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Abstract: MCM-41–Co catalysts were tested in the synthesis of single wall carbon nanotubes
(SWCNTs) through methane chemical vapor deposition (CVD), varying total cobalt content, synthesis
temperature, methane flow rate, and deposition time. All variables showed a relationship with total
carbon deposition, graphitic quality according to Raman results. Cobalt content showed a maximum
activity at 4%, but the structural quality is best at 3%. Flow rate does not affect the quality up
to 300 cm3 min−1, but deposition time leads to the formation of highly disordered carbon species
passing methane for periods longer than 30 min, concluding that optimal variables are a methane
deposition temperature of 800 ◦C, a 300 cm3 min−1 methane flow rate, and a 30 min of methane
injection time, leading to a 5.4% carbon mass content and 5.1 G/D area ratios.

Keywords: single wall carbon nanotubes; chemical vapor deposition; nitrogen phisisorption;
Raman spectroscopy

1. Introduction

Since single wall carbon nanotubes (SWCNTs) were discovered [1] and remain one of the most
remarkable carbon materials, with singular physical and electrical properties. An important feature of
SWCNTs relies on the high tensile strength parallel to the tube axis as a consequence of the strongly
delocalized π-electron density, and the high aspect ratio (up to millions) makes SWCNTs suitable
for improving the physical strength of polymers [2]. Another important feature of SWCNTs is the
semiconducting behavior dependent on chiral indexes [3,4], the band-gap being inversely related to
the tube diameter [5]. This behavior is quite important when a material with a narrow band-gap value
is required such as in the research of field-effect transistors [6]. Besides the semiconducting properties,
SWCNTs present high electron and hole mobilities [7], improving short-circuit currents in solar cell
devices [8,9]; through chemical doping of the graphitic structure, the band-gap is modified and permits
the SWCNTs to serve as a chemical sensor where the response is generally interpreted as a current
change when a probe molecule interacts with the doping agent in the graphitic structure [10]. Another
important application field in gas adsorption, nanotube packaging leaves interstitial pores where small
molecules such as hydrogen can be adsorbed for energy-related research [10]. Despite the huge brand of
applications, nowadays SWCNT synthesis processes are expensive, requiring sophisticated production
set-ups such as laser ablation and arc-discharge. While chemical vapor deposition (CVD) [11] is the
simplest way to prepare them, carbon monoxide (CO) is the most used carbon source producing
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good, high-quality yields [12]. The main disadvantage of this compound lies in its high toxicity;
on the other hand, methane is a good alternative because it has low toxicity, it is less expensive,
and it produces either multiwall carbon nanotubes (MWCNTs) [13] or SWCNTs [14]. Mesoporous
cobalt-based catalysts are of great interest due to their high selectivity towards SWCNTs, which is
related to the ability of the MCM-41 porous structure to control the cobalt particle size inside pores
with small diameters (<5 nm), responsible for the diameter of a carbon nanotube (CNT) [15] and the
selectivity towards SWCNTs, which only grows over metal particles with a small size [16]. Most studies
use carbon monoxide as a carbon source, but methane, being more accessible, could substitute CO.
Therefore, in this work, to reach a high selectivity and yield of SWCNTs, cobalt content in MCM-41–Co
catalyst, methane–CVD reaction temperature, methane flow rate, and reaction time are evaluated in
order to determine the optimal conditions.

2. Materials and Methods

2.1. Chemical Reagents

Tetramethylammonium silicate (TMASiO2) (15–20%) was from Sigma-Aldrich (St. Louis,
MO, USA), colloidal silica Cab-O-Sil (99.5%) was from Sigma-Aldrich, [Co(NO3)2x6H2O] (99.3%) was
from Merck (Kenilworth, NJ, USA), cetyltrimethylammonium bromide (99%) was from Sigma-Aldrich,
Ambersep 900 R© was from Alfa-Aesar, glacial acetic acid was from Merck, and ammonia (27% w/v)
was from Merck.

2.2. Catalyst Synthesis

An total of 2.50 g of colloidal silica Cab-O-Sil and 10 mL of TMASiO2 were stirred for 30 min in
50 mL of deionized water; then, the proper amount of the [Co(NO3)2x6H2O] was added to reach the
desired amount of cobalt (2–6%). The mixture was kept under constant stirring for 30 min, and two
drops of antifoam A and 28.79 g of CTMAOH were then added. Next, the pH was adjusted to 11.5 using
glacial acetic acid. The CTMAOH was previously prepared using 20% CTMABr and an Ambersep
900, in a proportion of 1 mmol CTMABr to 1 mL of Ambersep. Previous works have shown that both
MCM-41 [17] and the MCM-41–Co [18] catalyst has good thermal stability and pore uniformity when
the synthesis is conducted under these conditions. Catalysts names are: Con, where n is the nominal
content of cobalt.

2.3. Chemical Vapor Deposition

All chemical vapor depositions (CVDs) were carried on a vertical quartz tube with an inner fritted
disk, 200 mg of MCM-41–Co catalyst was heated under a constant flux of N2 at 25 ◦C min−1 until the
reactor reached 700 ◦C. A mixture of 50:150 H2/N2 vol/vol was passed for 30 min, and the reducing
atmosphere was switched for N2 and rapidly heated to 800 ◦C where a variable flux of CH4 was
supplied. Once the reaction was completed, the reactor was allowed to cool to room temperature
under an N2 atmosphere. The CVD products were characterized without purification.

2.4. Catalyst Characterization

The catalysts porous structure was characterized by means of N2 adsorption isotherms using
ASAP 2020 equipment at a normal boiling point of N2 (−195.8 ◦C), taking approximately 30 points
in the pressure range 0–1.0 (P/P0). Surface area using the BET model was used in the pressure
range 0.05 P/P0–0.25 P/P0 [19], and pore size distribution was determined according to non-local
density functional theory (NLDFT) models [20]. Incorporation evidence was performed using
ultraviolet-visible spectrometer lambda 35 Perkin Elmer with an integration sphere attached to record
the diffuse reflectance spectrum (DRS-UV) in the visible region, from 400 to 700 nm.
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2.5. CVD Product Characterization

Total carbon content was determined using a thermogravimetric analyzer (TGA) supplied by
Thermal Advantage, Q500, under an air atmosphere (a mixture of 80% N2 and 20% O2), a flow rate
of 100 cm3 min−1, and a heating rate of 10 ◦C min−1. Total carbon content was taken as the weight
loss from 200 ◦C to 800 ◦C. Graphitic features and evidence of SWCNTs using Raman spectroscopy,
LabRam HR at 732 nm, Horiba. Each sample was placed on top of a glass substrate and flattened to
minimize the signal noise. A single spectrum was collected by pointing the equipment laser to the
darkest place in the sample and acquiring the spectrum for 10 s.

3. Results

3.1. Catalyst Characterization

The porous structure of the MCM-41 support is of great importance during SWCNT synthesis,
when the cobalt silicate-like is reduced by hydrogen, and the metallic particles diameter is restricted
by the MCM-41 pore dimension, which subsequently defines the CNT diameter [21]. On the other
hand, a large surface area is required to effectively disperse cobalt particles inside the porous structure
to avoid sintering processes that lead to a loss of activity towards SWCNTs. Nitrogen adsorption
isotherms give good insight in the mesoporous structure of catalysts (Figure 1A). All catalysts show
mesoporous adsorption behavior [22] with a capillary condensation step from 0.3 P/P0 to 0.45 P/P0

featuring an MCM-41-like structure. Incorporation of a foreign cation into the siloxane network leads
to a pore distortion, a deviation from the ideal Si–O–Si bond length conducts to a pore size increment
(M–O larger than Si–O) or shortening (M–O shorter than Si–O). Co–OSi bond length is larger than
the Si–OSi [21]; therefore, when cobalt is incorporated into the MCM-41 network, there is a pore
shape disruption and an enlargement that conducts to a less uniform nitrogen uptake in the capillary
condensation step, reflecting a decrease in the slope (Figure 1B) and mesoporous surface area (Table 1).
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Figure 1. (A) Nitrogen adsorption isotherms of MCM-41–Co catalysts. (B) Offset added for each
catalyst to differentiate curves and maximum slope of the capillary condensation step.

Mesoporous MCM-41 silica prepared with cetyltrimethylammonium bromide (CTABr) as
pore director leads to a mean diameter of 4.0 nm approximately, confirmed by XRD and TEM
experiments [23]. Through nitrogen adsorption, it is possible to determine pore size; NLDFT [20]
or the Barrett–Joyne–Halenda (BJH) method [24] are two approaches for the determination of the
pore size of mesoporous materials. The latter underestimates the pore size of a cylindrical shape
(like MCM-41 pores), while NLDFT hasa better correlation, giving pore diameters around 4.0 nm for
MCM-41 prepared with CTABr as a pore director [25]. According to pore size distribution (Figure 2A),
there is an increment in pore diameter as the cobalt content increases. This finding is in good agreement
with the dependence of pore size and metal–oxygen bond length. The Co2 catalyst has a pore size
of 3.91 nm, while Co6 has an average pore diameter of 4.40 nm (see Table 1). Interestingly, as the
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cobalt content increases, a second distribution comes out, and pores are larger than 5.0 nm (Figure 2B).
Such pores are potentially detrimental to SWCNT growth since large particles are preferentially active
towards amorphous carbon and non-tubular graphitic materials.
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Figure 2. (A) NLDFT pore size distribution of each MCM-41–Co catalyst. (B) Co6 NLDFT pore size
distribution deconvolution using Gaussian functions.

Table 1. Nitrogen adsorption results summary, BET surface area (SA), and pore diameter (PD) as the
peak maximum in the NLDFT distribution.

Catalyst SA (m2 g−1) PD (nm)

Co2 1115.3 3.9
Co3 977.8 4.2
Co4 1057.2 4.1
Co5 934.5 4.3
Co6 873.7 4.4

Through nitrogen adsorption results, it was possible to confirm the well-defined mesostructure
for all catalysts; nevertheless, the incorporation of cobalt is not feasible to prove solely via this
technique. Diffuse reflectance UV–Vis (DRS-UV) absorption profiles (Figure 3) give information about
the coordination of cobalt cation in the bulk structure. When cobalt cation is surrounded by four
oxygen anions, it absorbs photons from 550 to 700 nm [26]. Since all catalysts show almost the same
absorption profile, it can be concluded that the chemical environment of cobalt within the siloxane
network is similar in all cases. It is noteworthy that the initial amount of cobalt salt in the sol-gel
process is directly related to the spectral intensity within the range 550–750 nm range. This increment
is presumably due to an increase of cobalt cations forming SiO–Co–OSi species.
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Figure 3. Diffuse reflectance UV–Vis of MCM-41–Co catalysts. The arrows point to the main
absorption transitions.
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3.2. Methane Chemical Vapor Deposition

The cobalt catalysts prepared so far show the desired incorporation without losing the mesoporous
characteristics; nevertheless, to test the catalysts in the production of SWCNTs, a CVD process is
conducted. Figure 4A shows the total amount of carbon deposited after the CVD process (extracted
from TGA curves as the weight loss between 200 and 800 ◦C). According to the bar plot, there is a direct
relationship between the total amount of carbon and the cobalt load up to 4%, where a maximum
of carbon production is reached. Further cobalt load (5% and 6%) leads to a loss of activity which
could be related to the lower surface area of those catalysts (Table 1), leading to a poor dispersion of
cobalt species after reduction and allowing the growth of large cobalt particles, which do not have
activity towards SWCNTs [18]. Evidence of SWCNTs was confirmed by means of Raman spectroscopy
(Figure 4B), where all samples show signals between 150 and 250 cm−1, related to the radial breathing
mode (RBM) of the tube [27]. Peak maximum within this range is inversely related to the tube
diameter [28] (see Equation (1)). G-band (∼1580 cm−1) appears when graphitic-like structures are
present, and D-band (∼1350 cm−1) is characteristic of defects on the tube structure (fused 5- and
7-member rings) and amorphous carbon. The G to D areas ratio is of particular interest since is
a quantitative measure of graphitic quality [29]. CVDs show all of those aforementioned features,
which is conclusive of the formation of SWCNTs. Moreover, according to data in Table 2, the samples
Co3, Co5, and Co6 have a higher G/D-band ratio, indicating good tube quality. In Co2 and Co4, there
is even evidence that the structural quality of SWCNTs is not as good as the priors. Since catalytic
activity decreases beyond 4% of cobalt content, one may think that some cobalt metal particle growth
is larger than the critical size, losing activity to SWCNTs. Combining Raman and TGA results, it is
clear that Co3 is the ideal catalyst, where carbon content is good and does not lose structural quality.
According to Equation (1), the tube diameter in all cases varies from 0.8 to 1.2 nm approximately
(Figure 4C); as mentioned earlier, tube diameter is related to the cobalt particle size and cobalt particle
size is defined by the pore dimension, if it is confined inside the pore; since all catalysts showed pore
diameters that are close to each other, similar SWCNT diameters are expected.

ν̃ =
234
dt

+ 10 tube diameter (in nm) relationship with the RBM shift (1)
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Figure 4. (A) Total carbon content after the CVD process. (B) Raman spectra of all CVD products
arranged by the offset and (C) the RBM zone (150–350 cm−1) zoom of all Raman spectra.

Table 2. G-band and D-band ratio (G/D) of CVD products over MCM-41–Co.

Catalyst G/D Area Ratio

Co2 1.53
Co3 6.86
Co4 2.03
Co5 3.77
Co6 3.12

3.3. Time Effect on the CVD Process

In all CVD experiments conducted so far, the reaction time under methane flow was 30 min long.
To evaluate the time effect on the deposition quality and yield, the reaction was performed for 60 and
90 min. The total carbon deposition at a 30 min reaction time was approximately 4% (Figure 5A) and
retains the structural quality (Figure 5B). A longer deposition time (>30 min) leads to a higher carbon
amount after the CVD process, but the structural quality decreases enormously, as can be seen by the
increase of the D-band; 30 min seems to be the optimal time. As the methane molecules pass through
the cobalt particles, they dissociate and begin to cover the cobalt particle surface. Once the particles
are saturated with carbon atoms, the excess of methane molecules dissociate over the silica support,
yielding amorphous carbon and non-tubular structures [30].
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Figure 5. (A) Time effect on carbon deposition amount and (B) Raman characteristics of CVD deposition
products as function of time.

3.4. Methane Flow Rate Effect on CVD Process

The CVD process is affected by the gas adsorption, bulk diffusion, and surface diffusion, among
others. The carbon source quantity available for reacting affects the total amount of carbon species
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deposited over the CVD process. As the number of methane molecules increases, the collision
probability of methane molecules against the cobalt particles increase as well, which leads to a higher
amount of deposited carbon [31]; as seen in Figure 6A, methane flow rate indeed increases the yield by
up to to 5.4%. More interestingly, there is no increase in the D-band as the flow rate rises, nor is any
loss in graphite-like structure evidenced. Since an oversaturation of methane molecules over metal
particles cannot be seen, the flow rate may be increased, pushing the yield of carbon deposition beyond
6% without losing structural quality.
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of CVD products.

3.5. Effect of Reaction Temperature on CVD Process

Finally, temperature variation is assessed from 800 to 950 ◦C, in 50 ◦C steps. A huge increase in
catalytic activity is shown in Figure 7A, where the total amount of carbon uptake went from 5.4% to
nearly 60%. This trend has been evidenced [32,33] where the temperature has a direct effect on the
CVD deposition amount, due to an overcoming of the methane dissociation energy barrier. Despite
the higher activity, the G/D area ratio decreases strongly, and the amount of SWCNT formed also
diminishes with temperature (Figure 7B), leading to a complete loss of activity to SWCNTs.

Scanning electron micrographs (Figure 8) show no tubular structures, such as MWCNTs over the
Co3 catalyst in the temperature range evaluated. Combining Raman, TGA, and SEM results, it is clear
that there is a complete loss of activity toward CNTs, so carbon species growth may be amorphous or
highly disordered non-tubular carbon compounds. More detailed information regarding the nature of
this carbon compounds can be extracted by transmission electron microscopy [34].
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Figure 8. SEM micrograph of CVD products: (A) 800 ◦C, (B) 850 ◦C, (C) 900 ◦C, and (D) 950 ◦C.

4. Conclusions

In this work, SWCNTs have been successfully prepared from methane CVD processes over
MCM-41–Co catalysts with good quality and yield. Methane flow rate is directly related to yield
without losing quality, while reaction time increases yield but decreases quality. On the other hand,
increasing the reaction temperature boosts the catalytic activity enormously but leads to the loss of
SWCNT selectivity. Non-tubular species are present, but this may suggest the formation of graphite or
non-tubular species with low quality.
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