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Abstract: The application of carbon nanotubes (CNTs) as metal-free catalysts is a novel approach for
heterogeneous liquid phase catalytic systems. Textural and chemical modifications by liquid/gas
phase or mechanical treatments, as well as solid state reactions, were successfully applied to obtain
carbon nanotubes with different surface functionalities. Oxygen, nitrogen, and sulfur are the most
common heteroatoms introduced on the carbon surface. This short-review highlights different
routes used to develop metal-free carbon nanotube catalysts with enhanced properties for Advanced
Oxidation Processes.
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1. Introduction

The work published in 1991 by Ijima [1] boosted the interest by carbon nanotubes (CNTs) and
since then they have been intensively studied due to their unusual mechanical, electronic, and thermal
properties [2], allowing them to be currently used in a wide range of technological applications [3,4],
including as catalysts or catalyst supports in the fields of renewable energy (storage and generation) and
environmental technologies (oxidation/remediation/adsorption). In fact, CNTs have been intensively
investigated as catalyst supports for those technologies, and less often as catalysts on their own,
but recent advances in the development of reliable methods to tune their physicochemical properties
by suitable thermal or chemical post-treatments provide a major asset for their use as catalysts in
these applications [5,6]. Furthermore, the increasing role assumed by carbon nanomaterials in recent
decades is intrinsically linked to the better understanding of the carbon surface chemistry, as a result
of reliable methods of analysis.

In this review relevant methods for the chemical functionalization of CNTs will be presented,
and their properties discussed, with emphasis on their use as catalysts in environmental metal-free
processes. High efficiency, environmental compatibility, low energy consumption, and corrosion resistance
are some of the advantages that nanocarbons offer compared with metal-based catalysts, in addition to
high selectivity and long term stability under mild conditions in many catalytic processes [7].

2. Tuning Carbon Nanotube Properties

The performance of any catalyst depends on the availability of suitable active sites, capable
of chemisorbing the reactants and forming surface intermediates of adequate strength. Therefore,
the surface chemistry of CNTs plays an important role on the catalytic performance of CNTs for
different applications [8]. The graphitic structure of the CNTs contains unsaturated carbon atoms at
the edges of the graphene layers as well as defects on the basal plane. Both, contribute to the high
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reactivity of the carbon surface with O-/N-/S-containing compounds, allowing the incorporation of
different functionalities bound to the edge of the graphene layers, extending the application of the
CNTs to a wide range of processes. Different heteroatoms can be successively attached to the CNT’s
surface like O, N, S, depending on the treatment performed. Figure 1 shows schematically the whole
range of surface functionalities.
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qualitative and quantitative information on individual functional groups on the carbon surface, with 
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Several techniques are available to explore the chemical and structural properties of CNTs:
scanning tunneling microscope (STM), transmission electron microscopy (TEM), X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR), and Raman spectroscopies, chemical
titration methods, electron energy loss spectroscopy (EELS), temperature programmed desorption
(TPD), thermogravimetry (TG), and point of zero charge (pHpzc) [10,16,18,19]. Some techniques
do not allow quantitative characterization, others require relatively large amounts of sample and
are time consuming or difficult to implement as a routine analysis [16]. XPS and TPD techniques
yield qualitative and quantitative information on individual functional groups on the carbon surface,
with TPD being especially adequate for characterization of oxygen functional groups on carbon
materials with extended porosity [10]. Nitrogen and sulfur can be properly quantified by elemental
analysis (EA), while the nature of N-containing and S-containing groups is commonly identified by
suitable deconvolution of the N1s and S2p XPS spectra. The nature of the functional surface groups and
their characteristic binding energies (XPS) and/or temperature range of desorption in TPD analyses
are also indicated in Figure 1.

In addition to the surface chemistry characterization, textural properties, such as the specific
surface area and pore size distribution, are required to evaluate the modifications promoted by
the chemical treatments and to compare different carbon nanotubes, which will present significant
differences depending on their provenience or synthesis method. Furthermore, specific surface



C 2016, 2, 17 3 of 18

area (SBET) is a critical parameter for applications in catalysis. Considering that CNTs present a
non-microporous structure, their textural parameters (SBET and pore volume) result from the free space
in the CNT bundles, the accessibility to the tubes edges, the defects on the layers, and the alignment of
the tubes [20].

Ball milling has attracted much attention as a promising method for modifying carbon nanotubes,
namely to adjust their lengths and to open the closed ends [21–23], increasing their specific surface
areas [23], by shortening and opening the nanotubes [23,24]. Although functionalization of the surface
is not achieved by ball milling, the mechanical treatment by itself is able to tune the textural properties
of the CNTs, which have a significant influence on their catalytic performance.

In the following sub-sections, different ways to incorporate heteroatoms on the CNT surface are
separately presented for an easier discussion. However, it should be taken into consideration that the
simultaneous functionalization of the surface often occurs, i.e., some treatments can incorporate O and
S or O and N functional groups at the same time.

2.1. Oxygen-Containing Surface Groups

Different chemical and thermal treatments can be applied to CNTs in order to produce materials
with oxygenated surface groups. The most common liquid-phase oxidation treatments include nitric
acid, mixtures of sulfuric acid and nitric acid, hydrogen peroxide, and ozone. Although, liquid-phase
functionalization of CNTs is easier, it requires filtration, washing and drying steps. Alternative
gas-phase functionalization techniques involve oxidation with oxygen (usually diluted with nitrogen),
ozone, carbon dioxide, oxidative plasmas or by means of nitric acid vapours, which can avoid the
multi-step procedure of the liquid-phase functionalization [25–27].

Oxidation of CNTs is frequently performed using nitric acid as reagent; in addition, to removing
amorphous carbon and metal impurities, abundant oxygenated groups are generated on the carbon
surface [28]. Although a non-selective functionalization is achieved, the O-containing groups can be
anchored on the defect sites of sidewall and open caps of CNTs or on the defect sites and edges [25].
Typically, liquid-phase oxidation can be performed in a Soxhlet extractor or just by boiling the CNTs
in nitric acid. The extent of oxidation will depend on the method used, on the duration of the
treatment, on the concentration of the acid used, and on the ratio CNT/oxidant [29,30]. Traditionally,
CNTs are boiled in a 7 M HNO3 solution for 3 h, as used in ref. [31], incorporating high amounts of
O-containing groups: acidic oxygen groups include carboxylic acids, anhydrides, lactones and phenols,
and carbonyls and quinones, as basic or neutral oxygen functional groups, which can be identified by
deconvolution of the profiles of CO and CO2 released during TPD analysis (Figure 2).
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Figure 2. Deconvolution of temperature programmed desorption (TPD) profiles of commercial CNTs
treated with a 7 M HNO3 solution at boiling temperature: groups released as (a) CO and (b) CO2

(PH—phenols; CAn—carboxylic anhydrides; CQ—carbonyl/quinones; LC—lactones; CAc—carboxylic
acids; SA—strong acidic CAc; WA—weakly acidic CA) (adapted from [32]).
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Severe degradation effects, especially loss of material, tube shortening as well as the formation
of structural defects, usually occur during boiling in HNO3 [33,34]. An alternative to the chemical
functionalization of CNTs by refluxing with concentrated oxidants can be achieved using hydrothermal
(HT) oxidation [35]. This methodology, firstly developed for carbon xerogels [36] and later extended
to single walled carbon nanotubes [37] and multi walled carbon nanotubes [35], uses diluted
concentrations of HNO3 to control the amount of oxygenated functionalities created on the surface of
CNTs. The method is quite effective, and the amount of oxygenated-surface groups (carboxylic acids,
carboxylic anhydrides, phenols, carbonyl/quinones, and lactones) can be correlated with the HNO3

concentration and temperature (Figure 3).
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Figure 3. Evolution of the amounts of CO and CO2 released from the surface of the hydrothermally
treated CNTs (at 473 K) with HNO3 concentration (adapted from [32]).

Comparing with the traditional oxidation (in 7 M solution of HNO3 at boiling temperature) the
hydrothermal functionalization of CNTs using a 0.3 M solution of HNO3 at 200 ˝C can achieve a
similar degree of functionalization, with the amount of oxygen-containing surface groups being even
higher when compared with the traditional refluxing with HNO3 [32] (Table 1). Oxidative treatments
in the liquid-phase with hydrogen peroxide (H2O2) or ozone (O3) have also been reported, but the
degree of functionalization is lower [38]. While treatments with HNO3 originate materials with large
amounts of surface acidic groups, mainly carboxylic acids and, to a smaller extent, lactones, anhydrides,
and phenol groups [15], H2O2 oxidation generates less acidic materials [39] (Table 1), whereas ozone
treated CNTs in the liquid phase revealed slight functionalization [38]. In order to introduce mainly
basic and neutral oxygenated groups on the surface (mainly phenol and carbonyl/quinone groups),
CNTs can be oxidized in the gas phase with diluted oxygen (5% O2 in N2) at high temperatures
(500 ˝C). In this case, it should be taken into consideration that O2 leads to a significant increase of the
specific surface area, while the oxidation with H2O2 does not promote drastic changes of the textural
properties of the CNTs [26].

An alternative way to introduce basic or neutral oxygenated surface groups consists on performing
thermal treatments under inert atmosphere at specific temperatures after oxidation with nitric
acid, in order to selectively remove some of the groups previously introduced during oxidation.
The large amount of oxygen containing groups incorporated on the CNTs by nitric acid oxidation,
carboxylic acid groups (released below 450 ˝C), carboxylic anhydrides (evolved between 350 and
600 ˝C), lactones (released above 600 ˝C) as CO2 during the TPD experiments, phenol (500–750 ˝C),
and carbonyl/quinone groups (700–950 ˝C) released as CO), are successively removed with the thermal
treatments. Thus, samples with different amounts of oxygen groups can be obtained, starting from
the oxidized sample (CNT-HNO3). Thus, the CNT-HNO3-200 sample presents a lower amount of
carboxylic acids than CNT-HNO3. All the remaining carboxylic acids are practically removed, as well
as a part of the anhydrides, when the thermal treatment is performed at 400 ˝C (CNT-HNO3-400).
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After treatment at 600 ˝C (CNT-HNO3-600), the surface only contains phenol and carbonyl/quinone
groups, and a small amount of lactones. Almost all the oxygen-containing surface groups are removed
at 900 ˝C [26,38] (Figure 4). This approach has the advantage that the thermal treatments do not
promote significant additional changes on the specific surface area of the CNTs [38], as can be seen
in Table 1.

Table 1. Textural and chemical properties of modified commercial carbon nanotube (CNT) samples
from the same supplier (Nanocyl NC3100).

Sample SBET CO CO2 Ref.
(m2¨ g´1) (µmol¨ g´1) (µmol¨ g´1)

Pristine CNTs 278 178 33
[32]CNT-HNO3 7M — 1511 767

CNT-HNO3 HT (0.3 M) 441 2015 680

CNT-H2O2 337 466 150
[26]CNT-O2 508 1339 91

CNT-O3 (liquid-phase) 333 503 298 [38]

CNT-HNO3-200 408 1308 727
[38]CNT-HNO3-400 408 1205 113

CNT-HNO3-600 389 826 43
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and thermally treated samples (CNT-HNO3-200, CNT-HNO3-400, CNT-HNO3-600, CNT-HNO3-900)
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2.2. Nitrogen-Containing Surface Groups

The exceptional electronic properties and catalytic performances of N-doped carbon nanotubes
are attracting much interest [11,25,40,41]. The incorporation of nitrogen atoms onto the carbon
structure is relatively easy due to the similar sizes of the nitrogen and carbon atoms [42,43],
providing additional electrons for the graphitic lattice [44]. Furthermore, nitrogen species are
well anchored to the surface and, consequently, the drawbacks related to loss of active phase
are unlikely to occur even under severe reaction conditions [45]. In-situ (during synthesis) or
ex-situ (post-treatments) approaches are used to incorporate nitrogen onto the carbon structure [25].
Regarding post-treatments, the incorporation of nitrogen can be achieved either by treating the
carbon materials with ammonia or using nitrogen-containing carbon precursors, such as urea,
melamine, polyacrylonitriles, polyvinylpyridine, and quinoline-containing pitch [31,46,47]. Generally,
the incorporation of pyridinic-like (N-6), pyrrolic-like (N-5), and graphitic-like (N-Q) structures
enhances the basicity of the CNTs [10,11,48,49].

Normally, all these methods implicate high energy consumption and multi-step procedures,
which raise the catalyst manufacturing cost, limiting their practical applications. Recently, an easy to
handle method to prepare N-doped carbon nanotubes [50] and also N-doped graphene oxide (GO)
was developed [51], involving ball milling, followed by thermal treatment under N2 up to 600 ˝C,
avoiding the use of solvents and production of wastes. Incorporation of large amounts of N-groups
(pyridine, N-6; pyrrole, N-5, and quaternary nitrogen, N-Q) is especially obtained using melamine as
N-precursor by this method (see Figure 5).
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The thermal decomposition products of the N-precursor (melamine) lead to the incorporation
of the N-functionalities onto the carbon surface due to the close contact between the precursor and
the CNT as a result of the previous mechanical mixture performed by ball milling. Furthermore,
this method is easily scalable for practical applications, since the procedure does not require highly
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specialized and expensive equipment. Another N-precursor (urea) was also studied in the same work;
however, lower incorporation of N-groups was achieved.

Table 2 compares melamine and urea treated samples (CNT-BM-M and CNT-BM-U samples,
respectively) using the ball milling approach, with a conventional hydrothermal treatment, where urea
was used as N-precursor after the pre-oxidation of CNTs (CNT-NUT) [31]. The modified samples show
differences regarding the surface area (SBET) lower than 100 m2¨ g´1, comparing with the pristine CNTs.
The addition/treatment with melamine/urea as N-precursor only slightly increases the oxygenated
surface groups. On the contrary, significant amounts of nitrogen can be introduced on the surface of the
CNTs, especially when melamine is used as N-source. The nature of the N-functionalities, identified
by XPS, included pyridine-like N atoms (N-6), pyrrole-like N atoms (N-5), and quaternary nitrogen
(N-Q), which are usually thermally stable on carbons.

Table 2. Textural and chemical properties of N-doped CNT samples using melamine and urea as
N-precursor by ball milling approach or hydrothermal treatment.

Sample SBET CO CO2 NContent N-Functionalities Ref.
(m2¨ g´1) (µmol¨ g´1) (µmol¨ g´1) XPS/EA (wt. %)

Pristine CNTs 291 200 23 n.d. —
[50]CNT-BM-M 355 338 214 4.8/7.6 N-6/N-5/N-Q

CNT-BM-U 353 273 112 0.8/0.9 N-6/N-5/N-Q
CNT-NUT 386 703 76 0.9/0.7 N-6/N-5 [31]

2.3. Sulfonic Acid Surface Groups

While the N-surface groups enhance the basicity of the carbon surface, CNTs can achieve
strongly acidic properties by incorporation of sulfonic acid groups [38,53–56]. Oxidation with
sulfuric acid or a mixture of sulfuric acid/nitric acid by hydrothermal methods is routinely used
for such a purpose [12,13,53,55,57], incorporating mainly thiol (–SH) and sulfonic acid (–SO3H)
groups. Porous carbons functionalized with –SO3H have been presented as environmental-friendly
solid acid catalysts, and they are particularly important in reactions where typically liquid acids
are used; however, they can be also beneficial for improved pollutant removal [12,13,38,55–57].
In addition to the use of H2SO4 as S-source, others sulfonating agents as benzenesulfonic acid
(C6H5SO3H), p-toluenesulfonic acid (PTSA, CH3C6H4SO3H), and “piranha” solution (H2O2–H2SO4)
were proposed [29,57,58]. The methodology already presented for HNO3 controlled functionalization
of CNTs by hydrothermal treatment was adapted in a pioneer work to the use of H2SO4 (containing
ammonium persulfate—(NH4)2S2O8) as an oxidizing agent [59].

Table 3 compares selected sulfonated CNTs from the literature. Direct functionalization with
H2SO4 originates high incorporation of S-containing groups at low temperature (50 ˝C, [56]) or at
high temperature (250 ˝C [53]); however, in the last case the authors did not show the textural
modifications obtained after the treatment. Regarding the hydrothermal methodology, contrary to
what was observed with HNO3 (low acid concentration allowing similar functionalization as the
conventional nitric acid boiling approach), the hydrothermal treatment of CNT with H2SO4 revealed a
weak incorporation of S-containing groups on the surface [59]. The simultaneous use of H2SO4/HNO3

led to higher incorporation of –SO3H [56]; however, in this case a large amount of O-functionalities
was also incorporated.

After an overview of the different possibilities for tuning the surface chemistry of the CNTs
(Figure 6), the next section will emphasise the important role of these groups on some environmental
processes catalysed by metal-free CNTs. The fine tuning allows a good distribution and arrangement
of the heteroatoms in the graphitic lattice which is of a paramount importance concerning the catalytic
behaviour of the CNTs.
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Table 3. Textural and chemical properties of S-doped CNT samples from the literature.

Sample SBET CO CO2 SO2 Nature of S-Groups Ref.
(m2¨ g´1) (µmol¨ g´1) (µmol¨ g´1) (µmol¨ g´1)

CNT-H2SO4 — — — 1900 1 –SO3H 3 [53]
Pristine CNTs 326 187 33 — —

[56]CNT-H2SO4 294 381 195 579 2
–SO3H 4

CNT-H2SO4/HNO3 394 2035 1394 203 2

Pristine CNTs 315 187 31 — —
[59]CNT-H2SO4 HT (0.3 M) a 437 1312 471 81 2

–SO3H
CNT-H2SO4 HT (0.3 M) b — 625 164 53 2

a With and b without ammonium persulfate during the sulfonation. 1 Based on the uptake of ammonia during
ammonia adsorption experiments; 2 Determined by TPD; 3 Identified by FTIR; 4 Identified by XPS.
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3. Environmental Catalytic Applications

Advanced oxidation processes (AOPs) are a group of environmental technologies developed to
remove organic contaminants from water and to treat polluted wastewater by oxidation. Normally,
the reactions involve highly reactive radicals generated from different oxidants, such as oxygen (wet air
oxidation), hydrogen peroxide (wet peroxide oxidation) and ozone (ozonation).

Wet air oxidation (WAO) is a very attractive process that can play a major role as primary treatment
for highly concentrated wastewaters that are refractory to biological treatments. The non-catalytic
process operates at high temperatures (200–320 ˝C) and pressures (20–200 bar), but the process
efficiency can be increased under less severe operating temperatures (130–250 ˝C) and pressures
(5–50 bar) by using homogeneous or heterogeneous active catalysts [31]. The problems associated with
the leaching of the metals to the liquid phase can be avoided by replacing the catalysts based on noble
metals or metal oxides by metal-free carbon materials [60,61].

Catalytic Ozonation (COZ) is another promising technology for the treatment of organic pollutants,
operating at room conditions. Significant enhancement of the non-catalytic process (single ozonation),
that shows low reactivity towards specific types of recalcitrant compounds and usually leads to
an incomplete degradation of the organic pollutants, can be obtained in the presence of carbon
materials [26].
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Thanks to their textural characteristics, mechanical resistance and chemical inertia, CNTs have
already proved to be good candidates for these environmental control processes. CNTs are stable
in both acidic and alkaline media, with the advantage of reducing, or even eliminating, diffusion
limitations, due to their relatively high surface area and absence of microporosity.

In the last decade, metal-free CNTs were investigated as catalysts in Catalytic Wet Air Oxidation
(CWAO) and COZ using selected model compounds. Oxalic acid and phenol are commonly selected as
probe species, since they represent well a refractory short chain carboxylic acid end-product in AOPs
(in the case of oxalic acid) [62–64] and a more complex molecule which is also an organic pollutant
commonly found in industrial effluents (phenol) [38]. In some COZ cases, authors also studied
antibiotics (as erythromycin [65] and sulfamethoxazole [66]), lipid regulators (as bezafribate) [67],
and herbicides (as atrazine) [68,69].

It is generally accepted that basic carbons are the best catalyst for both processes [10] and
numerous works were carried out to clarify this issue. Although this is well accepted in literature
for COZ, in the case of CWAO there is a controversy regarding the active sites on carbon nanotubes
(i.e., sites of basic or acidic nature) required to achieve the best performance. The catalytic activity
of nanocarbons successfully functionalized with different heteroatoms has been investigated in
CWAO [31,38,52,56,70–73] and in COZ [26,51,56,67–69,74–78] by several authors. O-, N- and S-doped
CNTs have been studied as catalysts in both processes. Table 4 summarizes CWAO and COZ works
from the literature, where those surface groups were studied and their influence on the catalytic
performance of the CNTs was evaluated.

Table 4. Overview of Catalytic Wet Air Oxidation (CWAO) and Catalytic Ozonation (COZ) works from
the literature studying different surface functionalities onto the CNTs.

Process(es) Model Compound(s) Type of Functionalities Reference

CWAO

Oxalic Acid/Phenol O-/S-containing groups [38]
Phenol O-(S-) containing groups * [71]
Phenol O-(S-) containing groups * [72]

Oxalic Acid O-/N-containing groups [31]
Phenol O-containing groups [73]

Phenol/Nitrobenzene/Aniline O-containing groups [79]
Phenol O-(S-) containing groups * [80]

CWAO/COZ
Oxalic Acid N-containing groups [52]

Oxalic Acid/Phenol O-/N-/O-containing groups [56]

COZ

Oxalic and Oxamic Acids O-containing groups [26]
Sulfamethoxazole (antibiotic) O-containing groups [81]

Indigo O-containing groups [75]
Oxalic acid O-containing groups [76]
Oxalic acid O-containing groups [77]

Methyl orange dye O-containing groups [78]

* Authors only discussed the effect of oxygenated surface groups; however, they treated the samples with
H2SO4 and, consequently, there are other surface groups.

Depending on the origin of the CNTs and their properties (single-walled/multi-walled, purity,
length and diameter of tubes), pristine CNTs can present significant catalytic activity in both AOPs
even without any functionalization [26,31,66,67], which is due to the presence of basic sites provided by
the π-electron system of the basal planes (Cπ) [82]. Using undoped commercial CNTs from NanocylTM,
oxalic acid is completely oxidized in less than 30 min by CWAO [31] and in around 60 min by
COZ [26]. Even without any functionalization, the performance of pristine CNTs can be improved
using mechanical treatments [24,52], as ball milling. This treatment markedly reduces the entanglement
of the CNTs, also leading to shorter CNTs by breaking up the tubes [24,50,83], and increasing their
specific surface area. The influence of ball-milling on the texture and surface properties of multi-walled
carbon nanotubes to be used as catalysts for the ozonation of oxalic acid was recently studied [24].
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Different milling times at constant frequency and different frequencies during constant time were used
for the preparation of the modified samples. It was observed that the surface area of the CNTs increases,
whereas the particle size decreases, with the ball-milling time until 240 min at 15 vibrations/s, but the
surface chemistry does not change. A higher amount of active sites is available due to the increase in
surface area, increasing the reaction rate in comparison with the pristine and unmilled CNTs.

Despite the relative high catalytic activity of the raw CNTs in the oxidation of oxalic acid,
the same is not always observed for the oxidation of other model compounds, such as phenol. Several
post-treatments can promote a more substantial increase of the CNTs performance allowing them to be
competitive with conventional catalysts.

It is well accepted that the rate of oxidation of the selected model compound depends on the
chemical properties of the CNTs, in some cases being possible to find good correlations with the
nature and amount of the surface functionalities. For instance, in reference [31], where various CNT
samples obtained by different treatments (oxidation with HNO3, H2O2, and O2; treated with urea;
and thermally treated at different temperatures to selectively remove surface groups) were tested as
catalysts, the apparent first-order initial reaction rate constants of oxalic acid oxidation are dependent
on the point of zero charge of the CNT samples (Figure 7a), while in reference [26] a similar correlation
was found when the rate constant for the heterogeneous ozone decomposition using CNTs was
normalized by the surface area (Figure 7b). Both works clearly show that basic carbon samples are
better catalysts than acid samples.
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Reprinted from references [31] and [26] with permission from Elsevier.

Some other publications [71,72,80] have claimed that the carboxylic acid groups attached to the
surface of CNTs promote their catalytic activity for the oxidation of phenol by the CWAO process.
To clarify the controversy in the literature regarding the active sites of CNTs (i.e., sites of basic
or acidic nature) required to achieve the best performance in CWAO, CNTs samples obtained by
the oxidation of CNTs with HNO3, followed by thermal treatments for the selective removal of
O-containing groups used in ref. [26], were tested in the CWAO of phenol [38]. The O-containing
surface groups on the oxidized CNTs (carboxylic acids, phenols, anhydrides) contribute to the acidic
character of the surface, and, simultaneously, decrease the catalytic activity for degradation of the
tested pollutants [38]. Using the CNT samples treated with HNO3 and subjected to thermal treatments
as catalysts for degradation of oxalic acid and phenol by CWAO, it was observed that the conversion of
these pollutants increases as the pHpzc of the materials increase (Figure 8). In spite of this, in the same
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work, CNTs modified with H2SO4 or HNO3/H2SO4, which have a strong acidic character (pHpzc = 2.5),
showed an unexpected high activity for degradation of both model pollutants (Figure 8), although
in the case of phenol only about 57% of TOC conversion was achieved. The performance of these
strongly acidic materials was explained by the presence of S-containing surface groups [38] that may
originate strong oxidant species in the liquid-phase, such as sulfate radicals, which are well known
for their strong oxidizing potential [84]. Nevertheless, S-doped CNT samples were not stable during
cyclic experiments and the catalytic activity is drastically reduced after the first run. Regarding the
oxalic acid and phenol oxidation by COZ, S-treated CNT samples underperformed comparing to
pristine CNTs [56].
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Figure 8. Influence of the surface chemistry on the catalytic performance of CNT: oxalic acid and
phenol conversions obtained after 45 and 120 min of reaction, respectively, plotted against the pHpzc of
nitric acid and thermally treated samples and sulfuric treated samples. Reprinted from reference [38]
with permission from Elsevier.

The modification of metal-free carbon materials by tailoring textural and surface chemical
properties can play an important role in their catalytic performance; in particular, N-doping was
demonstrated to increase the activity of carbon catalysts in oxidation reactions [11,31,51,52,56,85,86].
Regarding the use of N-doped CNTs in oxalic acid oxidation by CWAO, CNTs modified with nitric
acid, urea and gas-phase thermal treatment showed the highest basic character and also the highest
catalytic activity, but the performance is similar to that observed with the original CNTs after cyclic
runs [31]. Also in the degradation of oxalic acid and phenol by COZ, only a slight increase of the
catalytic performance was achieved using N-doped CNTs.

However, in a recent work [52], it was demonstrated that a ball milling and solvent-free
methodology is fairly adequate for the preparation of N-doped carbon materials with enhanced
properties for the mineralization of both organic pollutants in the two distinct processes, oxalic acid
being completely mineralized in 5 min by CWAO and in 4 h by COZ. Furthermore, cyclic experiments
showed low deactivation of the catalyst and high stability of the N-functionalities (mainly N-6, N-5,
and N-Q groups) [52] (Figure 9). Moreover, catalytic experiments were performed using a lower
catalyst loading (in the case of CWAO) and a higher initial concentration of the model pollutant (COZ).
So far, those samples are the best metal-free carbon catalysts tested in both processes. Compared to
traditional catalysts (noble metals or metal oxides), the N-species are well anchored into the catalyst
structure and, as a result, the drawbacks related to loss of active phase are improbable to occur even
under severe reaction conditions [45]; in addition, the stability and electron transfer rate are improved,
leading to a higher durability of the catalysts during the catalytic processes [11,87].
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Figure 9. Evolution of the normalized oxalic acid concentrations: (a) in CWAO experiments (T = 140 ˝C,
PT = 40 bar (PO2 = 7 bar), 0.1 g of catalyst; [Oxalic Acid]o = 1000 mg/L) and (b) in COZ (TRoom, 0.05 g
of catalyst; [Oxalic Acid]o = 450 mg/L) and cyclic experiments inset using sample CNT-BM-M-DT.
(Non-catalytic conditions (WAO), single ozonation (O3), original (CNT-O), ball milled (CNT-BM) and
sample doped with melamine (CNT-BM-M-DT)) (Adapted from [52]).

Besides all the research studies already published regarding the kind of functionalities on
CNTs that allow high activity and stability of metal-free CNTs on CWAO and COZ, the reaction
pathways involved in those reactions are still in doubt. Despite their complexity, it is generally
accepted that: (a) the reaction mechanisms involve free radicals; (b) basic carbons are the best catalysts;
and (c) oxidation of the organic compounds may occur both in the liquid phase (homogenous reaction)
and on the catalyst surface [10]. Figure 10 schematically illustrates these possible reaction pathways.

Clarification of the mechanism involved in the CWAO and COZ processes has been attempted in
some works, by using radical scavengers. For instance, a CWAO experiment using pristine commercial
CNTs was performed in the presence of tert-butanol with a concentration ten times higher than that of
oxalic acid [31]. The obtained results were very similar to those obtained in the absence of the radical
scavenger, suggesting that hydroxyl radicals in solution were not the relevant species involved in the
oxidation mechanism, and that oxalic acid oxidation should be mainly promoted by active oxygen
species on the CNT surface produced from the decomposition of oxygen. When other N-doped carbon
materials were tested in CWAO (carbon xerogels [85] and graphene based materials [51]) similar
evidences were observed, suggesting again that hydroxyl radicals in solution are not in fact the main
species involved in the oxidation mechanism, and that oxalic acid conversion by CWAO can occur by
means of surface active species produced from the decomposition of oxygen. The enhanced catalytic
activity observed in the presence of N-functionalities seems to result from the interaction of oxygen
with the carbon surface [88]. N-groups with delocalized extra electrons were identified as the possible
species responsible for the enhanced chemisorption [88] and activation of oxygen molecules [89].
Such active oxygen species can react with adsorbed organic compounds leading to the oxidation of
the organic pollutants. Therefore, in the presence of N-functionalities on the carbon surface, hydroxyl
radicals in the liquid phase may not be required, suggesting that the oxidation reaction can occur by
an alternative surface reaction mechanism, possibly as described above [51].
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Figure 10. Scheme of the reactions that might occur between the surface of CNTs and the oxidative
agents (O2 or O3) during CWAO and COZ experiments (adapted from [10]).

In the case of COZ, experiments performed using CNTs in the presence of tert-butanol suggested
that ‚OH should participate in the oxalic acid removal [76], since it was found that the presence
of tert-butanol decreases the degradation efficiency of oxalic acid comparatively to the presence of
only CNTs. A similar conclusion was defended in reference [26], ozonation of oxalic acid in the
presence of CNTs occurring both on the surface and in solution. In the presence of N-doped carbons,
the addition of tert-butanol into the reaction medium also leads to a slight decrease in oxalic acid
removal, suggesting that the production of radicals in the liquid phase plays a secondary role in the
catalytic ozonation [85].

In the presence of S-doped CNTs a different reaction pathway may be involved [56]. In an attempt
to clarify the reaction mechanism involved in COZ and CWAO with the S-modified samples,
experiments were done using sodium persulfate with an equivalent S molar concentration of the carbon
samples as a source of sulfate radicals. The experiments performed showed different mechanisms in
both processes. While in CWAO the thermal activation of sulfate radicals occurs (by decomposition
of the S-containing surface groups, –SO3H) and the reaction mechanism involves sulfate radicals in
solution; in COZ, the species resulting from the decomposition of S-containing groups are not active.

4. Conclusions

The present work discloses the potentialities of carbon nanotubes as metal free catalysts in
liquid phase oxidation reactions for water treatment, with special emphasis in CWAO and COZ.
Their performance can be substantially enhanced by tailoring the textural and chemical properties
with appropriate thermal or chemical post-treatments. N-doped carbon materials prepared by a ball
milling method were shown to be the most promising carbon catalysts for these reactions.
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