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Abstract: In this research, a boron-doped diamond (BDD) electrode has been explored to detect the
chloroquine drug. The electrochemical performance of BDD electrode towards the irreversible anodic
response of chloroquine was investigated by subjecting this electrode to the cathodic (−0.5 A cm−2

by 180 s, generating a predominantly hydrogen-terminated surface) and anodic (+0.5 A cm−2 by
30 s, oxygen-terminated surface) pretreatments. The cathodically pretreated BDD electrode ensured
a better-defined anodic peak and higher current intensity. Thus, by applying the cathodically
pretreated BDD electrode and square-wave voltammetry (SWV), the analytical curve was linear
from 0.01 to 0.25 µmol L−1 (correlation coefficient of 0.994), with sensitivity and limit of detection
of 12.2 µA L µmol−1 and 2.0 nmol−1, respectively. This nanomolar limit of detection is the lowest
recorded so far with modified and unmodified electrodes.

Keywords: chloroquine; square-wave voltammetry; boron-doped diamond; electroanalysis;
pharmaceutics

1. Introduction

Chloroquine is a widely used antimalarial drug, and it is part of the World Health Organization
(WHO) model list of essential medicines [1]. This drug belongs to the class of 4-aminoquinolines and
acts as a weak base due to the presence of a base side chain in its molecular structure (Figure 1) [2].
This base character seems to be important to justify its biological activity, although the mechanism
of action of this molecule has not yet been fully elucidated [2]. Chloroquine is commercialized as
a phosphate salt and reaches the peak plasma concentration 4–12 h after an individual dose [3]. It is
considered a safe drug, although the margin between the therapeutic and toxic dose is narrow, and the
common side effects of this drug include nausea, vomiting, diarrhea, and abdominal discomfort [4].
Furthermore, the most worrying effect of chloroquine administration is the development of retinopathy,
i.e., damage of retina with the consequent partial or complete loss of vision [5,6]. Nowadays,
although the efficiency is not clear, the use of this drug in treating coronavirus 2019 (COVID-19)
has been studied; however, self-medication is strongly not recommended [7,8]. In view of the
relevance of chloroquine, high-performance analytical methods are required for its rigid control in
pharmaceutical formulations.
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Figure 1. Molecular structure of chloroquine.

Among the analytical techniques, voltammetric analysis is one of the most powerful and versatile,
which allows providing qualitative and quantitative information about a given analyte and can be
used with different types of sensors. In this context, carbon electrodes are interesting alternatives for
electroanalytical chemistry, such as graphite [9], carbon nanotubes [10], graphene [11], carbon black [12],
nanodiamonds [13], and boron-doped diamond electrode [14]. Our research group has recently
published some revisions about carbon conductive materials to highlight the importance of these
materials [15–18]. They are highly conductive and inert, which can be modified or not [19,20] and
can be applied for the determination of different compounds, including for environmental, medical,
and food purposes.

An electrode material that has stood out significantly in recent years for applications in the
field of electroanalysis is the boron-doped diamond electrode (BDD). The deposition of BDD films as
a p-type semiconductor is routinely carried out by chemical vapour deposition methods from mixture
gases (hydrocarbon (typically methane)/hydrogen) using different activation sources, for example
hot filament, low-pressure direct current plasma, radio frequency plasma, or microwave discharge.
A detailed description of the different growth methods of BDD films and their characterization
can be found in specialized reviews [21–24]. This carbon material has a wide range of favourable
characteristics, including excellent morphological and microstructural stability at high temperatures,
weak adsorption of organic and inorganic compounds (reduced fouling), minimal and stable
background current, fast charge-transfer kinetic, and wide potential window in aqueous and
nonaqueous solvents [25–29]. Additionally, the anodic and cathodic electrochemical treatments
of the BDD surface can generate functional groups that can increase the analytical signal and promote
better electron transfer between the interface electrode/bulk solution [25]. As a result, BDD has become
promising for the electrochemical detection of different analytes of interest, such as drugs [30,31]
and environmental contaminants [14]. Lourencao et al. performed the individual and simultaneous
voltammetric determination of paracetamol and caffeine by using a cathodically pretreated BDD
electrode. The individual determination of these analytes was carried out by square-wave voltammetry
(SWV) and the simultaneous determination by differential pulse voltammetry (DPV). This specific
determination by voltammetric tools is critical because of the high oxidation potential of caffeine.
However, the stable and low background current of BDD ensured the individual determination of
caffeine in the linear range of 0.3 µmol L−1 to 91.0 µmol L−1, with a limit of detection (LOD) of
0.14 µmol L−1. Regarding the simultaneous determination, the following analytical parameters were
achieved: linear ranges of 0.5 µmol L−1 to 83.0 µmol L−1 (both paracetamol and caffeine) and LODs of
0.49 µmol L−1 (paracetamol) and 0.035 µmol L−1 (caffeine). When applied to pharmaceutical samples,
the DPV method based on the cathodically pretreated BDD provided quantitative data statistically
equivalent to those from a high-performance liquid chromatography (HPLC) method. The use of BDD
electrodes and pulsed voltammetric techniques is a highly successful combination, with outstanding
analytical performance parameters for the detection of compounds of pharmaceutical [32,33], food [34],
environmental [14,35], forensic [33,36] interest, etc. Additionally, its robustness as an electrode material
was paramount in the establishment of high-frequency analytical methods based on the coupling of
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flow injection analysis and amperometric detection (especially the multiple pulse amperometry for
simultaneous determinations) [37–39]. The research group led by Richter and Munoz also proposed
many innovative works using batch injection analysis [40–42].

Based on the above context, a new voltammetric procedure has been developed to detect the
chloroquine drug using a BDD as the electrochemical sensor.

2. Materials and Methods

2.1. Reagents and Solutions

Analytical degree chemical reagents were employed in all the experimental stages, without any
additional purification or treatment. Standard of chloroquine (purity > 99%) was purchased from
Calendula Pharmacy (São Carlos-SP, Brazil). The electrochemical measurements were performed in
aqueous media, and therefore, ultrapure water supplied by a Milli-Q system (Millipore, São Paulo,
Brazil) (electrical resistivity > 18 ΩM cm) was used. A standard aqueous solution of 1.0 × 10−3 mol L−1

chloroquine was daily prepared. Addition and recovery experiments were carried out by using
manipulated drug obtained from a local drugstore. For this purpose, 1.0 × 10−3 mol L−1 of this drug
was prepared at 0.1 mol L−1 Britton-Robinson buffer solution (pH 6.0).

2.2. Instrumentation

The voltammetric analysis (cyclic and square-wave voltammetries) were carried out using
an Autolab PGSTAT-30 potentiostat/galvanostat (Metrohm Autolab, Utrecht, The Netherlands)
controlled by the GPES 4.9 software. A three-electrode electrochemical cell with a volume of 20 mL
was used. Thus, the electrodes system was composed of a BDD working electrode, a Pt wire counter
electrode and an Ag/AgCl (3.0 mol L−1 KCl) reference electrode. The BDD film was synthesized
on p-silicon wafers and with a boron content of 8000 ppm in the Centre Suisse d’Electronique et de
Microtechnique SA (CSEM), Neuchâtel, Switzerland, using the hot filament chemical vapour deposition
technique, as described elsewhere [43–45]. To enable its use as a working electrode, the as-received BDD
plate was fixed on conductive copper support using silver ink (Figure 2). The BDD electrode (0.32 cm2

exposed area) was subjected to a previous electrochemical pretreatment. In this sense, the anodic
and cathodic pretreatments were applied and compared. To achieve these pretreatments of the BDD
surface, the current density of −0.5 A cm−2 (cathodic) or +0.5 A cm−2 (anodic) in a 0.50 mol L−1 H2SO4

solution was applied by 180 s (cathodic) or 60 s (anodic), respectively. The morphological analysis of
BDD was performed using a Supra 35-VP FEG-SEM equipment (Carl Zeiss, Oberkochen, Germany)
with electron-beam energy of 20 keV.C 2020, 6, x FOR PEER REVIEW 4 of 13 
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Figure 2. Scheme of boron-doped diamond (BDD) electrode assembly for electrochemical
measurements and obtaining of cathodically pretreated (CPT-BDD) and anodically pretreated
(APT-BDD) BDD electrodes.
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3. Results and Discussion

3.1. Working Electrode Characterization

Morphology of BDD film growth on p-Si wafer with a B-doping level of 8000 ppm was evaluated
by SEM. The SEM micrographs of the BDD surface are shown in Figure 3a,b. It was registered as
a uniform morphology based on a regular pyramidal structure, following previous literature [46].
This regular pyramidal structure morphology refers to the preferential textured growth along the (111)
planes direction [45,47,48]. Additionally, the electrochemical quality of the used BDD was investigated
by exploring the response of an inorganic redox probe.C 2020, 6, x FOR PEER REVIEW 5 of 13 
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(b) 50,000×.

Figure 4a shows the cyclic voltammograms recorded for the cathodically pretreated BDD for
a 1.0 × 10−3 mol L−1 K3Fe(CN)6 solution. A well-defined pair of anodic and cathodic peaks was
observed, related to the oxidation–reduction semi-reactions of Fe3+/2+ redox pair. The peak-to-peak
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potential separation (∆Ep) was equal to 83 mV, which is a value close to the theoretical value of
59.2 mV, typical for a reversible redox process involving the transfer of one electron. Additionally,
the ratio of anodic and cathodic peak currents (Ipa/Ipc), another parameter to evaluate the reversibility
of redox processes, was calculated as being 1.04. Once again, the experimental Ipa/Ipc parameter
was in concordance with its theoretical value of 1.0 reported to reversible redox reactions [49].
These data served to state the good electron transfer kinetic property of the BDD electrode. Moreover,
the electroactive surface area of the employed electrode was predicted by cyclic voltammetry assays
carried out in a wide scan rate range (10 to 500 mV s−1) towards the same redox probe. The cyclic
voltammograms collected in the mentioned scan rate range are shown in Figure 4b. From them, the plots
of Ipa and Ipc versus square root of the scan rate (v1/2) were constructed (Figure 4c). Comparing the
slope of the linear Ipa vs. v1/2 curve with the theoretical slope of the Randles–Sevick equation for
reversible and diffusion-controlled electrodic reactions, the electroactive surface area was calculated.
Considering n = 1 (number of electrons), D = 7.6 × 10−6 cm2 s−1 (diffusion coefficient of Fe(CN)6

3−) and
C = 1.0 × 10−6 mol cm−3 (concentration of Fe(CN)6

3−), the estimated electroactive area was 0.285 cm2.
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Figure 4. Cyclic voltammogram recorded at (a) 50 mV s−1 and (b) different potential scan rates
(10–500 mV s−1) for 1.0 × 10−3 mol L−1 K3Fe(CN)6 in 0.1 mol L−1 KCl solution using the cathodically
pretreated BDD electrode. (c) Plot of anodic (Ipa) and cathodic (Ipc) peak currents versus square root of
scan rate (v1/2). Inset: plot of ψ vs. 32.79 v1/2.

Then, the heterogeneous electron transfer rate constant (k0) was also predicted from the data
of cyclic voltammetry at different scan rates. In this case, as the redox probe figures a reversible
and diffusion-controlled electron transfer, the method reported by Nicholson [50,51] was applied.
Nicholson’s equation to calculate k0 in this case is:

Ψ = k0[π D n v F/(RT)]−1/2 (1)

where Ψ is a kinetic parameter, F is the Faraday’s constant (96,485 C mol−1), R = 8.314 J K−1 mol−1,
T = 298.15 K, and the other terms have been previously defined. The kinetic parameter Ψ is dependent
on the scan rate, and it was calculated from the ∆Ep values verified in the different scan rates using
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the equations proposed by Lavagnini et al. [52]. Knowing the Ψ values, k0 is directly determined as
being the slope of a Ψ vs. 32.79 v1/2 plot (Inset of Figure 4c) [51]. The 32.79 factor is equivalent to
the term [πDnF/(RT)]−1/2 of Nicholson’s equation (Equation (1)). Thus, the obtained k0 constant was
0.0056 cm s−1. This constant is comparable or better to the same parameter obtained for traditional
carbon-based working electrodes, as glassy carbon [53] and carbon paste electrodes [54].

3.2. Chloroquine Electrochemistry

The electrochemical activity of chloroquine drug was explored by cyclic voltammetry.
In this study, the influence of the predominant BDD surface termination on the analyte response,
i.e., hydrogenated (for cathodic pretreatment) or oxygenated (for anodic pretreatment), was also
accessed. Thus, the cyclic voltammograms collected towards a 1.5 × 10−4 mol L−1 chloroquine solution
prepared in 0.1 mol L−1 phosphate buffer solution (pH = 7.0) as the supporting electrolyte using the
CPT- and APT-BDD electrodes are available in Figure 5a. The potential scanning was started at +0.8 V
and in the anodic direction. During the anodic scanning, in both cases, a well-discriminated peak was
recorded. However, after the inversion of the potential scanning direction, no cathodic peaks to form
a couple with the previous anodic peak were verified, indicating the property of chloroquine molecule
to undergo an irreversible oxidation reaction. This irreversible oxidation reaction has been related to the
aminoquinoline moiety [55], in a one-electron oxidation step, as outlined in Figure 5b. Comparatively,
it is interesting to notice that the cathodically pretreated BDD provided a better chloroquine response.
By using this pretreatment, the anodic peak of chloroquine was better defined and occurred at a less
positive potential, which is a contributing factor in reducing possible interferences. This enhanced
voltammetric response of chloroquine molecule on the cathodically pretreated BDD is in line with
several other studies [14,32,56–60], which was selected for further studies.
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Figure 5. (a) Cyclic voltammograms (v = 50 mV s−1) obtained for 1.5 × 10−4 mol L−1 chloroquine
solution in 0.1 mol L−1 phosphate buffer (pH = 7.0) electrolyte after different BDD pretreatments:
cathodic (–) and anodic (—). (b) Possible electrooxidation mechanism of chloroquine.

3.3. Square-Wave Voltammetry (SWV) Detection of Chloroquine

The optimization for SWV detection of chloroquine was performed by using the parameters and
conditions, as presented in Table 1. The selected conditions were 0.1 mol L−1 Britton–Robson buffer
(pH = 6.0), frequency of 100 Hz, the amplitude of 50 mV, and potential increment of 5 mV. All these
optimum values were recorded from obtaining a well-defined and high-intensity anodic peak as the
analytical signal for chloroquine.
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Table 1. Optimization of experimental conditions for chloroquine detection by square-wave
voltammetry (SWV).

Parameter Evaluated Conditions Optimum Condition

Supporting electrolyte

0.1 mol L−1 H2SO4
0.1 mol L−1 Britton–Robson

buffer
0.1 mol L−1 acetate buffer

0.1 mol L−1 Britton–Robson buffer

pH (Britton–Robson buffer) 2.0 to 8.0 6.0
SWV frequency (f ) 10 to 150 Hz 100
SWV amplitude (A) 5 to 60 mV 50

SWV potential increment (∆E) 1 to 10 mV 5

Under the optimum experimental conditions, the analytical curve for chloroquine was constructed.
For this, different aliquots of a standard chloroquine solution were added to the electrochemical
cell, homogenized by stirring, and the SWV reading was performed for the different obtained
concentrations. By doing this, the BDD response was linear in the chloroquine concentration range of
0.01 to 0.25 µmol L−1 (Figure 6), in accordance with the following linear regression equation: Ip (µA)
= 0.29 µA + 12.32 µA L µmol−1 CChloroquine (µmol L−1), with a correlation coefficient of 0.994 (n = 3).
The LOD of 2.0 nmol L−1 was estimated (LOD = 3 σ / m, i.e., three times the standard deviation of ten
measurements of blank solution (σ) divided by the analytical sensitivity (m)) [61].

C 2020, 6, x FOR PEER REVIEW 8 of 13 

electrochemical cell, homogenized by stirring, and the SWV reading was performed for the different 

obtained concentrations. By doing this, the BDD response was linear in the chloroquine concentration 

range of 0.01 to 0.25 µmol L−1 (Figure 6), in accordance with the following linear regression equation: 

Ip (µA) = 0.29 µA + 12.32 µA L µmol−1 CChloroquine (µmol L−1), with a correlation coefficient of 0.994 (n = 

3). The LOD of 2.0 nmol L−1 was estimated (LOD = 3 σ / m, i.e., three times the standard deviation of 

ten measurements of blank solution (σ) divided by the analytical sensitivity (m)) [61]. 

The repeatability study was performed for a 1.7 × 10−7 mol L−1 chloroquine in 0.1 mol L−1 Britton–

Robinson buffer solution (pH 6.0) by using SWV in the selected experimental conditions. The value 

of 4.2% of relative standard deviation was obtained for n = 3. The addition and recovery experiments 

were also performed for a 1.0 × 10−3 mol L−1 chloroquine (prepared by manipulated drug obtained 

from a local drugstore) in 0.1 mol L−1 Britton–Robinson buffer solution (pH 6.0). After appropriate 

dilution, an average value of 102% was obtained for six determinations. 

 

Figure 6. Square-wave voltammograms recorded using a cathodically pretreated BDD electrode for 

different concentrations of chloroquine in 0.1 mol L−1 Britton–Robinson buffer solution (pH 6.0): (i) 

blank (purple); (ii) 0.01 (black); (iii) 0.05 (red); (iv) 0.075 (blue); (v) 0.10 (green); (vi) 0.20 (pink); and 

(vii) 0.25 (yellow) µmol L−1. SWV parameters: f = 100 Hz, A = 50 mV, and ΔE = 5 mV. Inset: 

Corresponding analytical curve (Ip vs. CChloroquine). 

There are few studies in the literature reporting on the quantification of chloroquine by 

voltammetric analysis. Table 2 shows these works, providing a comparison of the main analytical 

parameters of the voltammetric procedures [55,62,63]. For the quantification of chloroquine using the 

rGO@WS2-QDs nanomaterial, it was necessary to prepare reduced graphene oxide (rGO) by 

Hummer's method [64] and tungsten disulphide quantum dots (WS2-QDs) by hydrothermal method; 

both methods taking the time and employing toxic reagents. The electrode modified with biological 

material, double-stranded DNA (dsDNA) [62], required an accumulation potential of +0.35V for 60 s 

to perform the voltammetric measurements. In contrast, the proposed method using a BDD electrode, 

the voltammetric measurements were direct and without any preconcentration step. It is also 

important to note the LOD of the proposed voltammetric method was 10 times lower than the best 

LOD previously reported, allowing the detection of chloroquine at nanomolar levels. The analytical 

parameters obtained by applying the BDD electrode and the SWV technique indicate the great 

potential applicability of the method for the practical quantification of chloroquine. However, due to 

the current high demand for chloroquine, the Brazilian Health Regulatory Agency (ANVISA) decided 

to restrict its sale in pharmacies and ban export. Therefore, it was not possible to carry out studies on 

commercial pharmaceutical samples. 

 

Figure 6. Square-wave voltammograms recorded using a cathodically pretreated BDD electrode
for different concentrations of chloroquine in 0.1 mol L−1 Britton–Robinson buffer solution (pH 6.0):
(i) blank (purple); (ii) 0.01 (black); (iii) 0.05 (red); (iv) 0.075 (blue); (v) 0.10 (green); (vi) 0.20 (pink);
and (vii) 0.25 (yellow) µmol L−1. SWV parameters: f = 100 Hz, A = 50 mV, and ∆E = 5 mV. Inset:
Corresponding analytical curve (Ip vs. CChloroquine).

The repeatability study was performed for a 1.7 × 10−7 mol L−1 chloroquine in 0.1 mol L−1

Britton–Robinson buffer solution (pH 6.0) by using SWV in the selected experimental conditions.
The value of 4.2% of relative standard deviation was obtained for n = 3. The addition and recovery
experiments were also performed for a 1.0 × 10−3 mol L−1 chloroquine (prepared by manipulated
drug obtained from a local drugstore) in 0.1 mol L−1 Britton–Robinson buffer solution (pH 6.0).
After appropriate dilution, an average value of 102% was obtained for six determinations.

There are few studies in the literature reporting on the quantification of chloroquine by
voltammetric analysis. Table 2 shows these works, providing a comparison of the main analytical
parameters of the voltammetric procedures [55,62,63]. For the quantification of chloroquine using
the rGO@WS2-QDs nanomaterial, it was necessary to prepare reduced graphene oxide (rGO) by
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Hummer’s method [64] and tungsten disulphide quantum dots (WS2-QDs) by hydrothermal method;
both methods taking the time and employing toxic reagents. The electrode modified with biological
material, double-stranded DNA (dsDNA) [62], required an accumulation potential of +0.35V for
60 s to perform the voltammetric measurements. In contrast, the proposed method using a BDD
electrode, the voltammetric measurements were direct and without any preconcentration step. It is
also important to note the LOD of the proposed voltammetric method was 10 times lower than the best
LOD previously reported, allowing the detection of chloroquine at nanomolar levels. The analytical
parameters obtained by applying the BDD electrode and the SWV technique indicate the great potential
applicability of the method for the practical quantification of chloroquine. However, due to the current
high demand for chloroquine, the Brazilian Health Regulatory Agency (ANVISA) decided to restrict
its sale in pharmacies and ban export. Therefore, it was not possible to carry out studies on commercial
pharmaceutical samples.

Table 2. Comparison of analytical parameters obtained with the BDD electrode and other modified
electrodes from literature for the detection of chloroquine.

Electrode Linear Range (µmol L−1) LOD (µmol L−1) Reference

rGO@WS2-QDs/ GC 0.5–82.4 0.04 [28]
dsDNA/CP 0.1–10.0 0.03 [33]
CuNW/CP 0.13–13.3 0.02 [34]

BDD 0.01–0.25 0.002 This work

rGO@WS2-QDs/GCE: reduced graphene oxide@tungsten disulfide quantum dots/glassy carbon electrode;
dsDNA/CP: double-stranded DNA/carbon paste; CuNW/CP: copper nanowires/carbon paste electrode.

4. Conclusions

In this work, chloroquine electroactivity on a BDD electrode was investigated for the first time,
whereas an irreversible oxidation reaction was diagnosed. Chloroquine is an antimalarial drug
that has been presented an irreversible anodic behaviour by using the BDD electrode. The BDD
electrode showed once again its efficiency as an electrode material for applications in the voltammetric
determination of organic compounds. The influence of the chemical termination of the BDD surface
(predominantly in hydrogen in the case of cathodic pretreatment and predominantly in oxygenated
groups in the case of anodic pretreatment) was studied, with a more well-defined electrochemical
response of chloroquine on the cathodically pretreated BDD. From this observation, the influence of
several technical parameters on the anodic response of chloroquine was evaluated (a type of supporting
electrolyte, pH, and SWV parameters), and the optimum experimental conditions recorded. Thus,
from an analytical point-of-view, promising analytical parameters were registered, including a linear
concentration range at submicromolar levels and an LOD at a nanomolar level (2.0 nmol L−1). All these
results indicate the capacity of the BDD electrode to quantify chloroquine sensitively, and future studies
should be carried out to determine this active principle in real samples.
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