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Abstract: Indium tin oxide (ITO)-free optoelectronic devices have been discussed for a number of
years in the light of a possible indium shortage as demand rises. In particular, this is due to the largely
increased number of flat panel displays and especially liquid crystal displays (LCDs) being produced
for home entertainment TV and mobile technologies. While a shortage of primary indium seems far
on the horizon, nevertheless, recycling has become an important issue, as has the development of
ITO-free electrode materials, especially for flexible liquid crystal devices. The main contenders for
new electrode technologies are discussed with an emphasis placed on carbon-based materials for
LCDs, including composite approaches. At present, these already fulfil the technical specifications
demanded from ITO with respect to transmittance and sheet resistance, albeit not in relation to cost
and large-scale production. Advantages and disadvantages of ITO-free technologies are discussed,
with application examples given. An outlook into the future suggests no immediate transition to
carbon-based electrodes in the area of LCDs, while this may change in the future once flexible displays
and environmentally friendly smart window solutions or energy harvesting building coverings
become available.
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1. Introduction

Indium was discovered in 1863 by Reich and Richter, who were two chemists studying the ores
from the mines of the region around Freiberg in Germany. It is one of the critical metals for the modern,
technologically oriented industry [1]. Mined from zinc sulphide ores, it is a minor component and produced
during the refinement process of the major component, zinc. In technology, it finds its main uses in the
production of transparent electrodes as an indium–tin alloy, ITO, or indium tin oxide, consisting of indium
oxide (In2O3) and tin oxide (SnO2) at a mass ratio of 9:1, or 74% In, 8% Sn, and 18% O2 [2].

The primary indium production is mainly located in China, South Korea, Japan, and Canada
(Figure 1a), which contribute nearly all of the world’s current annual indium production of roughly
800 tons per year [3]. This amount has been relatively stable and constant over the last decade
(Figure 1b) [4], while during the three decades before (1980–2010), the production has increased more
than tenfold. The constant primary indium production should not disguise an increasing demand of
the metal, even over the last decade. This has several reasons; firstly, there has been an increase in
secondary indium production through recycling, and secondly, stored overproduction in China has
been released onto the world market. It is thought that the secondary indium production has by now
reached a similar level as the primary production, fulfiling the current total world demand of indium,
which is in the order of about 1300 tons per year. While prices had been steeply increasing during the
beginning of the 21st century, they have been dropping recently from about $600 per kg to roughly
half of that value (Figure 1c) [4] due to reasons mentioned above. The main end-use of indium by far
is found in the display technology, having shifted nearly exclusively from CRTs (cathode ray tubes)
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to flat panel displays (FPDs) over the last two decades. This is followed by the use as solder and in
photovoltaics and solar cells (Figure 1d) [5]. Since the display market is by a large margin the main
consumer of indium in the form of ITO, this paper will place an emphasis on this technology.
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Figure 1. (a) Proportion of primary indium production for the main producer countries, China,
South Korea, Japan, and Canada in 2018. (b) Quantity in tons of worldwide primary indium production
per year for the last decade (2010–2019). (c) Price of indium in US$ per kg for the last decade (2010–2019).
(d) The main uses of indium can be found in the production of flat panel displays, as solder and in
photovoltaics/solar cells, 2015. [Data collected from references [1–5]].

In recent years, there has been a controversial discussion about the exhaustion of indium supplies
for the technology industry. While first claims of the supply of indium being at threat already in
the mid 2020s have proven to be incorrect [6], it is estimated that imminent shortages may occur
over the next one or two generations, approximately around the year 2050 [7]. Of course, such an
estimate is quite hard to make, as it does not only rely on an estimation of the remaining primary
indium deposits and the rate of increased consumption—one also has to take into account increasing
incentives for recycling through policy changes, the price development of indium, and therefore the
viability of different recycling processes and technological developments. This is just naming some
of the factors, which have a relatively large margin of error for prediction. For example, during the
sputtering process of ITO, roughly 90% of the material actually remains in the production machine,
which is viable for industry to be recycled. However, the recycling of indium from end-of-life displays
is not yet viable. This may change as the resources become increasingly scarce and the price of indium
increases. Yet, the recycling of display components in general may also be brought about through
political measures and the drive for greener technologies.

This can illustratively be seen by the real cost of the different components installed in a liquid crystal
flat panel display. The actual display sandwich cell is constructed of two ITO-coated glass substrates
onto which polarizer films are laminated. The ITO films act as transparent, conductive electrodes.
The substrates are glued together, being kept at a distance of approximately 5 µm through spacers.
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Alignment layers, often rubbed polyimide, assure a uniform orientation of the liquid crystal, which is
filled in the narrow sandwich cell gap. One of the glass substrates hosts an arrays of thin film
transistors (TFT) to address individual pixels and produce grey-scale levels, while the other contains
red–green–blue (RGB) colour filters providing the overall video rate colour images of, for example,
a movie (see inset of Figure 2). In contrast to popular belief, it is neither the liquid crystal nor the
indium of the ITO-coated glass sheets that carry the main cost of a display. The most expensive
components of a flat panel display are in fact the backlight, and the colour filter, if one ignores the
indirect, personnel, and sales costs (Figure 2). From this point of view, it becomes clear that indium
recycling from end-of-life displays cannot be a viable solutions for industry, but that only an overall
recycling solution can be strived for, which includes glass, polarisers, and electronics. This would also
be desirable for environmental reasons.
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Figure 2. Cost of the components of a liquid crystal display (LCD). The inset depicts the actual
construction of a standard sandwich cell for display devices. [Reproduced by permission after [8]].

At the present, end-of-life products do not play a significant role for recycling. Nevertheless,
much research is being done, and limitations in primary indium production as well as environmental
aspects can increase the amount of recycled flat screen TVs, computer monitors, laptop displays,
and mobile phones in the future.

Currently, the country with the largest recycling capability of indium (secondary production
mainly from waste products during manufacturing) is Japan, followed by China, Belgium, and South
Korea (Figure 3a) [5]. Naturally, the largest amount of indium is recycled from liquid crystal display
(LCD) TVs and computer monitors, while tablets, smartphones, and mobile phones play a much less
significant role. This is due to the obviously much smaller display size of the product, but also because
these devices are often not simply disposed of, but often kept in cupboards. The overall amount of
indium recycled from end-of-life display devices is of the order of 80 tons, representing approximately
10% of the secondary indium production [8]. The amount of indium retrieved from one ton of electronic
display waste varies between about 100 and 1400 g, depending on respective device products and
treatment methods [9].
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A typical recycling process is schematically depicted in Figure 3c. It starts with the collection of
end-of-life liquid crystal display devices, which are then manually disassembled into a number
of different fractions, including plastic housing, metal pieces, cables, printed circuit boards
(PCB), cold cathode fluorescent lamps (CCFL) of the backlight, optical foils, and light guides.
Once disassembled, the polariser from the actual LCD panel is often removed by thermal [11]
or chemical methods [12]. In some processes, polariser foils are also recovered after a thermal shock
treatment [13]. Then, the liquid crystal (LC) is removed in a chemical process, generally by dissolution
with an organic solvent. This leaves the ITO-covered glass, which needs to be mechanically crushed
and milled to reduce the size to a powder of approximately 10–20 µm grain size [14]. Different milling
processes can be employed, leading to variations in indium recovery efficiency. To separate the ITO
and therefore indium from the glass, two principle process may be employed: a thermal process
and the more widely researched hydrometallurgical processes. The former consists of vacuum
chlorination [15] or vacuum carbon reduction [16], while the latter uses leaching with mainly HCl,
H2SO4, or HNO3 [11,17] to separate the glass from the leachate, which contains different metals such
as In, Se, Fe, and Al. Then, these are further separated by solvent extraction [18,19] or cementation [20].

The topic of indium recycling, different strategies and applied methods, is obviously too extended
to be treated comprehensively in this review, which is rather concerned about the possible replacement
methodologies of ITO in the liquid crystal technology sector based on carbon allotropes. Thus, we refer
the interested reader to some excellent reviews on the aspects of indium recycling. A first summary of
the recovery of valuable materials from waste liquid crystal display panels has been given by Li et al. [21]
already more than a decade ago. A more recent review of recycling indium from waste LCDs was
published by Zhang et al. [22]. The recent advances of indium metallurgy were reviewed by Pradhan
and co-workers [23], with a particular view on comparing mining and secondary indium production
from LCDs. The potential and strategies for recycling LCDs was discussed by Ueberschaar et al. [8],
while a very recent review with a particular focus on indium was published by Fontana et al. [10].
An enlightening analysis of the techno-economic aspects of waste LCDs as a source of value for
electronic waste treatment centres can be found in a work by D’Adamo et al. [24], while Amato and
Beolchini [25] provide a recent patent review for recycling of end-of-life liquid crystal displays.

2. Non-Carbon ITO Replacement Technologies

Above, we have shortly discussed indium (In) and indium tin oxide (ITO), as well as some
recycling aspects of that critical metal, because ITO is still the by far most used material for transparent
electrodes, not only in liquid crystal display (LCD) technology, although this makes up most of its
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global use. There are several reasons behind this fact. Firstly, it simply is the major established
technology in industry, which is reluctant to change when devices work perfectly fine. With a resistivity
of approximately 10–30 Ω�−1 for a film of approximately 200 nm thickness and a transmission of
>90% for optical wavelengths, ITO outperforms most of its rivals. Secondly, its properties rival most
replacement methods with respect to transmission, which is a key factor in display devices. A third
reason is its environmental stability against degradation. LCDs based on liquid crystal-filled ITO
sandwich cells or panels are UV stable and can last for several decades. Nevertheless, the use of ITO
also has its drawbacks. The first lies in the production process of ITO coated glass, which is based
on sputtering techniques. These are slow in production and relatively expensive due to losses and
the high temperatures and vacuum equipment needed. Solution-based processes as used for other
transparent electrode materials are much faster and mostly cheaper. Another disadvantage of ITO
is a certain brittleness, which makes other materials better suited for flexible substrates, which is a
display development that is predicted to strongly increase in the future. For these reasons, as well as
the discussed limited natural resources of indium, a range of other materials are currently developed
for the use as flexible, transparent electrodes. These include doped metal oxides other than ITO,
metal grids, silver nanowires and meshes, conductive polymers, ultrathin metal films, carbon nanotube
films and graphene, as reviewed by Cao and co-workers in reference [26]. In the following, we will
shortly introduce some of these materials before concentrating in more detail on the carbon allotropes
as well as carbon-based composites.

2.1. Metal Nanowires

One of the most promising materials that may be used to replace ITO as transparent electrodes
in future technologies are most likely meshes or thin films of metal nanowire networks [27,28].
Two different metals are commonly used, Cu [29,30], and the even more popular Ag nanowires [31–40],
due to their very high conductivity. A comparative study of yet another few materials used (Cu, Ag,
Al, and Au) can be found in reference [41].

The metal nanowires have a quite polydisperse length of the order of 100 µm and are very thin
with a diameter of approximately ≈20 nm (Figure 4). One of the main advantages of nanowires is their
processing possibilities, which includes solution processing and electro-spinning, which makes them
most suitable for flexible polymer substrates. They can be produced as random thin film networks,
meshes, and oriented structures, which can also be aligned.
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micrograph of a thin film of a random Cu nanowire mesh. (c) Performance of Cu and Ag nanowires Figure 4. (a) Polydisperse size distribution of a metal nanowire made from Cu. (b) Scanning electron
micrograph of a thin film of a random Cu nanowire mesh. (c) Performance of Cu and Ag
nanowires as transparent electrode materials in comparison to indium tin oxide (ITO), as well
as other materials such as carbon nanotubes (CNT), graphene, or organic conductive polymers such as
poly(3,4-ethylenedioxythiophene) (PEDOT) and its additive poly(styrene sulfonate) (PSS), that forms
the transparent, conductive polyelectrolyte complex PEDOT:PSS. [Figures reproduced by permission:
(a) from [42]; (b) from [43], (c) from [27]].
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With respect to performance as transparent electrode material, the main parameters are sheet resistance
R, which should be low, and transmittance T, which should be high. The industry standard for ITO is
approximately R ≈ 10 Ω�−1 and T ≈ 93%. As can be seen from Figure 4c, silver nanowire electrodes
achieve a similar performance as ITO, while copper nanowires lag behind in sheet resistance for the
required transmittance, or alternatively, if they achieve the required sheet resistance, the transmittance
strongly decreases to values not acceptable or optical applications, such as liquid crystal displays. Currently,
it appears that the only real alternative to ITO with regard to the physical performance side is Ag nanowires,
which also explains why the main effort in metal nanowire research lies on these materials, as is evidenced
in the number of review articles specifically written about silver nanowires. Langley et al. [44] have
reviewed the fabrication, properties of Ag nanowires, and applications employing the latter as electrode
material. Two much more recent summaries of the current state-of-the-art with respect to Ag nanowire
networks have been written by Dongchen Tan et al. [45] and by Wenting Li et al. [46].

2.2. Conductive Polymers, PEDOT:PSS

Of all the conductive polymers [47,48], it is poly(3,4-ethylenedioxythiophene) (PEDOT) and its
additive poly(styrene sulfonate) (PSS), which form the transparent, conductive polyelectrolyte complex
PEDOT:PSS [49–55], which are by far the most prominent to be used as electrode materials. The chemical
structure of PEDOT:PSS is shown in Figure 5a, together with a schematic representation of the polymer
film formed from gel particles in dispersion with water. The grey areas of the film are PSS rich, while the
blue areas are PEDOT: PSS rich, with crystalline regions that enhance the conductivity.
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Figure 5. (a) Chemical structure of PEDOT:PSS, which is solution processed in water via the
formation of gel particles. The resulting polymer film of PEDOT:PSS-rich regions and PSS-rich
regions on a substrate forms a transparent conductive layer. The conductivity is enhanced by the
crystalline PEDOT:PSS regions. (Reproduced by permission from ref. [56]). (b–d) show the optical
and electro-optical performance of a liquid crystal cell compared between an ITO and polyimide
coated glass substrate versus a PEDOT:PSS electrode layer. While the transmittance performance
of the PEDOT:PSS electrode is outperformed in the visible optical region by the ITO electrode (b),
the switching characteristics (c), as well as the switching dynamics (d) of the respective liquid crystal
devices are quite similar. (Reproduced by permission from ref. [57]).

The performance of PEDOT:PSS as an electrode material in comparison to ITO reveals that the
transmittance of up to T ≈ 95% can in fact be similar to that of ITO, while the sheet resistance is
usually substantially larger, in the order of several 100 Ω�−1. As with most of the electrode materials,
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transmittance versus sheet resistance is a trade-off in performance. For PEDOT:PSS with a sheet
resistance comparable to that of poor ITO (R ≈ 60 Ω�−1), the transmittance reduces to below 80%,
which is not acceptable for high-performance liquid crystal devices.

Nevertheless, some liquid crystal applications have been demonstrated in which the ITO electrodes
were replaced by PEDOT:PSS. These were mainly applications where solution processing is desirable,
for example in devices with flexible substrates. One of such applications is polymer-dispersed liquid
crystals (PDLC), where liquid crystalline droplets are dispersed in a polymer matrix. These devices
switch from a scattering mode at zero-applied electric field to a clear, transmissive mode for applied
voltages. An exemplary device was presented with post-treated PEDOT:PSS electrodes [58], where it
was shown that the electro-optic performance was comparable to that with ITO electrodes. Similarly,
such a technology has been used to demonstrate privacy windows on the basis of electrodes combining
Ag nanowires with PEDOT:PSS, which exhibited a performance slightly diminished to that using ITO
electrodes [59]. A different application of PEDOT:PSS electrodes are flexible liquid crystal contact lenses
with a variable focal length [60]. However, also, more traditional display designs were accomplished
with PEDOT:PSS electrodes, a normal twisted nematic (TN) cell [57], vertically aligned nematic (VAN)
cells [61], or TN devices for phase shifters in the THz frequency regime [62].

The chemistry, structure, and electronic transport properties have been reviewed in detail in some
recent publications by Xia et al. [63], Kayser and Lipomi [64], and very recently by Gueye et al. [65]
and by Huseynova et al. [66].

2.3. Ultrathin Metal Films

Another alternative to the use of ITO as electrode materials that has been proposed is to
employ metals of larger availability, for example silver, gold, copper, or aluminium, as ultrathin
layered transparent films [67,68]. One of the problems with the production of ultrathin metal layers,
which exhibit a thickness of approximately 3–10 nm, is the growth of islands [69,70], which is shown
in Figure 6a for an ultrathin silver film. This leads to a percolation threshold behaviour for the
conductivity (and thus sheet resistance). This island growth may be reduced or even avoided through
the addition of seed layers [71–78], which are often Ge, TiO2, Al, Au, Cr, or Ni.
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Figure 6. (a) Island formation of an ultrathin Ag transparent conducting film leading to a rough surface
morphology (bottom), which can be avoided by doping with Al (top) (Reproduced by permission from
ref. [79]). (b) Transmission versus sheet resistance performance of a range of ultrathin Ag, Au, and Cu
films produced with seed layers and/or doping. Ultrathin metal films can outperform ITO in terms of
sheet resistance, but they generally have lower transmittance.
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The wetting behaviour of the metal on the substrate is one of the key factors for reducing the
percolation threshold, as well as the surface roughness [80]. Seed layers of thickness 1–2 nm [81]
and doping [82–85] of the ultrathin metal films often with Al, N, or O, are the main parameters to
adjust the wetting behaviour.

Figure 6b summarises the T-R performance of a collection of data on ultrathin metal films of Ag,
Au, and Cu, produced by a variety of methods including seed layers and doping. The data can be
found in tabular form in the excellent recent review on ultrathin metal films as transparent electrodes
by Yan-Gang et al. [86]. From the graph, it is apparent that ultrathin metal films can outperform
ITO in terms of sheet resistance, which can be decreased to well below 10–20 Ω�−1. Problems in the
replacement of ITO electrodes are related to the transmittance values, which are quite clearly below
90% in nearly all cases, representing the barrier threshold for any electrooptic applications utilising
liquid crystal technology. Furthermore, besides the optical performance, also the production process of
ultrathin metal films represents no strategic improvement over standard ITO electrodes, as discussed
in the review by Yun [87].

3. Carbon Allotropes as Electrode Materials

Due to the possibility of large conductivities and charge mobility, carbon nanotubes as well
as graphene have been discussed as potential materials for transparent electrodes for a number of
years [88–90]. The clear advantage of these materials over ITO, but also other methods such as ultrathin
metal films, lies in the possibility for solution processing, which enables the production of flexible
electronics and displays in conjunction with polymer substrates. One of the problems is the poor
solubility, which has partially been resolved by the use of surfactants [91,92]. On the other hand,
this use of surfactants or even covalent bonding of dispersion agents negatively affects the conductivity.
Nevertheless, in recent years, some enhanced solutions have emerged.

3.1. Single-Wall and Multi-Wall Carbon Nanotubes

The main issue of using carbon nanotubes as materials to form thin network sheets as transparent
electrodes is again the trade-off between transmittance at optical wavelengths and sheet resistance [93–99],
as shown in Figure 7 [100].
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Figure 7. (a) Transmittance versus sheet resistance for single-walled carbon nanotube films processed from
either an organic or an aqueous solution. At acceptable transmittances for liquid crystal-based devices
(T > 90%), the sheet resistance of approximately R ≈ 200–300 Ω�−1 falls far short of the requirements of
R ≈ 10–20 Ω�−1. (b) SEM image of a typical carbon nanotube network film, which demonstrates a quite
large roughness (Reproduced by permission from [100]).

Due to the poor interconnectivity between nanotubes and nanotube bundles in the film, the sheet
resistance is increased. Surfactants or dispersing agents further reduce the conductivity and thus
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increase the sheet resistance. The sheet or network conductivity can be described by a percolation
mechanism [36,101], which already indicates that poor interconnectivity between carbon nanotubes is
one of the major problems, and that an understanding of the conductivity mechanism involves a fragile
balance between carbon nanotube quality, solubility, dispersion agent, and processing conditions.
This is essential for a reproducible and thus commercially viable source of carbon nanotube network
films for transparent electrodes. Further, the sheet resistance of those electrodes at approximately
R > 200 Ω�−1 for acceptable transmittance values of T > 90% is still too large. Any solution based on
carbon nanotubes alone, which reduces the sheet resistance, decreases the transmittance to unacceptable
values (Figure 7a). A further problem, specifically also with respect to liquid crystal applications, is the
roughness of the carbon nanotube films (Figure 7b). These issues of interconnectivity and roughness
have been addressed by post-treatment with strong acids, such as HNO3 [102].

Thin nanotube network films [103–106] and treated films for increased conductivity [107–109]
may be used as electrodes for liquid crystal devices. In addition to the feature of acting as an electrode,
one would like to incorporate further functionality, for example, the action as a patterned substrate [103]
or an alignment layer [110–112]. Most often, this would be a planar alignment of the liquid crystal,
for example, in a TN cell, as shown in Figure 8a. This can be achieved by aligned nanotubes or nanotube
bundles, which are depicted at different magnifications in Figure 8b. The liquid crystal molecules
will align in such structures with their long molecular axis parallel to the natural grooves, which are
otherwise generated through rubbing a polymer layer that is spin-coated onto the ITO electrode. In the
case of the aligned nanotube films, the latter fulfils both functions at once: that of the electrode and
that of the alignment layer.
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Figure 8. (a) Schematic illustration of a twisted nematic (TN) cell using a film of oriented
carbon nanotubes as electrodes and at the same time as an alignment layer for the liquid crystal
molecules. (b) SEM images at different magnification of such an aligned carbon nanotube film.
(c) Electro-optic switching curve of a TN cell with carbon nanotube electrode/alignment films,
switching from bright at zero applied voltage to dark at applied electric field above a threshold
voltage. (Reproduced by permission from reference [111]).

For a TN cell, the orientation direction of both substrates is chosen such that the bottom and
top alignment are at an angle of 90 degrees. Incoming linear polarised light is guided by the twisted
structure and can pass the crossed polariser. The device appears transmissive, or bright without
applied voltage, as shown in Figure 8c. Application of an electric field above the threshold causes the
positively dielectric liquid crystal to reorient the long molecular axis, which is at the same time the
optic axis, along the field direction, perpendicular to the substrates. Incoming linear polarised light is
not affected by the LC and is absorbed by the crossed polariser. The device appears black. A typical
transmission curve of a TN device as a function of applied voltage via the nanotube electrodes is also
shown in Figure 8c. Although most often employed, not only single-wall carbon nanotubes (SWCNTs)
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can be used for applications as electrodes in liquid crystal devices, but also devices with multi-wall
carbon nanotubes (MWCNTs) are feasible [113–115], albeit at even higher sheet resistance.

Similarly, it was very recently demonstrated that also a vertically aligned liquid crystal device
can be constructed with nanotube electrodes and alignment [116]. Nanotubes are (nearly) vertically
grown on the substrate, and the liquid crystal orients perpendicular with its long molecular axis to
the substrates on both sides. Here, the long molecular axis represents the director and thus the optic
axis. When viewed at zero applied voltage between two crossed polarisers, the device appears black
in the off state, as there is no birefringence when the direction of light propagation is along the optic
axis. Incoming linearly polarised light is unaffected by the LC and absorbed by the crossed polariser.
In the case of such a vertically aligned cell, one employs a liquid crystal with a negative dielectric
anisotropy. This will switch from homeotropic to planar for an applied voltage above a threshold
voltage, leading to an electro-optic response of the cell, as shown in Figure 9a. The corresponding
schematic device with nanotube alignment electrodes (grey) and liquid crystal orientation (yellow)
is shown for the electric field on- and off-state in Figure 9b,c, respectively.
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Figure 9. Electrooptic response of a vertically aligned liquid crystal device with nanotube electrodes
and negative dielectric liquid crystal (LC). (a) Typical transmission versus voltage curve, due to the
birefringence changes between crossed polarisers. The device is dark in the “off-state” and bright in
the “on-state”. (b,c) Schematic orientation of the liquid crystal in the on- and the off-state, respectively.
(d) The change in transmission between crossed polarisers as the negative dielectric liquid crystal
responds to the applied increasing voltage. (e) Dynamic switching response of the cell with response
times in the ms range for the electric field driven switching into the on-state, and in the 10s of ms
range for the elastically-driven switching into the off-state. The response is similar for the nanotube
electrodes as compared to a commercial cell. (Reproduced by permission from [116]).

When viewing the device between crossed polarisers, one thus observes an increasing transmission
from the dark off-state to the bright on-state, as the voltage across the cell is increased (Figure 9d).
The dynamic response of this device is depicted in Figure 9e. The response time for the dark off- to
the bright on-state is dependent on the applied electric field and of the order of a few milliseconds.
That of the transition from the bright on- to the dark off-state is longer, as it is not driven by the electric
field but dominated by elastic interactions between the liquid crystal and the homeotropic substrate.
One should also note that the very slight offset angle of the nanotube alignment from the right angle
to the substrate (Figure 9a) is in fact intentional and of great advantage, as it prevents the formation
of so-called reverse tilt domains, which degrade the performance of any vertically aligned nematic
LC device.

We should mention at this point that also other display devices based on liquid crystals have been
realised with nanotube film electrodes, such as polymer-dispersed liquid crystals (PDLC) [117].
These are scattering devices without the use of polarisers. Liquid crystal droplets of the low
micrometre-size range are dispersed and phase separated within a continuous polymer matrix.
This leads to light scattering as the LC director is randomly oriented. Application of an electric field via
nanotube film electrodes causes the director to align with the field direction. The refractive index of the
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surrounding polymer matrix is matched to that of the long molecular axis and scattering is diminished,
the device becomes transparent. PDLCs have their application as privacy windows, and nanotube
electrodes can be produced as flexible foils.

Other applications of conductive, transparent nanotube film electrodes in liquid crystal devices
are mostly found as hybrid materials with other technologies, such as Ag nanowires, PEDOT:PSS,
or graphene, and these will be discussed in more detail below. A review of the fabrication, properties,
and applications of carbon nanotube thin films was published by Liangbing Hu et al. [118] and more
recently by Hirotani and Ohno [119], concentrating on flexible electronics applications.

3.2. Graphene, Graphene Oxide, and Reduced Graphene Oxide

Due to its high electric conductivity, transparency, and mechanical stability, graphene and
its derivatives appear to be ideal materials for transparent, ITO-free electrodes that offer solution
processibility and the potential for flexible devices [120–128]. In principle, for single-layer graphene,
a transmittance of T = 97.7% can be achieved with a sheet resistance of approximately R ≈ 30 Ω�−1.
These are theoretical values that have very closely been reached experimentally under laboratory
conditions [129–132]. Under more realistic conditions, on the other hand, for real graphene thin films,
flake sizes imply that multi-layers may exist and that there are grain boundaries both affecting the
transmittance and the sheet resistance. Therefore, as in the case of carbon nanotubes, there will be a
trade-off between conductivity, transmittance, device lifetime, and cost [133,134].

Probably, the first LC device made with graphene electrode is a cell shown schematically in
Figure 10a, consisting largely of graphene on a glass substrate, a polyvinyl alcohol alignment layer,
and the nematic liquid crystal, which is covered by a top substrate with an ITO electrode [128].
The electro-optic response as a function of applied increasing voltage is shown in Figure 10b,
switching the liquid crystal from a bright zero volt off-state to a dark on-state.
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Figure 10. Liquid crystal sandwich cell made of a graphene layer electrode and an ITO electrode.
(a) The cell is constructed of 1O a glass substrate, 2O a graphene layer, 3O electrical contacts, 4O an alignment
layer, 5O the liquid crystal layer, 6O another alignment layer, 7O an ITO electrode, and 8O the top glass
substrate. (b) Due to the positive dielectric anisotropy of the LC, the optic axis switches from planar to
homeotropic; thus, it switches from bright to dark between crossed polarisers for increasing voltage.
(c) Light transmission through the 20-µm thick LC device as a function of applied voltage. The inset
depicts the low-voltage regime in more detail for monochromatic green light (505 nm, blue curve)
and for white light (red curve). (Reproduced by permission from ref. [128]).

The transmission through the 20 µm thick LC device is shown in Figure 10c for monochromatic
green light with a wavelength of 505 nm (blue curve), as well as for white light (red curve in the inset).
The oscillatory behaviour of the transmission is due to the change in birefringence, as the molecular
long axis reorients for increasing applied voltage, which results in an additional phase retardation of
several multiples of π.



C 2020, 6, 80 12 of 28

We have seen above that aligned nanotube films can be used not only as electrode material but
simultaneously as an alignment layer for the liquid crystal. A similar behaviour can be observed for
graphene due to the π–π interaction of the carbon honeycomb lattice with the phenyl-ring system of
the liquid crystal core. This has been exploited in nematic devices [135,136] as well as a ferroelectric
liquid crystal (FLC) cell with graphene electrodes and alignment [137].

Another advantage of graphene electrodes is the possibility to produce flexible substrates on
polymer films, as shown in Figure 11. The graphene film is grown on a copper foil, which is laminated
to the polymer film. In an etching step, the copper is removed, and the flexible graphene on polymer foil
electrode is obtained. This has been shown to produce flexible substrates of sizes up to 30 inches [121],
but it may be extended to even larger sizes, which is suitable for example for the use in the production
of touch screen displays or PDLC privacy windows. The process can be repeated for a layer by layer
increase of the graphene film. The successive addition of graphene layers reduces the transmittance
in the optical wavelength regime (Figure 11b), while it decreases the sheet resistance (Figure 11c).
Once again, a compromise needs to be made between high transmittance and low sheet resistance,
although for 3-layer substrates, the performance comes close to that of ITO, with the additional benefit
of flexibility, as shown in Figure 11d or the touch panel of Figure 11e.
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Figure 11. (a) Schematic of the roll-to-roll production process of 30” flexible polymer foils with
a graphene electrode. (b) The transmittance of the transparent and flexible electrode depends
on the number of graphene layers, decreasing for increasing graphene film thickness. (c) At the
same time, the sheet resistance decreases for increasing graphene film thickness, illustrating the
trade-off that needs to be managed. In the given example, a 3-layer film is probably the best
compromise between high transmittance and low sheet resistance, approaching the performance of
ITO electrodes. (d) Visual example of a transparent flexible assembled touch panel from graphene/PET,
and (e) graphene-based touch screen with computer control (Reproduced by permission from [121]).

Other applications of ITO-free, flexible, and transparent graphene electrode liquid crystal devices
can be found in the previously discussed Polymer-Dispersed Liquid Crystals (PDLC) for example as
privacy or smart windows [138,139]. These will be discussed further in Section 4.

Furthermore, to reduce costs, it has also been attempted to exploit reduced graphene oxide (rGO)
as electrode material [140–144]. This can be obtained from graphene oxide (GO) through thermal
reduction, i.e., heating to approximately 160 ◦C, when GO loses its surface and edge attached epoxide
and hydroxide functional groups. While GO is non-conducting, rGO regains some of the conductivity
of graphene. It should be noted though that the sheet resistance of rGO films is much larger than that of
graphene or indeed ITO, at values of approximately RrGO≈1–50 kΩ�−1. In addition, the transmittance
is generally not quite acceptable for high-end display applications, ranging at about TrGO ≈ 80%.
This performance can be somewhat improved by acid treatments [145] or the doping and attachment
of Ag nanoparticles [146].
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As in the case for carbon nanotubes, much research is being done to increase the performance
of graphene or graphene-based materials as electrodes, which are to be exploited effectively for
electro-optic and flexible electronic devices. Here, one may resort to hybrid materials with PEDOT:PSS or
silver nanowires or even nanotube/graphene hybrids for improvement, as will be discussed in more
detail in the next section. Several reviews can be found on the topic of graphene-related materials
as transparent, flexible electrodes, discussing different systems, preparation, and applications in
detail [147–150].

4. Carbon Composite Technologies

From the discussion of many of the options to replace ITO by other materials, we have so far
concentrated our attention on the use of single materials, such as metal nanowires, conductive polymers,
ultrathin metal film, and especially carbon nanotubes and graphene. While there are materials with
properties approaching those of ITO in terms of high transmittance and low sheet resistivity, there is no
competitor that is clearly standing out. Thus, one can try to combine the various advantages of different
approaches in such a way that the shortcomings of one material may be compensated by another
through hybrid approaches or composite materials. In the following, we will focus on composites
incorporating carbon allotropes.

4.1. Nanotube-Based Composites

One of the popular combinations is that of metal nanowires with carbon nanotubes [151–153].
An example is shown in Figure 12, where a network of silver nanowires (Ag NW) forms a composite with
single-wall carbon nanotubes to make a transparent conducting film [152]. The actual current conduction
is achieved via different junctions, nanowire–nanowire, nanowire–nanotube, and nanotube–nanotube
junctions, while the composite network is embedded in a polymer matrix.
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Figure 12. (a) Schematic illustration of the silver nanowire (Ag NW)–single-wall carbon nanotube
(SWCNT) network and the conductive junctions of the composite. (b) SEM of the surface morphology
of the Ag nanowire–nanotube composite. (c) Transmittance versus sheet resistance at different nanotube
loading, which displays a performance comparable to ITO. (Reproduced by permission from ref. [152]).
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The sheet resistance of the composite at equal transmittance values is lower than that of the Ag
nanowire network alone due to the additional contact junctions formed by the carbon nanotube network.
The electrode performance with a transmittance of 95% at a sheet resistance of 30 Ω�−1 is comparable to
that of standard ITO electrodes, while showing the excellent bending behaviour needed for flexible devices.
Similar results are shown by solution-processed carbon nanotubes with self-assembled Ag nanoparticles,
which form a conductive nanoparticle network with sheet resistance < 10 Ω�−1 and transmittance of
84% [151]. Shin et al. [153] investigated the composites of an Ag metal grid in combination with multi-wall
carbon nanotube (MWCNT) networks as well as graphene films. They found that while the transmittance
was acceptable in all cases of possible combinations, (i) MWCNT, (ii) MWCNT + Ag grid, (iii) graphene,
(iv) graphene + Ag grid, and comparable to that of ITO (93%), the sheet resistance was clearly larger in
cases (i)–(iii) and only comparable to ITO (21 Ω�−1) for the graphene film with an Ag grid composite.

In addition, all-carbon composites of nanotubes and graphene-based materials have been produced.
Double-layer composites of a MWCNT film on rGO [154] showed a drastic reduction of sheet resistance
when the nanotubes were added onto the reduced graphene oxide film from about 30 to 2 kΩ�−1 before
annealing. Even after annealing, the sheet resistance was still reduced by another factor of about 2 or 3.
The transmittance was obviously also reduced as compared to single material solutions, but it remained at
values > 90%, which is sufficient for devices. Similar attempts with multi-layer composites [155] produced
electrodes with a transmittance of 81% and sheet resistance of 8 kΩ�−1. In addition, the use of nanotube
interlinked graphene films [156] did not reach a performance that could rival ITO.

A possibility to increase the performance of nanotube-based composite electrodes is to embed the
composite in a conductive polymer, mostly PEDOT:PSS [157–160]. Cho et al. [157] used multi-wall carbon
nanotube networks for which the sheet resistance was reduced by the addition of gold nanoparticles
anchored uniformly on the outside of the nanotubes. In a plasma treatment step, these nanoparticles fused
individual MWCNTs to form conductive junctions and thus increase the percolation conductivity, leading to
a reduction in sheet resistance of the network from approximately 225 to 50 Ω�−1, which is a value close to
that of ITO (Figure 13). The such connected nanotube network was embedded in a PEDOT:PSS matrix.
Together with a transmittance close to 90%, flexible transparent electrodes were produced, which had a
much-improved bending behaviour compared to that of ITO electrodes. A similar methodology was used
by Shin et al. [158] to achieve a corresponding performance. Furthermore, hybrid composites combining
rGO, MWCNTs, and PEDOT:PSS were realised [159], as well as Ag nanowire–nanotube–PEDOT:PSS
hybrids [160] with 86% transmittance and sheet resistance as low as 7 Ω�−1.

4.2. Graphene-Based Composites

Most single graphene material approaches show that the transmittance of a one to four-layer
graphene film lies above approximately 90%, which is comparable to ITO. Yet, due to the relatively small
graphene flake sizes, there are numerous defects and grain boundaries in such films, which increase
the sheet resistance to values far above those observed for the standard ITO material. This implies
that a hybrid approach is favourable, and as for carbon nanotube films, also for the use of graphene
in electrode materials, the most investigated composite appears to be a hybrid structure of metal
nanowires with graphene-based films [161–166].

Chen and co-workers [161] proposed a co-percolating graphene–Ag nanowire structure in two
different hybrid varieties: (1) Ag nanowire network on a flat film of graphene and (2) Ag nanowire
network covered by a graphene film. While in both cases, the sheet resistance of the hybrid is strongly
reduced from that of a graphene film alone, it is still not competitive with ITO for hybrid-1. On the other
hand, hybrid-2 does exhibit a sheet resistance of about 20 Ω�−1 at a transmittance of approximately
90%. These are values as expected for good ITO electrodes. Given the relatively costly price of
silver and the very much comparable conductivity of copper at much lower costs, it is well worth
exploring the possibility of replacing the Ag nanowire with a Cu nanowire network [162]. Such a
Cu nanowire–graphene hybrid electrode was shown to have a sheet resistance of ≈ 50 Ω�−1 at a
transmittance of ≈ 90%, which is still quite close to the performance of ITO. A similar electrode hybrid
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with Cu nanowires has also been proposed using reduced graphene oxide, rGO, albeit at increased
sheet resistance of 300 Ω�−1 for a 90% transmittance [164]. A hybrid Ag nanowire–GO electrode has
been demonstrated to drive a PDLC display [165].
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Figure 13. (a) Multi-wall carbon nanotubes are uniformly covered with anchored Au nanoparticles.
Through a plasma treatment, these nanoparticles fuse the nanotubes and create conductive junctions.
(b) SEM of a gold nanoparticle-covered MWCNT network. (c) The transmission of the composite embedded
in a PEDOT:PSS matrix exhibits optical transmittance values of the order 85–90% depending on composition.
(d) The sheet resistance is largely decreased through the plasma treatment of the Au nanoparticles anchored
on the MWCNTs. (Reproduced by permission from ref. [157]).

A somewhat different fabrication approach was chosen by Liu et al. [166], in depositing an Ag
nanowire–graphene hybrid material on flexible polymer (PET) substrates through electrophoresis,
as shown in the scheme of Figure 14. The transmittance of the reported device is practically constant
over the optical range of the visible spectrum, and it depends on the applied electrophoresis voltage,
decreasing with increasing voltage amplitude, and generally being still too low at T < 65% for high-end
optical technology. On the other hand, the sheet resistance is in fact well below the normally required
values for ITO-free electrodes.

Another approach that we have briefly touched upon above is the combination of graphene and
nanotubes in all-carbon based flexible and transparent electrodes [155,167]. It should be mentioned
from the beginning that the performance of such electrodes with respect to sheet resistance is by
no standards comparable to ITO—rather in the kΩ�−1 than the low Ω�−1 range and thus far larger
than desired by the liquid crystal display industry. Nevertheless, it is worthwhile to discuss these
approaches because of the excellent flexibility, bending behaviour, processing, and lower costs of
these hybrid materials. Furthermore, these graphene-based composites can in fact be made from the
largely available graphene oxide or reduced graphene oxide. Figure 15 depicts one of such electrodes
composed from multi-layer GO/rGO and MWCNTs.

By atomic force microscopy (AFM), one can clearly resolve the surface morphology of the
multi-layer GO/rGO-MWCNT structures with GO/rGO flakes visible at an average size of approximately
1 µm and MWCNTs on top, leading to a surface roughness of about 10 nm on average. The latter
strongly increase the conductivity, or lowers the sheet resistance, by bridging the grain boundaries and
possible open spaces of the GO/rGO layers. Nevertheless, even after treatment procedures to further
decrease the sheet resistance, the latter is still well in the kΩ�−1 range, much larger than for ITO and
indeed other single material or hybrid electrode materials. While the transmittance is high at about
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95% for small numbers of bilayers, it naturally continuously decreases with increasing the number
of bilayers.
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Figure 14. (a) Schematic illustration of the mechanism to fabricate Ag nanowire/graphene material
on a polymer substrate by electrophoresis. (b) SEM of the obtained electrode morphology.
(c) The transmittance of the flexible electrode depends on applied electrophoresis voltage but is
constant throughout the optical regime. (d) The sheet resistance is well below that of ITO, while the
transmittance is still too low for state-of-the-art electro-optic devices. (Reproduced by permission
from [166]).
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Figure 15. (a) Schematic illustration of the multi-layer electrode structure made from GO/rGO and
multi-wall carbon nanotubes. (b) Atomic force microscopy image of the film surface morphology.
One can see individual GO/rGO flakes as well as MWCNTs, and the surface roughness is about 10 nm on
average. (c) The transmittance versus sheet resistance diagram shows a relatively high sheet resistance,
which can be lowered by treatment processes. (d) The optical transmittance of the film electrode is
quite high for a low number of bilayers, and it is comparable to ITO, but it naturally decreases with an
increasing number of bilayers. (Reproduced by permission from [155]).
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5. Applications of Carbon-Based ITO-Free Technologies

We have discussed the possible need for replacement technologies of ITO electrodes, not simply
in light of the limited supply of indium, but also due to reasons of an increasing need for flexible
substrate technologies, which require different processing conditions. Several materials were shown to
be candidates for a sufficiently transparent yet highly conductive ITO-free technology, including hybrid
materials and composites. We will now specifically address some of the applications based on liquid
crystals that incorporate these ITO-free electrodes, besides the already mentioned twisted nematic TN
cells [103,136] or the vertically aligned switching devices with negative dielectric liquid crystal [116].

One of the promising ITO-free applications are flexible privacy windows, as demonstrated in
Figure 16 [138]. Sub-micrometre nematic droplets are dispersed in a continuous polymer matrix with
graphene electrodes for electric field application. In the electric field free off-state, the film is strongly
light scattering, due to a random orientation of director field of the LC droplets, which leads to an
abruptly changing refractive index on length scales of optical wavelengths (Figure 16a). The application
of an electric field causes a director reorientation of the LC within the droplet such that the long
molecular axes are all pointing in the same direction. Light experiences a refractive index n‖, which is
index matched to that of the isotropic polymer matrix, npolymer≈n‖, and the foil becomes transparent
(Figure 16b). It is worth noting that these foils rely on light scattering, not on the modulation of the
polarisation state of light, and thus, they do not have any need for polarisers, which generally absorb a
lot of the transmitted light intensity already. A similar device was also demonstrated by Kim et al. [139].
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Figure 16. Schematic (top) and device example (bottom) of a polymer-dispersed liquid crystal (PDLC)
flexible display with graphene electrodes in (a) the light scattering off-state and (b) the transparent
on-state. Such switchable, flexible foils are used without polarisers, for example in smart and privacy
windows. (Reproduced by permission from ref. [138]).

THz devices have increasingly become important in the area of non-destructive testing and for
security screening. As liquid crystals are switchable and thus are suitable to modulate the birefringence
of devices also in the THz regime, it is of benefit to construct LC-based THz optical components. One of
the problems is the opaqueness of ITO at these frequencies, which cause the need for THz-transparent
electrodes. A number of phase shift and wave-plate devices have been reported, which utilise graphene
film electrodes.
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Such ITO-free LC devices are for example employed as THz phase shifters [168] and polarisation
phase controllers [169], THz quarter wave-plates [170], or broadband tuneable liquid crystal THz
wave-plates [171]. Figure 17a schematically depicts such a THz device, which resembles a liquid
crystal sandwich cell with planar boundary conditions and graphene electrodes. The application of an
electric field switches the dielectrically positive liquid crystal from planar to homeotropic orientation,
changing the THz refractive index. For the graphene electrodes, one is once again faced with the
compromise between transmittance and sheet resistance. Ideally, the device would have a high
transmittance > 90% while exhibiting a low sheet resistance < 50 Ω�−1. A suitable compromise would
probably be a two-layer graphene film. The THz signal that is transmitted through the device is
phase shifted depending on the applied voltage, as shown for several different applied voltages and
frequencies in Figure 17d,e, respectively.C 2020, 6, x FOR PEER REVIEW 20 of 30 
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Figure 17. Liquid crystal THz wave shifter with graphene electrodes. (a) Schematic device with a
glass substrate, graphene electrode, and alignment layer sandwich cell, confining the liquid crystal.
The liquid crystal director is reoriented from planar (left) to homeotropic (right) on application of an
electric field. (b) The transmittance of the device decreases with increasing graphene film thickness,
while (c) the sheet resistance also decreases. (d) THz signal transmitted through the phase shifter device
at varied applied electric voltages. (e) Phase shift as a function of applied bias voltage for several THz
frequencies. (Reproduced by permission from [168]).

For all non-display LC devices that rely on curved, flexible surfaces, an ITO-free electrode on a
polymer substrate is of great advantage. An illustrative example of such a device is switchable lenses
and variable focus lenses and especially adaptive contact lenses [60,172,173].

An example of a contact lens of size suitable for the human eye is depicted in Figure 18, which is
based on a flexible polymer substrate and covered with a transparent graphene electrode on the curved
active part of the contact lens. Above a threshold voltage of approximately 2 V, the optical power
changes continuously up to 0.7 D, which allows focussing on a text.
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Figure 18. (a) Schematic of a graphene electrode flexible contact lens. (b) Substrate of the contact lens
with deposited graphene film electrode, covering the whole curved active area. (c) Change of the optical
power of the lens as a function of applied voltage, allowing changes from 0–0.7 D. (d) Focussing a text
by application of a voltage. (Reproduced by permission from [172]).

Other applications of ITO-free LC applications with carbon-based electrodes that have been
reported include cholesteric multi-domain structures for energy-saving smart windows [174], mid IR
spatial light modulators [175], micro-lens arrays [176], and tuneable scattering devices [177].

6. Discussion and Outlook

In the last few years, it has emerged that the predicted shortage of indium to produce ITO
electrodes on substrates is not as imminent as it was once feared. It now looks as though natural
resources will last for the next three decades until about 2050. The price of indium has not exploded;
on the contrary, it remained on a more or less constant level for a decade, despite the strong increase of
flat panel display production during this time. One of the reasons is an increased indium recovery
during the ITO sputtering process, where much of the material is in fact not being used up on the
substrate. Furthermore, it can be expected that more indium will be recovered from advancing recycling
processes. These will be not so much driven through the lack of indium resources but rather through
ecological considerations, as an increasing amount of electronic waste in landfill will bring about
advanced technologies for recycling not only of indium, but also glass, plastics, metal, and electronic
components of end-of-life LCDs. At present, these technologies are not financially viable, and there
will be the need for financial incentives, such as a blanket recycling fee for electronic consumable items,
as it is already done in some countries.

Much research has been performed over the last decade to present technical alternatives to the use
of ITO in displays and other optoelectronic applications. Some of these were outlined above, and the
most promising appear to be based on Ag nanowire networks and meshes, graphene, and single-wall
nanotube network films, and their composite materials. Materials are also available at comparable
performance to ITO (Figure 19a), yet at still higher cost and mostly not having been scaled up to sizes
and the reproducibility of industrial standard (Figure 19b). The main problem with all alternative
material solutions appears to be the trade-off between high transmittance versus low sheet resistance.
Nevertheless, it is well conceivable that these issues will be solved over the next few years.
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Figure 19. (a) Transmittance versus sheet resistance performance of a range of single alternative
materials proposed to replace ITO; status 2014. Composite materials are not considered in this
graph. (Reproduced by permission from [26]). (b) A rough placement of different material groups as
alternatives to ITO electrodes, showing conductivity versus cost. The higher the conductivity, the lower
the sheet resistance, but also the lower the transmittance generally as well.

Even once a performance equivalent replacement technology for ITO is found, it is unlikely that
we will see ITO-free devices taking over the market soon afterwards. For this to happen, the new
materials either need to be considerably better or clearly cheaper than ITO, because the latter is,
and has been for many years, the established industry standard with all the necessary production
infrastructure and R&D knowledge in place. Moreover, a deviation from this standard will be a slow
process that can only be initiated via a considerable step-increase in performance or cost decrease,
or for example via legislation in the form of environmental decisions, or with the development of novel
display technologies, which cannot be realised with conventional ITO electrode techniques. One of
such technologies that may be on the rise over the next years are flexible devices on polymer substrates,
which cannot be processed by ITO sputtering techniques. In this case, solution processing would pave
the way for electrodes either of metal nanowire networks or of carbon-based materials, or indeed
composite materials of both. In this case, it is likely that price will be the decisive factor, which could
favour carbon-based technologies. Especially, future large-area applications with environmental
impact, such as energy saving or energy-harvesting windows, technologies which are often first seen
on office buildings, could tip the balance towards carbon-based electrode materials. Yet, it is not likely
that within the next few years, a drastic move towards ITO-free technologies will be observed.

Funding: This research received no external funding.
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