp = −T∂2G(T, p)
∂T2 =

T∂V(T, p)
∂T

∂S(T; V)

∂V
+ CV [T, V(T, P)] (5)

where Gibbs free energy, G, is given by

G(T, p) = min
V

[U(V) + Fvib(T; V) + PV] (6)

and V is the equilibrium volume at T and p. To calculate the thermodynamic properties
at constant pressure, U(V) and Fvib were computed at 10 volume points, and Equation (6)
was fitted to the Birch-Murnaghan equation of state. The temperature-dependent LTEC
(α(T)) was calculated using Equation (7)

α(T) =
∂ ln a(T)

∂T
=

1∂V
2V∂T

(7)

where a(T) represents the lattice parameter which corresponds to the minimum Gibbs free
energy at a given temperature, while other parameters maintain their previous designations.
To compute Equation (7), we kept the vacuum spacing at 15 Å and varied the in-plane lattice
constant within±0.5% for 10 different volumes of the slab. It is important to maintain small
applied strain, typically within ±0.5%, otherwise QHA becomes invalid. It is worth stating
that the contribution of electronic thermal excitation energy to the thermal properties can
be neglected in any material if the bandgap is greater than the excitation energy. However,
in metallic systems, such contribution must be accounted for, since metals lack a bandgap
and have non-zero electron density at the Fermi level. In the case of graphene, although it
is a semimetal, the electronic structure is different from other metals. The bandgap only
vanishes at the Dirac point where the electronic density is zero [17,51]. Consequently, the
contribution of electronic excitation can be neglected in this material, and the thermal
occupation of the phonon modes can be used to account for the thermal properties.

3. Results and Discussion
3.1. Structural Model and Electronic Properties

A two-dimensional hybrid with alternating chains of carbon and boron nitride (HCBN)
is shown in Figure 2. The system has a rectangular lattice (as indicated by a rectangular
dashed frame in Figure 2) with two carbon atoms, one boron, and one nitrogen atom per
primitive cell. The optimized in-plane lattice parameters of the hybrid system, calculated at
the PBE level, are a = 2.51 Å and b = 4.35 Å. We compared the predicted lattice parameters
with that of the lattice constant of h-BN. Our predicted “a” is the same as the lattice constant
of h-BN, while “b” is a factor of 1.7 larger. Meanwhile, our calculation shows that the lattice
constant of h-BN is 2.51 Å, which agrees with the existing data from other studies [18]. The
coordination of every atom in the primitive cell of HCBN was analyzed. It was observed
that every C atom is bonded to two other C atoms and either a N or B atom, while every N
(or B) atom is connected to two B (or N) atoms.

C-C and B-N bond lengths of the HCBN were computed and compared with the
values for pristine graphene and h-BN, respectively. Our calculated C-C bond length of
graphene was 1.43 Å, which was the same as the C-C bond length in HCBN. However, in
the case of h-BN, we obtained the B-N bond length of 1.45 Å, which was slightly shorter
than the corresponding bond distance in HCBN, 1.46 Å. Furthermore, we computed C-B
and C-N bond lengths of 1.52 and 1.39 Å, respectively. Due to a slight difference between
C-C and B-N, and a significant difference between C-B and C-N, there could be intrinsic
structural stress in HCBN, which might affect the stability.
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To assess the relative stability of HCBN, we calculated its cohesive energy and com-
pared it with that of graphene and h-BN using Equation (1). The calculated cohesive energy
of HCBN is 7.25 eV/atom, which is greater than 7.06 eV/atom for h-BN but less than
7.90 eV/atom for graphene. Thus, the cohesive energy indicates that HCBN is very stable
with respect to the parent systems.

To analyze the electronic characteristics of HCBN accurately, we computed the to-
tal density of states (DOS) and partial density of states (PDOS) using PBE and HSE06
functionals as shown in Figure 3. From the DOS results, it is seen that HCBN is a semicon-
ductor with a finite bandgap. With the PBE functional, we obtained a bandgap of 1.83 eV
(Figure 3a). It is widely known that PBE underestimates the bandgap of semiconductors.
To get an improved result, we applied the HSE06 functional, which is known to give reliable
results for bandgaps of semiconductors, and obtained a bandgap of 2.43 eV (Figure 3b).
The calculated bandgap shows that HCBN has a different electronic structure with respect
to graphene and h-BN; while the former is a semimetal, the latter is an insulator with a
bandgap of approximately 6.0 eV [16,52]. To understand the origin of the bandgap, the
states around it were analyzed using the PDOS of Figure 3a. The valence band maximum
(VBM) and the conduction band minimum (CBM) are formed by the mixing of the C and
N 2p orbitals. Moreover, it is important to emphasize that the states around the VBM are
dominated by C atoms while CBM originates predominantly from N atoms.

It is important to suggest how HCBN can be synthesized, since we have demonstrated
that the system is thermodynamically stable. To synthesize HCBN, we expect a thermal
catalytic chemical vapor deposition (CVD) technique, which is promising for large-area
growth of graphene [53], to be applicable. An ideal substrate to use for the deposition
would be Cu, since it has previously been successfully employed for both graphene [54]
and h-BN [55] deposition. Graphene growth on a Cu substrate has been proposed to take
place through a surface-adsorption mechanism [56]. The implication of this is that it might
be possible to deposit HCBN on Cu by simultaneously annealing C and BN (such as BCl3
and CH3CN) containing precursors in the CVD. The ratio of B, N, and C in the hybrid can
then be controlled by varying the thermodynamic growth conditions.



C 2021, 7, 5 6 of 13
C 2021, 7, x FOR PEER REVIEW 6 of 15 
 

 
Figure 3. Electronic density of states (DOS) and partial density of states (PDOS) of HCBN calculated at the (a) PBE and 

(b) HSE06 levels. 

It is important to suggest how HCBN can be synthesized, since we have 
demonstrated that the system is thermodynamically stable. To synthesize HCBN, we 
expect a thermal catalytic chemical vapor deposition (CVD) technique, which is promising 
for large-area growth of graphene [53], to be applicable. An ideal substrate to use for the 
deposition would be Cu, since it has previously been successfully employed for both 
graphene [54] and h-BN [55] deposition. Graphene growth on a Cu substrate has been 
proposed to take place through a surface-adsorption mechanism [56]. The implication of 
this is that it might be possible to deposit HCBN on Cu by simultaneously annealing C 
and BN (such as BCl3 and CH3CN) containing precursors in the CVD. The ratio of B, N, 
and C in the hybrid can then be controlled by varying the thermodynamic growth 
conditions. 

3.2. Lattice Vibrations 
A crystal with equilibrium lattice parameters is said to be dynamically stable if the 

potential energy increases with respect to any given set of atomic displacements. In the 
regime of the harmonic approximation, this corresponds to the real and positive phonon 
frequencies of all phonon modes. However, it is possible to have modes with negative or 
imaginary frequencies, which can be seen in the solution of an eigenvalue problem of the 
dynamical matrix [57]. If that occurs, it suggests dynamical instability of the crystal 
structure. In our previous study [16], we calculated phonon dispersions of h-BN and 
graphene and compared the results with previous studies. Our results are consistent with 
the existing theoretical and experimental reports. In the present study, we focused on the 
lattice dynamics of HCBN. Figure 4 shows the phonon dispersion of the primitive cell of 
HCBN. It can be seen that the dispersion relation has no imaginary frequency, which 
suggests that HCBN is dynamically stable. Since the primitive cell of HCBN is made up 
of four atoms, the phonon modes are described by 12 phonon branches, which include 
three acoustics and nine optical branches. Thus, the vibrational properties of HCBN are 
quite dissimilar to graphene and h-BN, which have a smaller number of planar modes. 
Nevertheless, there is a slight resemblance between the phonon dispersions of HCBN, 
graphene, and h-BN. Specifically, all three materials have linear longitudinal and 
transversal acoustic phonon branches, while the out-of-plane transversal acoustic (ZA) 
branch is quadratic in the neighborhood of q = 0, which is a peculiar characteristic of the 
phonon spectra of layered materials [58]. 

Figure 3. Electronic density of states (DOS) and partial density of states (PDOS) of HCBN calculated at the (a) PBE and (b)
HSE06 levels.

3.2. Lattice Vibrations

A crystal with equilibrium lattice parameters is said to be dynamically stable if the
potential energy increases with respect to any given set of atomic displacements. In the
regime of the harmonic approximation, this corresponds to the real and positive phonon
frequencies of all phonon modes. However, it is possible to have modes with negative
or imaginary frequencies, which can be seen in the solution of an eigenvalue problem of
the dynamical matrix [57]. If that occurs, it suggests dynamical instability of the crystal
structure. In our previous study [16], we calculated phonon dispersions of h-BN and
graphene and compared the results with previous studies. Our results are consistent with
the existing theoretical and experimental reports. In the present study, we focused on
the lattice dynamics of HCBN. Figure 4 shows the phonon dispersion of the primitive
cell of HCBN. It can be seen that the dispersion relation has no imaginary frequency,
which suggests that HCBN is dynamically stable. Since the primitive cell of HCBN is
made up of four atoms, the phonon modes are described by 12 phonon branches, which
include three acoustics and nine optical branches. Thus, the vibrational properties of
HCBN are quite dissimilar to graphene and h-BN, which have a smaller number of planar
modes. Nevertheless, there is a slight resemblance between the phonon dispersions of
HCBN, graphene, and h-BN. Specifically, all three materials have linear longitudinal and
transversal acoustic phonon branches, while the out-of-plane transversal acoustic (ZA)
branch is quadratic in the neighborhood of q = 0, which is a peculiar characteristic of the
phonon spectra of layered materials [58].

3.3. Thermodynamic Properties

The knowledge of LTECs of materials is very important; in particular, it is crucial for
the epitaxial growths of crystals and can be linked to material properties such as the energy
bandgap and consequently the optical properties. Moreover, LTEC is one of the quantities
often considered in the design of high-speed integrated circuits for heat management. In
this section, we present our results on the LTEC of HCBN using the QHA approximation
and phonon dispersion at the LDA level. It was demonstrated that HCBN comprises
carbon and boron nitride chains. Therefore, we first present the LTECs of pristine h-BN
and graphene. This is necessary to validate our computational procedures by comparing
our results to the thermodynamic properties of h-BN and graphene reported in other
experimental [41] and theoretical [38,39] studies. Additionally, the computed properties of
h-BN and graphene are compared with those of HCBN in order to assess the uniqueness of
the LTEC of the hybrid material with respect to the parent systems.
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Figure 4. Phonon dispersion relation of HCBN calculated at the local density approximation
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Before presenting the thermal expansion properties, we first account for the effect of
zero-point (ZP) motion. Figure 5 shows the energy vs. lattice constant curves for h-BN
and graphene. The fitting of the data points was done using a cubic order polynomial.
From the plots, we obtained 2.45 (Figure 5a) and 2.49 Å (Figure 5b) as the equilibrium
lattice constants of graphene and h-BN, respectively. For graphene, the change in the lattice
constant due to ZP energy was about +0.2% which is comparable to the value obtained
as a result of temperature effects within 0 to 1000 K. For h-BN, the addition of zero-point
energy changed the lattice parameter by +0.3%.
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To investigate the LTEC within QHA, we performed a series of DFPT calculations by
varying the lattice constant within the interval of ±0.5%. Generally, in 2D materials, the
out-of-plane transversal acoustic mode is very soft, so the applied strain to the lattice must
be considerably small. Otherwise, imaginary frequencies would be produced near the
gamma point, which would invalidate QHA. In Figure 6, we present our calculated LTECs
of h-BN and graphene along with the data from relevant earlier studies. From the graphs,
it is seen that both h-BN and graphene have negative LTECs (or thermal contraction) of
the same order, 10−6 K−1, which are more prominent at low temperatures. The thermal
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contraction over a broad spectrum of temperatures is more pronounced in h-BN than
in graphene. In general, the temperature dependence of the LTEC for the two materials
shows the same trend; it has a minimum within the interval of 0 to 300 K, beyond which
it rises monotonically. These features of the LTEC curves can be explained, in line with
Reference [59], as follows.
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41,42], and (b) h-BN where the black color curve denotes our work, and other colors are for References [60,61]. The insets
are the mode-dependent Grüneisen parameters for the parent systems.

At low temperatures, the out-of-plane transversal acoustic (ZA) mode becomes popu-
lated and contributes more than the other modes to the negative Grüneisen parameter (see
the insets in Figure 6a,b) and thus to the negative thermal expansions. The ZA mode domi-
nates (see the insets in Figure 6) up to a certain temperature, after which the optical modes
become excited and contribute to the positive Grüneisen parameter and consequently to
the thermal expansion. As a result, the curves rise up. It is worth mentioning that the
mode-dependent Grüneisen parameter describes contributions to the LTECs of crystals in
terms of the modes of vibrations. Thus, a large negative Grüneisen parameter due to the
ZA mode corresponds to large thermal contraction. Overall, our computed LTECs of h-BN
and graphene agree, in terms of the order and features, with earlier theoretical [18,37,60]
and experimental [41,42,61] studies but quantitatively differ, as shown in Figure 6. For
graphene, our result is quite similar to the theoretical studies by Reference [18] (shown by
the green curve in Figure 6a). The slight quantitative difference might be attributed to the
difference between the computational parameters (such as the applied strain) for our study
and theirs. With respect to the experimental results, even though they are widely dispersed,
the deviation between the theoretical (including our result) and the experimental studies of
Reference [41] (orange color curve) and [42] (blue color curve) might be associated with the
limitations of QHA (such as the exclusion of anharmonicity) within DFPT or perturbation
due to the substrate effect on graphene.

Following the computation of the LTECs of h-BN and graphene, which are consistent
with other studies, we applied the same method to compute the LTEC of HCBN. Figure 7a
shows the LTEC of HCBN in comparison with that of graphene and h-BN. As observed in h-
BN and graphene, HCBN has negative LTECs but of smaller magnitude than the two parent
materials. The thermal contraction occurs over a smaller range of temperature (0–300 K)
than in the case of h-BN and graphene, for which it spans the range up to 1000 K. The LTEC
curve of HCBN is quite unique; it decreases with temperature and reaches a minimum
of −1.0 × 10−6 K−1 within 0 to 80 K, then it rises until a maximum of +0.6 × 10−6 K−1

is attained at around 500 K. Beyond this temperature, the LTEC steadily decreases with
temperature and remains positive up to 1000 K. To further analyze the features of the curve,
Figure 7b shows the in-plane mode-dependent Grüneisen parameter for HCBN. At low
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temperature, when most of the optical modes are not excited, the lowest acoustic mode
becomes excited, yielding the dominant negative Grüneisen parameter and contributing
to the negative LTEC. As the temperature increases, the optical modes that correspond to
the positive Grüneisen parameter become excited and contribute to the thermal expansion.
It can be seen that the negative LTEC of HCBN due to the ZA mode is similar to that of
the graphene and h-BN. This phenomenon is known as the “membrane effect” and was
first proposed by Lifshitz [59] who suggested ZA (bending) modes in layered materials
to be responsible for the negative LTECs. Recent studies [62–64] on thermal expansion of
layered materials have confirmed this idea.
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In the following, we present our results on other relevant thermodynamic properties,
namely temperature-dependent heat capacities at constant pressure (Cp) and bulk moduli.
Figure 8 shows the temperature-dependent specific heat capacities for all the three materials
considered. The Cp was calculated using Equation (5), and it is nearly the same for all
the three two-dimensional (2D) crystals, except at low and high temperatures. At room
temperature, graphene has the lowest specific heat capacity, followed by HCBN, whereas
the highest Cp was calculated for h-BN. However, at high temperatures around 1500 K, the
order of the Cp is reversed. That is, graphene has the maximum value, followed by HCBN
and h-BN. To validate our computational procedures for Cp, we compared our results with
those of References [65,66] (the black circles and green triangles in Figure 8) and found a
very good agreement with the literature values.

Finally, our results of the temperature-dependent isothermal bulk moduli for the three
crystals are shown in Figure 9. From the figure, it is seen that the bulk moduli increase
with the temperature for all the three systems considered in this study. Comparing the
bulk modulus of HCBN with the parent systems at different temperatures, we observed
that it is different except at certain temperatures. At 0 K, HCBN and graphene have the
smallest and the largest bulk modulus, respectively. As the temperature increases, the bulk
modulus of HCBN rises faster than for the parent systems, crossing the curves of h-BN
and graphene bulk moduli at ~60 and 130 K, respectively. As the temperature increases to
300 K and beyond, HCBN attains the largest bulk modulus. Therefore, HCBN is the least
compressible at high temperatures, while at 0 K it is the most compressible of the three
considered 2D materials.
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4. Conclusions

We present a first-principles study of the vibrational, electronic, and thermodynamic
properties of HCBN and a comparison of the results with the corresponding properties of
h-BN and graphene. The electronic properties were calculated at the HSE06 and PBE levels,
while the vibrational and thermodynamic properties were computed at the level of LDA
using QHA. All our calculated properties of h-BN and graphene are consistent with the
available theoretical and experimental data from the literature.

Our calculations show that HCBN is a semiconductor with a finite bandgap of 2.43 eV.
All positive frequencies of the phonon dispersion accede to its dynamic stability. The
thermodynamic properties are as fascinating as those of graphene and h-BN. For instance,
the Cp is comparable to the parent systems except at low and high temperatures. At low
temperatures, the Cp is greater than that of graphene but lower than that of h-BN, while at
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high temperatures, the Cp of HCBN is slightly greater than that of h-BN but lower than
that of graphene. The rising response of the bulk modulus to changes in temperature is
more rapid than for the parent systems. Compared to h-BN and graphene, HCBN is more
compressible at low temperatures, whereas at high temperatures it is the least compressible
of the three systems.

The membrane effect proposed by Lifshitz [59] and considered to be a characteristic
of layered materials is also observed in HCBN; the negative thermal expansion is due to
the main contribution from a ZA (out-of-plane acoustic) phonon mode. This mode leads to
a largely negative Grüneisen parameter, the contribution of which to the negative LTEC
dominates over other (planar) modes at low temperatures. However, at high temperatures,
HCBN has a positive thermal expansion coefficient, while LTECs of the parent systems
remain negative even up to 1000 K. HCBN has the smallest thermal contraction in compari-
son with the parent systems at low temperatures but a positive and finitely small LTEC at
high temperatures. It is important to mention that 2D materials with high bulk moduli and
low LTECs are sought after in ultra-fast integrated electronic devices for heat management.
h-BN and graphene are known to be suitable for such applications. However, they are not
suited for applications where semiconductors are required. The HCBN investigated in this
study is a semiconductor and has a lower LTEC than the parent systems. Moreover, the
bulk modulus is superior to the parent systems at high temperatures.
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