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Abstract: Recently we have shown the importance of hypergolic reactions in carbon materials
synthesis. However, hypergolic reactions could be certainly expanded beyond carbon synthesis,
offering a general preparative pathway towards a larger variety of materials. Cyclopentadienyls
are one of the most common ligands in organometallic chemistry that react hypergolicly on contact
with strong oxidizers. By also considering the plethora of cyclopentadienyl compounds existing
today, herein we demonstrate the potential of such compounds in hypergolic materials synthesis
in general (carbon or inorganic). In a first example, we show that cyclopentadienyllithium reacts
hypergolicly with fuming nitric acid to produce carbon. In a second one, we show that ferrocene
and cobaltocene also react hypergolicly with the concentrated acid to afford magnetic inorganic
materials, such as γ-Fe2O3 and metallic Co, respectively. The present results further emphasize
the importance and universal character of hypergolic reactions in materials science synthesis, as an
interesting new alternative to other existing and well-established preparative methods.
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1. Introduction

In hypergolic reactions, two chemical reagents ignite spontaneously upon contact to liberate
energy and gases in a non-explosive manner. Although hypergolic reactions find application in rocket
fuels and propellants, their role in materials processing still remains largely unexplored. It is only
lately that hypergolics has been introduced as a new synthesis tool in materials science, particularly for
the fast and spontaneous preparation of carbon materials at ambient conditions in an energy liberating
manner [1–5]. For this purpose, an organic compound serving as the carbon source and a strong
oxidizer were spontaneously ignited upon contact at room temperature and atmospheric pressure
to afford carbon without the need of any external source of heat (e.g., baking oven, hydrothermal
treatment, or chemical vapor deposition). In this respect, hypergolic synthesis should be regarded as
an energy-liberating rather than an energy-consuming process.

Typical paradigms developed from our group within this context include carbon nanosheets
directly derived from self-ignitable lithium dialkylamides salts [1], highly crystalline graphite through
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spontaneous ignition of in situ derived acetylene–chlorine hypergolic mixture [2], carbon nanosheets
or carbon dots from hypergolic mixtures based on nitrile rubber or Girard’s reagent T and fuming
nitric acid as a strong oxidizer [3], carbon nanosheets or fullerols from hypergolic pairs based on coffee
grains or C60 and sodium peroxide as a strong oxidizer [4], and finally, carbon soot from the exothermic
reaction between ferrocene and liquid bromine at ambient conditions [5]. In all instances, the reactions
were immediate and exothermic at ambient conditions, with the released energy being further exploited
in some cases for the production of useful work (chemical, thermoelectric, photovoltaic, etc.).

A classic guide to organic compounds that are hypergolic on contact with strong oxidizers
is Bretherick’s Handbook of Reactive Chemical Hazards. By scrutinizing the vast number of
chemicals listed there, we came across the cyclopentadiene-fuming nitric acid hypergolic pair
(e.g., cyclopentadiene ignites upon contact with concentrated nitric acid [6]). Motivated by
this information, we set out to study the carbon residue produced from the hypergolic reaction
of cyclopentadienyllithium with fuming nitric acid, the former acting as the carbon source. It turned
out that the produced carbon was amorphous and oxidized, mostly adopting discoidal morphology.
Interestingly, ferrocene and cobaltocene bearing cyclopentadienyl rings in their structure also reacted
hypergolicly with fuming nitric acid, resulting instead in magnetic nanopowders as the major phase
(γ-Fe2O3, metallic Co). Therefore, cyclopentadienyl compounds, due to a large variety, are potentially
interesting starting reagents for the hypergolic synthesis of a wider range of materials at ambient
conditions in an energy-liberating manner (i.e., exothermically). In a broader sense, hypergolics offer
a new synthesis scheme in materials science that is complementary to other established preparative
methods, such as solid state, sol-gel, wet chemistry, precipitation, hydrothermal, pyrolysis, flame spray
pyrolysis, chemical vapor deposition, etc.

At its current form, the present method serves as a proof of concept in materials science. Certain
advantages of hypergolic reactions include the fast rate, spontaneity, and exothermic character at
ambient conditions. In addition, hypergolics under the materials science perspective provides a
useful way to deal with waste from rocket propellants. On the other side, although such reactions are
pretty safe to run at a small scale in the lab, nevertheless, safety issues should be seriously taken into
consideration upon scaling up the method (e.g., pilot set-ups closely resembling rocket fuel engines
should be rather devised). In a parallelism relation, flame-spray pyrolysis is another example of
hazardous technique involving hot flames and flammable hydrocarbons; however, the method is
now widely used in labs and industries for the large-scale production of nanomaterials. This was
only possible due to systematic technical upgrades over time towards the advancement of safe
and sophisticated apparatus. In another point, the reaction yields (typically 2–15%), though acceptable,
are lower than those of classic preparative methods, such as precipitation, sol-gel, or flame-spray
pyrolysis. But this mainly has to do with the carbon or inorganic content of the precursors used in
the hypergolic reactions. The study or discovery of new hypergolic pairs that will provide even higher
yields remains a challenge.

2. Materials and Methods

Synthesis was conducted in a fume hood with ceramic tile bench. A glass test tube (diameter:
1.5 cm; length: 15 cm) was charged with 0.5 g cyclopentadienyllithium (97% C5H5Li, Sigma–Aldrich,
St. Louis, MO, USA) followed by the slow, dropwise addition of 0.5 mL fuming nitric acid (100%,
Sigma–Aldrich, St. Louis, MO, USA). The cyclopentadienyl salt and fuming nitric acid ignited
instantly upon contact to from a carbon residue within the test tube. The residue was collected
and washed thoroughly with de-ionized water (≈5.5 × 10−5 S m−1), acetone (≥99% Merck KGaA,
Darmstadt, Germany), and tetrahydrofuran (THF, ≥99% Merck KGaA, Darmstadt, Germany) prior
to drying at 80 ◦C. A fine carbon powder was obtained at a yield of 2%, compared to the weight of
the cyclopentadienyl compound used for reaction (N2 specific surface area: 225 m2 g−1). The whole
process is illustrated in Figure 1.
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Figure 1. The hypergolic reaction of cyclopentadienyllithium with fuming nitric acid produced a 
carbon fine powder: (a) The test tube contained the salt before nitric acid addition with a pipette. (b–
d) Dropwise addition of the acid triggered ignition, giving off an intense burst of flame. (e) The 
residue within the tube was collected and washed to give a fine black powder. 

Similarly to the cyclopentadienyllithium salt, ferrocene (≥ 98%, Sigma–Aldrich, St. Louis, MO, 
USA) and cobaltocene (98%, Sigma–Aldrich, St. Louis, MO, USA) also reacted hypergolicly with 
fuming nitric acid as above to afford magnetic nanopowders, such as γ-Fe2O3 and metallic Co, at a 
yield of 10% compared to the weights of the cyclopentadienyl compounds used for reaction (N2 
specific surface areas: 36 for γ-Fe2O3 and 28 m2 g−1 for Co). Characteristically, the ignition of ferrocene 
by fuming nitric acid is illustrated in Figure 2. Due to a small yield, reactions were repeated several 
times in order to collect enough material for characterizations. In addition, all presented reactions 
were completed within less than a minute, thus allowing a rapid product formation at ambient 
conditions. Lastly, there was a sudden release of a sizeable amount of energy upon direct contact of 
the reagents at ambient conditions (i.e., energy-releasing process). The heat produced from the 
reactions provided the necessary energy needed for the carbonization of the cyclopentadienyl 
compounds (e.g., in situ pyrolysis). 

 
Figure 2. (a–d) Dropwise addition of fuming nitric acid into a test tube containing ferrocene powder 
resulted in the hypergolic ignition of the cyclopentadienyl compound by the acid (e.g., intense burst 
of flame) and the subsequent formation of γ-Fe2O3 inside the tube. The magnetic solid was recovered 
by scratching off and washing the dark brown residue from inside the tube. 

X-ray diffraction (XRD) was conducted on background-free Si wafers using Cu Kα radiation 
from a Bruker Advance D8 diffractometer (Bruker, Billerica, MA, USA). Attenuated total reflection 
infrared spectroscopy (ATR-IR) measurements were performed using a Jasco IRT-5000 microscope 
coupled with a FT/IR-4100 spectrometer (Jasco, Easton, MD, USA). The ZnSe prism of the ATR 
objective had a 250 μm area in contact with the sample. The background was subtracted and the 
baseline was corrected for all spectra. Raman spectra were obtained on a DXR Raman microscope 

Figure 1. The hypergolic reaction of cyclopentadienyllithium with fuming nitric acid produced a carbon
fine powder: (a) The test tube contained the salt before nitric acid addition with a pipette. (b–d) Dropwise
addition of the acid triggered ignition, giving off an intense burst of flame. (e) The residue within
the tube was collected and washed to give a fine black powder.

Similarly to the cyclopentadienyllithium salt, ferrocene (≥ 98%, Sigma–Aldrich, St. Louis, MO,
USA) and cobaltocene (98%, Sigma–Aldrich, St. Louis, MO, USA) also reacted hypergolicly with fuming
nitric acid as above to afford magnetic nanopowders, such as γ-Fe2O3 and metallic Co, at a yield of
10% compared to the weights of the cyclopentadienyl compounds used for reaction (N2 specific surface
areas: 36 for γ-Fe2O3 and 28 m2 g−1 for Co). Characteristically, the ignition of ferrocene by fuming
nitric acid is illustrated in Figure 2. Due to a small yield, reactions were repeated several times in order
to collect enough material for characterizations. In addition, all presented reactions were completed
within less than a minute, thus allowing a rapid product formation at ambient conditions. Lastly, there
was a sudden release of a sizeable amount of energy upon direct contact of the reagents at ambient
conditions (i.e., energy-releasing process). The heat produced from the reactions provided the necessary
energy needed for the carbonization of the cyclopentadienyl compounds (e.g., in situ pyrolysis).
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Figure 2. (a–d) Dropwise addition of fuming nitric acid into a test tube containing ferrocene powder
resulted in the hypergolic ignition of the cyclopentadienyl compound by the acid (e.g., intense burst of
flame) and the subsequent formation of γ-Fe2O3 inside the tube. The magnetic solid was recovered by
scratching off and washing the dark brown residue from inside the tube.

X-ray diffraction (XRD) was conducted on background-free Si wafers using Cu Kα radiation from
a Bruker Advance D8 diffractometer (Bruker, Billerica, MA, USA). Attenuated total reflection infrared
spectroscopy (ATR-IR) measurements were performed using a Jasco IRT-5000 microscope coupled
with a FT/IR-4100 spectrometer (Jasco, Easton, MD, USA). The ZnSe prism of the ATR objective had a
250 µm area in contact with the sample. The background was subtracted and the baseline was corrected
for all spectra. Raman spectra were obtained on a DXR Raman microscope (Thermo Scientific Waltham,
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MA, USA) using a laser excitation line at 455 nm, 2 mW. X-ray photoelectron spectroscopy (XPS) was
performed on a PHI VersaProbe II (Physical Electronics, Chanhassen, MN, USA) spectrometer using Al
Kα source (15 kV, 50 W). Deconvolution of spectra was made using the MultiPak software package
(Ulvac-PHI, Inc., Miami, FL, USA). The N2 adsorption-desorption isotherms were measured at 77 K on
a volumetric gas adsorption analyzer (3Flex, Micromeritics, Norcross, GA, USA). The carbon, γ-Fe2O3

and Co samples were outgassed at 130 ◦C for 12 h under high vacuum (10−4 Pa) before measurements.
Specific surface areas were determined with the Brunauer–Emmett–Teller (BET) method for all three
samples. Atomic force microscopy (AFM) images were obtained in the tapping mode with a Bruker
Multimode 3D Nanoscope (Ted Pella Inc., Redding, CA, USA) using a microfabricated silicon cantilever
type TAP-300G, with a tip radius of < 10 nm and a force constant of approximately 20–75 N m−1

The transmission electron microscopy (TEM) study was performed using the instrument JEM HR-2100,
(JEOL Ltd., Tokyo, Japan) operated at 200 kV in bright-field mode. SEM images were obtained using
a JEOL JSM-6510 LV SEM Microscope (Ltd., Tokyo, Japan) equipped with an X-Act EDS-detector
by Oxford Instruments (Abingdon, Oxfordshire, UK, an acceleration voltage of 20 kV was applied).
Magnetic measurements were carried out at room temperature using a Vibrating Sample Magnetometer
(VSM) Lakeshore model 7300 (Westerville, OH USA).

3. Results and Discussion

3.1. Cyclopentadienyllithium-HNO3 hypergolic Pair

The carbon obtained from the cyclopentadienyllithium-HNO3 hypergolic pair was easily identified
by the XRD and Raman techniques. The XRD pattern of the product exhibited a very broad reflection
centered at d002 = 4.0 Å (Figure 3, top), signaling the formation of highly disordered carbon [7].
In this case, the lack of periodicity between layers could be ascribed to the rapid release of gases
during reaction that pushes the carbon layers apart from each other (e.g., exfoliation). At the same
time, Raman spectroscopy (Figure 3, bottom) gave characteristic D (1354) and G (1582 cm−1) bands
with intensity ratio (ID/IG~1) typical of amorphous carbon containing both sp3/sp2 domains [7].
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The ATR infrared spectrum of the carbon solid displayed several characteristic absorptions bands
(Figure 4). The broad band at 1200 cm−1 was due to C–O/C–OH stretching, the band at 1580 cm−1 was
ascribed to the presence of C=C/C=N bonds, the weak shoulder at 1700 cm−1 was assigned to carbonyl
groups C=O, and finally, the weak peaks near 3000 cm−1 to residual C–H moieties. The presence of
oxygen-containing groups pinpointed oxidation of the carbon surface, in line with the XPS results
discussed in the next paragraph. Furthermore, the IR-active C=C stretching vibration was quite close
to the Raman-active G band of the solid as a result of symmetry breaking by lattice defects, nitrogen
doping, and/or surface oxidation (e.g., the so-called “doing Raman with IR”) [8]. Lastly, residual
hydrogens normally resulted from the organic salt precursor by ignition.
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The XPS survey spectrum of the sample showed predominantly carbon (81%) and, to a lesser extent,
oxygen (16.1%) and nitrogen (2.9%) (Figure 5a). Note that no trace of lithium was detected in the region
between 55–57 eV, which is characteristic of the element. Oxygen was due to ignition in open air
(e.g., air-oxidation), while nitrogen due to the nitric acid used for reaction (e.g., N-doping by HNO3) [9].
According to this reference, nitric acid served as the nitrogen source through the release of reactive
nitrogen species that bind to the carbon surface by the aim of heat produced from the exothermic
reaction. Deconvolution of the high-resolution C1s spectrum (Figure 5b) revealed different carbon
bonding states (C=C, C–C, C–O/C–N, C=O, and satellite) [10,11]. Therefore, the sample consisted of
sp2 and sp3 carbon configurations with an intense presence of C–O (which overlapped with the C–N
bond region) and C=O bonds, in agreement with the atomic composition of the sample. The presence
of oxygen-containing groups, which may act as surface binding sites, and the relatively good specific
surface area of the sample are attractive structural features in carbon-based adsorption/removal
technologies (e.g., carbon filters).

An AFM study of the sample revealed two types of morphologies, namely carbon nanosheets
and discoidal nanocarbon [12] (Figure 6a–c). The micron-sized thin nanosheets appeared with
an average thickness of ca. 2.5 nm according to section analysis (Figure 6a). On the other hand,
the submicron-sized discoidal carbon exhibited a bimodal thickness distribution with thicknesses of ca.
1 (Figure 6b) and ca. 5 nm (Figure 6c) (e.g., the presence of thinner and thicker discs). The discoidal
particles appeared flat as evidenced by their 3D morphology (Figure 6d). The appearance frequency
of the discoidal morphology in the sample was up to 92% (Figure 6e), thereby largely dominating
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the sum. It is worth noting that nearly 77% of the discs appeared to have similar thickness with
graphene (1 nm). Hence, we can safely conclude that the good specific surface area of the sample stems
in part from the highly exfoliated state and nanosized thickness of the discs. The disc-like morphology
of the sample was additionally confirmed by SEM and TEM microscopies, showing both individual
and aggregated nanodiscs of submicron lateral dimensions (Figure 7).C 2020, 6, x FOR PEER REVIEW 6 of 13 
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(d) 3D morphology of a flat disc. (e) Histogram of frequency rate of the different morphologies along
with their thicknesses.
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3.2. Ferrocene- and Cobaltocene-HNO3 Hypergolic Pairs

Another interesting class of cyclopentadienyl compounds are metallocenes, such as ferrocene
and cobaltocene. In the present study, the pure compounds reacted hypergolicly on contact with
fuming nitric acid to give magnetic γ-Fe2O3 and Co nanoparticles as the major phase. Figure 8 displays
the indexed XRD patterns of the ferrocene-derived γ-Fe2O3 and cobaltocene-derived Co magnetic
phases. Even though magnetite and γ-Fe2O3 have similar XRD patterns, nevertheless, Fe3O4 formation
requires anaerobic conditions in order to avoid air-oxidation into γ-Fe2O3. In this respect, ignition in
air under strongly oxidizing conditions rather favors the formation of the more stable γ-Fe2O3 phase.
Furthermore, some residual metallic Fe/Fe3C phases were also detected due to possible carbothermal
reduction of the oxide. Turning to the cobalt case, traces of cobalt oxides were additionally observed
as a result of metal oxidation. Generally, ferrocene is a well-known precursor to magnetic iron
oxides [13,14]; similarly, cobaltocene is a well-known precursor to metallic cobalt [15].
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Figure 8. XRD patterns of (top) the as-derived γ-Fe2O3 and (bottom) Co magnetic powders. The insets
show the strong attraction of the magnetic solids by Nd-magnet.

The transition metals in ferrocene and cobaltocene should normally catalyze carbon combustion
during ignition by HNO3; however, the samples did contain residual carbon. Indeed, thermal
gravimetric analysis in the air showed clear weight losses of 30–35% due to combustion of amorphous
carbon near 300 ◦C. Practically, this means that mild heat treatment of the samples between 300–400 ◦C
in the air should effectively remove most of the amorphous carbon without severely affecting
the structure of the magnetic phases (e.g., γ-Fe2O3 is stable up to 400 ◦C, whereas Co oxidation in
air commences > 400 ◦C). The AFM study of the magnetic solids revealed the presence of spherical
nanoparticles with an average size of 8–11 nm for γ-Fe2O3 and 19–21 nm for metallic Co (Figure 9a,b).
These values were in a good agreement with those calculated from XRD and the Scherrer equation.
The round shape of the nanoparticles was additionally confirmed by the corresponding 3D morphology
images of the nanoparticles (Figure 9c,d).
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Figure 9. Cross-sectional analysis (a,b) and 3D morphology (c,d) of the magnetic nanoparticles.
(a,c) γ-Fe2O3 and (b,d) Co.

The corresponding magnetic powders were strongly attracted by the Nd-magnet (insets, Figure 8).
Figure 10 shows the magnetization curves of the ferrocene- and cobaltocene-derived magnetic solids
at room temperature. The nanoparticles did not exhibit hysteresis (e.g., almost negligible coercivity).
On the other hand, the saturation magnetization values were found to be 71 emu g−1 for γ-Fe2O3

and 70 emu g−1 for Co. These values were lower than those of the bulk phases (γ-Fe2O3: 83 emu g−1; Co:
162 emu g−1) due to the quantum size effect. Overall, the magnetization data confirmed the nanosized
dimensions of the obtained particles.

Likewise, cobaltocene, nickelocene (99% Acros Organics™, Morris County, NJ, USA) afforded
magnetic nickel nanoparticles after ignition with fuming nitric acid. Moreover, the method was useful
for the synthesis of alloy nanoparticles as well. For this purpose, equimolar amounts of cobaltocene
and nickelocene were ground in the presence of acetone in a mortar and pestle to obtain a homogenous
powder after drying. Acetone is a good solvent for both metallocenes, thus allowing molecular
blending of the precursors. Following, the mixture was ignited by fuming nitric acid to afford CoNi
magnetic nanoparticles displaying the characteristic (111), (200), and (220) reflections of the alloy [16].



C 2020, 6, 61 10 of 12

Lastly, chromocene (95% Sigma–Aldrich, St. Louis, MO, USA) reacted similarly as above, to give
instead ceramic Cr2O3. The corresponding XRD patterns of all solids are given in Figure 11. Therefore,
depending on the cyclopentadienyl precursor many more materials can be foreseen and explored
through hypergolics in the near future.C 2020, 6, x FOR PEER REVIEW 11 of 13 
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4. Conclusions

Cyclopentadienyl compounds are versatile reagents in the hypergolic synthesis of different types of
nanomaterials, such as carbon and inorganic. Indicatively, the hypergolic reaction of cyclopentadienyllithium
with fuming nitric acid gave a carbon residue mostly composed of discoidal particles, whereas analogous
reactions with ferrocene and cobaltocene afforded γ-Fe2O3 and Co magnetic nanoparticles, respectively.
In all instances, the reactions were fast, spontaneous, and exothermic at ambient conditions, resulting
in rapid product formation with fairly good yields. Based on these grounds, hypergolics merits further
attention in materials science as a new preparative method of a broader class of nanomaterials.

Author Contributions: Conceptualization, experiments, and writing A.B.B. and D.G.; formal analysis, experiments,
and writing N.C., V.Š., V.K., D.M., A.A., and M.A.K. All authors have read and agreed to the published version of
the manuscript.

Funding: We acknowledge support of this work by the project “National Infrastructure in Nanotechnology,
Advanced Materials and Micro-/Nanoelectronics” (MIS-5002772) which was implemented under the action
“Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme
“Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020), and co-financed by Greece
and the European Union (European Regional Development Fund). This research was also co-financed by
Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human
Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human
Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships
Foundation (IKY). V.Š. acknowledges the assistance provided by the Research Infrastructure NanoEnviCz II from
MEYS CZ (LM2018124) and the support from the Internal Student Grant Agency of the Palacký University in
Olomouc, Czech Republic (IGA_PrF_2020_022). V.Š. and V.K. also acknowledge the financial support from MEYS
CZ under the project CZ.02.1.01/0.0/0.0/16_019/0000754.

Conflicts of Interest: The authors declare no conflict of interest.



C 2020, 6, 61 12 of 12

References

1. Baikousi, M.; Chalmpes, N.; Spyrou, K.; Bourlinos, A.B.; Avgeropoulos, A.; Gournis, D.; Karakassides, M.A.
Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Mater. Lett.
2019, 254, 58–61. [CrossRef]

2. Chalmpes, N.; Spyrou, K.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D.
Synthesis of highly crystalline graphite from spontaneous ignition of in situ derived acetylene and chlorine
at ambient conditions. Molecules 2020, 25, 297. [CrossRef] [PubMed]

3. Chalmpes, N.; Asimakopoulos, G.; Spyrou, K.; Vasilopoulos, K.C.; Bourlinos, A.B.; Moschovas, D.;
Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Functional carbon materials derived through hypergolic
reactions at ambient conditions. Nanomaterials 2020, 10, 566. [CrossRef] [PubMed]

4. Chalmpes, N.; Spyrou, K.; Vasilopoulos, K.C.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.;
Gioti, C.; Karakassides, M.A.; Gournis, D. Hypergolics in carbon nanomaterials synthesis: New paradigms
and perspectives. Molecules 2020, 25, 2207. [CrossRef] [PubMed]

5. Chalmpes, N.; Tantis, I.; Bakandritsos, A.; Bourlinos, A.B.; Karakassides, M.A.; Gournis, D. Rapid carbon
formation from spontaneous reaction of ferrocene and liquid bromine at ambient conditions. Nanomaterials
2020, 10, 1564. [CrossRef] [PubMed]

6. Trent, C.H.; Zucrow, M.J. The hypergolic reaction of dicyclopentadiene with white fuming nitric acid. J. Am.
Rocket Soc. 1951, 21, 129–131. [CrossRef]

7. Roh, J.-S. Structural study of the activated carbon fiber using laser Raman spectroscopy. Carbon Lett. 2008, 9,
127–130. [CrossRef]

8. Ferrari, A.C.; Rodil, S.E.; Robertson, J. Interpretation of infrared and Raman spectra of amorphous carbon
nitrides. Phys. Rev. B 2003, 67, 155306. [CrossRef]

9. D’Arsié, L.; Esconjauregui, S.; Weatherup, R.S.; Wu, X.; Arter, W.E.; Sugime, H.; Cepek, C.; Robertson, J.
Stable, efficient p-type doping of graphene by nitric acid. RSC Adv. 2016, 6, 113185–113192. [CrossRef]
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