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Abstract: Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have
established widespread attention due to their regulatory role in cell signaling. They are covalently
closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor
RNAs. CircRNAs are key post-transcriptional and post-translational regulators of gene expression
programs that might influence cellular response and/or function. In particular, circRNAs have
been considered to function as sponges of specific miRNA, regulating cellular processes at the post-
transcription stage. Accumulating evidence has shown that the aberrant expression of circRNAs
could play a key role in the pathogenesis of several diseases. Notably, circRNAs, microRNAs, and
several RNA-binding proteins, including the antiproliferative (APRO) family proteins, could be
indispensable gene modulators, which might be strongly linked to the occurrence of diseases. In
addition, circRNAs have attracted general interest for their stability, abundance in the brain, and their
capability to cross the blood–brain barrier. Here, we present the current findings and theragnostic
potentials of circRNAs in several diseases. With this, we aim to provide new insights to support the
development of novel diagnostic and/or therapeutic strategies for these diseases.

Keywords: circular RNA; APRO family protein; RNA binding protein; translational regulator;
poly(A)-binding protein

1. Introduction

Many studies have identified some non-coding RNAs (ncRNAs) with abnormal ex-
pressions in several diseases and/or disorders [1]. Among them, circular RNAs (circRNAs)
are a special type of endogenous ncRNAs, probably formed by back-splicing events, which
have attracted more and more interest nowadays. CircRNAs are closed loop structures [2],
in which the 3′ and 5′ ends are covalently joined [3]. The altered expression of specific
circRNAs might play an important role in human diseases and/or disorders [4]. CircRNAs
were first thought to be something similar to viroids in plants [5]. Although the abundance
of a number of circRNAs is lower than their counterpart linear RNAs, circRNAs are com-
monly definitely expressed [6]. In addition, circRNAs are much more stable than linear
mRNAs or non-coding microRNAs (miRNAs) [7]. The lack of a linear terminal at both
the 3′ and 5′ ends might hamper their degradation by RNases, which could increase their
stability in the extracellular environment, and support their helpfulness as biomarkers
of diseases [8]. In fact, it has been shown that circRNAs are more resistant than linear
mRNA to the degradation of RNase R due to the lack of 5′ and 3′ ends, including the
terminal 5′ caps and/or 3′ poly (A) tails [9]. CircRNAs could play important roles in
cellular processes. The first mechanism, with regards to the role of circRNAs, might be
as a sponge of miRNAs [10]. Some abundant circRNAs could associate with miRNAs
through regions of complementarity, which may enable the translation of the mRNAs by
taking the miRNAs away from the target mRNAs. In addition, circRNA could also bind to
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proteins in the related signaling pathways [11]. Furthermore, circRNAs could be translated
to protein peptides [12]. Consequently, circRNAs might promote RNA translation and/or
the stabilization of the miRNA assembly. Therefore, the specific expression of circRNAs
may be different from the other classes of RNAs.

According to their splicing sequence, circRNAs can be categorized into several groups.
Exon–intron circRNAs and intronic circRNAs are mainly located in the nucleus, suggesting
that they may be involved in gene expression [13]. Exonic circRNAs are the most abundant
circRNAs found in the cytoplasm [14]. A lariat structure may be formed by the covalent
binding of the splice donor of the downstream exon of the precursor mRNA and the splice
acceptor of the upstream exon, leading to the formation of exon–intron circRNAs and
exonic circRNAs. In this model, further back-splicing by the covalent joining of the 3′ and
5′ ends might result in an intronic circRNA lariat. In some cases, exon skipping might
also result in mixed circRNA lariats [15]. Circularization might be created from the introns
flanking the exons of the pre-mRNA sequence. In addition, it has been reported that the
biogenesis of circRNAs could be regulated by RNA-binding proteins (RBPs) [16]. A circular
structure could be created by the connection of RBPs to introns on both flanking exons of
the pre-mRNA sequence. RBPs could recognize the specific motifs of the back-splicing
to form circRNAs. CircRNA may be localized in the nucleus, where it can recruit several
proteins to modify the chromatin structure and/or to bind to DNA forming an RNA–DNA
hybrid for the transcriptional alterations [17]. In the cytoplasm, circRNAs have also been
detected; regulating target mRNA expression by acting as miRNA sponges [18]. CircRNAs
are broadly present in tissues, blood, and urine with structural stability [19]. Similar to
the ncRNAs, circRNAs could be encumbered into exosome vesicles to facilitate cell–cell
communication [20].

Again, circRNAs have emerged as novel regulators of gene expression by sequestering
miRNAs and RBPs [21]. In addition, it has been suggested that circRNAs might play a
critical role in regulating cellular events by interacting with RBPs [22]. In cases of miRNAs,
miRNAs could regulate translation and mRNA stability by binding target mRNAs in a
complex with Argonaute (AGO) proteins [23]. AGO proteins might interact with a member
of the trinucleotide repeat containing six (TNRC6) family proteins to form a microRNP
complex, which recruits the carbon catabolite repression 4 (CCR4)-negative on the TATA-
less (NOT) complex to accelerate deadenylation with the inhibition of translation [24].
Deletion of the poly (A)-binding protein (PABP) interacting motif (PAM2) from the TNRC6
could abolish the translational activation, suggesting the involvement of PABP in the
functional process of circRNAs and/or miRNAs [24]. Interestingly, the transducer of erbB2
1 (Tob1), a member of the antiproliferative (APRO) protein family, could simultaneously
interact with the poly (A) nuclease complex CCR4-chromatin assembly factor-1 (CAF1) and
the cytoplasmic PABP [25]. In addition, the transducer of erbB2 2 (Tob2), another member
of the APRO protein family, could promote deadenylation by recruiting Caf1 deadenylase
onto the mRNA poly (A) tail by also interacting with PABP [26]. The APRO family genes
have been categorized in the group of immediate early growth responsive genes [27].
The gene products might include similar molecules including pheochromocytoma cell-
3(PC3)/tetradecanoyl phorbol acetate-inducible sequences 21 (TIS21)/B-cell translocation
gene 2 (BTG2), B-cell translocation gene 1 (BTG1), Tob1, Tob2, abundant in neuroepithelium
area (ANA)/B-cell translocation gene 3 (BTG3), PC3B and others [27]. These APRO family
proteins have been described as being involved in diverse human diseases including
cancer [28]. CircRNAs may also conceivably provide a layer of regulation in protein
synthesis and/or in diverse human diseases [29]. In addition, circRNAs may bind to
mRNA directly to drive translation, or may play a key role in the regulation of alternative
splicing [30]. Translational control may be a crucial component of tumor cell survival,
cancer development, and/or cancer cell progression [31]. In general, the translation might
be initiated from the circularization of mRNA and the binding of PABP onto the poly (A)
tail and eukaryotic translation initiation factor 4 G (eIF4G) on the 5′ cap of the mRNA
translation initiation complex in the cytoplasm. Therefore, blocking the interaction of
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PABP and eIF4G could prevent the start of translation and the following important protein
synthesis [32].

2. Roles of CircRNAs in Pathophysiology

In the nucleus, circRNAs can be synthesized by the reverse splicing of coding exons
and/or mRNA splicing without degradation of the intron [33]. CircRNAs can also regulate
gene expression in the nucleus by binding to miRNA or proteins [34]. Interestingly, many
studies have confirmed the role of circRNA in various diseases. For example, circRNA
homeodomain-interacting protein kinase 3 (HIPK3) may induce endothelial proliferation
and/or vascular dysfunction in diabetic retinopathy [35]. Cancer-specific circRNAs could
also promote transformation and cell survival [36]. In addition, circRNAs may play key
roles in the progression of various diseases through their biological effects, in part, by
interacting with RBPs, serving as sponges of miRNA, and/or contributing to protein
coding [37–39]. In fact, several circRNAs may be involved in regulating pathological
processes [40]. Furthermore, circRNAs are abundant in the brain and/or in exosome vesi-
cles [41]. Their capability to transverse the blood–brain barrier (BBB) makes them useful
candidates as potential diagnostic tools for central nervous system (CNS) disorders [41].
Some circRNAs’ expression increases during CNS development to raise the concentration
of miRNA target sites [30]. Remarkably, a large proportion of circRNAs are abundant in the
brain with an unequal distribution in the neuronal compartments. CircRNAs may be in-
volved in the regulation of circulating miRNA genes in CNS disorders such as Alzheimer’s
disease [42]. Furthermore, circRNAs have been recognized as potential biomarkers in other
diseases including amyotrophic lateral sclerosis (ALS), diabetes, and glioblastoma [43]. For
example, circSMOX RNA has been identified as a biomarker in genetic mice models of ALS
with the potential for indicating disease progression [44].

Interestingly, circRNAs may decrease during cell proliferation, even in some cancer
cells [45]. Many circRNAs with miRNA response elements have been discovered to play
essential roles by acting as endogenous competitive RNAs [10]. For example, ciRS7, a
typical sponge of miR-7, contains more than 70 miR-7 binding sites [37]. In addition, circ-
SPARC may upregulate the expression of janus kinase 2 (JAK2) by competitively binding
to miR-485-3p, and might augment the migration and/or invasion of colorectal cancer [46].
In addition, circRNAs have been revealed to accomplish biological functions by interacting
with RBPs and/or participating in protein coding [47]. Furthermore, circRNAs may also
regulate transcription to disturb the expression of their parental genes [48]. Amazingly, the
unique structure of circRNAs makes them exciting for use as potential diagnostic biomark-
ers even for cardiovascular diseases [49]. Likewise, recent evidence has identified a crucial
role of several extracellular circRNAs in alleviating damage due to cardiohypertrophy, heart
failure, and myocardial infarction [50]. Furthermore, several studies have reported their
association with inflammatory responses; thus, influencing pathophysiological phenomena
in various tissues [51], which may become targets for disease therapy. CircRNA is an
important cargo carried by exosomes, which could modulate gene expression by sponging
certain miRNAs, regulating nuclear transcription, and competing with mRNA splicing [52].
In addition, their closed loop structure determines the high biological stability of circRNAs;
thus, making them a promising biomarker in clinics.

3. CircRNAs and Several Diseases

CircRNAs have attracted general interest for their stability, abundance in the brain,
capability to cross the BBB, and their specific expression in several diseases. Accumulating
evidence has shown that aberrant expression of circRNAs could play a key role in the
pathogenesis of several diseases. Notably, circRNAs might be indispensable immune
system gene modulators, which might be strongly linked to the occurrence of autoimmune
disorders. Here, we present the current findings and theragnostic potentials of circRNAs in
common diseases. This section aims to provide new insights to support the development
of novel diagnostic and/or therapeutic strategies for these diseases (Figure 1).
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Figure 1. Illustration of the general functions of circular RNAs (circRNAs). Functions of circRNAs
have been proposed in several diseases including cancers, brain or CNS disorders, several types
of diabetes mellitus, bone-related diseases, and polycystic ovary syndrome. Consequently, certain
circRNAs could be diagnostic and/or therapeutic tools for these diseases. The arrowhead means
stimulation and/or augmentation, whereas the hammerhead represents inhibition.

3.1. CircRNAs and Cancers

CircRNAs have been found in exosome vesicles, where they are thought to modulate
the expression of several genes and miRNAs, which has gained increased attention in can-
cer research [53–55]. Some circRNAs could promote a malignant phenotype of peripheral
tumor cells in cholangiocarcinoma [56]. Several studies on circRNAs have revealed the
involvement of circRNAs in glioma progression by competitive sponging of miRNAs [57].
For instance, circ_0037655 may be able to enhance gliomas to progress via the direction
of miR-214 and phosphoinositide-3 kinase (PI3K)/AKT signal transduction [58]. As men-
tioned before, circRNAs are structurally stable, presumably because their lack of both 5′ and
3′ ends might be resistant to exonuclease activity, which might enable circRNAs to serve as
diagnostic and/or prognostic biomarkers for cancers. Furthermore, some circRNAs may
play important roles in offering potential therapeutic targets [59]. A correlation between
circRNAs and pancreatic cancer has also been reported [60]. For example, the silencing of
circ_0030235 by an siRNA principally suppresses the cell proliferation, migration, and/or
invasion of pancreatic cancer [60]. Similarly, circRNA 100146 may employ its oncogenic
effect on non-small cell lung carcinoma by interacting with miR-361-3p [61]. In addition,
circSMARCA5 may be aberrantly expressed in a variety of diseases, which could be shown
to have prognostic value in malignant tumor cells [62]. Interestingly, circRNA_000864,
miR-361-3p, and BTG2 could function as potential targets for the treatment of pancreatic
cancer [63]. The overexpression of circBTG2 might inhibit the proliferation and/or invasion
of glioma cells, whereas circBTG2 knockdown could promote tumor growth in vivo [64].
CircBTG2 may repress miR-25-3p to prevent it from interacting with some RNAs in other
pathways [64]. Another member of the APRO circRNAs, circRNA BTG3, has been revealed
to facilitate the proliferation of colorectal cancer cells and/or lung cancer cells [65,66]. BTG3,
a known antiproliferative protein, has been shown to be a direct target of miR-106b-5p,
whose expression level may be reverse correlated with miR-106b-5p expression [67]. Gas-
tric cancer-derived exosomal miR-552-5p could also facilitate tumorigenesis by interfering
with the phosphatase and tensin homolog (PTEN) and/or the Tob1 signaling axis [68].
Both PTEN and Tob1 have been shown to be expressed at extraordinary levels in adjacent
non-cancerous tissues, while miR-552-5p may be expressed at lower levels there [68].
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3.2. CircRNAs and CNS Disorders

CircRNAs are commonly expressed in the nervous system, particularly in the brain [69].
The specific expression of some circRNAs in the brain identifies these as candidates for
biomarkers of neurodegenerative diseases. For example, there are several circRNAs that
are differentially expressed in the brain tissue and plasma of patients with Alzheimer’s
disease [70]. In addition, studies have identified a few circRNAs in neurodegenerative
diseases such as multiple system atrophy [71]. There are also a few reports on circRNAs
in Parkinson’s disease [72]. Furthermore, several reports have suggested a link between
circRNAs and ALS [73]. These are involved in important signal transduction pathways in
the regulation of various neural activities [74]. The fact that circRNAs are abundant in the
brain and exosomes could make them beneficial biomarkers for CNS disorders [41,75]. The
circRNAs are enriched by more than two-fold in exosomes compared to those retained in
the cells, which may provide some information about the disease status of CNS disorders
and/or brain tumors including glioblastoma [41,75], suggesting that circRNAs may be
involved in regulating the biological activity of brain cells [75]. Upregulating circPAIP2,
an intron-retained circRNA, may affect translational inhibition of memory-related genes
through the reactivation of PABP, which might be associated with the role of RNA poly-
merase II localized in the nuclei [13,76,77]. It has been reported that RNA binding proteins
such as PABP may co-localize with small tau protein inclusions in Alzheimer’s disease.
APRO family proteins may be also involved in the translational suppression of mRNAs
through their interaction with PABP [78]. In addition, it has been suggested that the miR-
146a-mediated suppression of BTG2, another member of the APRO family, might contribute
to the protective role of neurons in postoperative cognitive dysfunction [79]. Furthermore,
it has been shown that BTG3 may be implicated in neurogenesis [80].

3.3. CircRNAs and Diabetes Mellitus

Accumulating evidence has proved that circRNAs are associated with some diabetes.
Some studies have identified the circRNA expression profiles in type 1 diabetes mellitus
(T1DM), indicating that circRNAs might play a key role in the progression of T1DM [52,81].
For example, a differential expression profile of plasma circRNAs such as hsa_circRNA_100332,
hsa_circRNA_101062, hsa_circRNA_103845 and/or hsa_circRNA_085129 may be possibly
associated with the onset of T1DM [52]. In particular, exosomes with circRNAs might
participate in the progression of T1DM via multiple mechanisms. Therefore, the biomarker
potential of exosomes in T1DM has been emphasized. For example, it has been indicated
that T lymphocyte exosomes could trigger beta-cell apoptosis via exosomal miRNAs [82].
In addition, the pancreatic islets could release the intracellular autoantigens of the pan-
creatic beta-cell into exosomes, which could be engaged by antigen-presenting cells for
autoimmune disorders [83]. In general, exosomal RNAs derived from human islets may be
expressed under the treatment of proinflammatory cytokines, emphasizing the biomarker
potential of exosomal RNAs [84]. In fact, several exosomal mRNAs may be related to the
progression of T1DM [85,86]. Furthermore, miR-21-5p in circulating exosomes has been
increased during the development of T1DM [87]. In addition, it has been suggested that
exosomes released by adipose tissue-derived mesenchymal stem cells (MSCs) may possess
immunomodulatory effects on T lymphocytes, which could improve the symptoms of
T1DM [88]. In addition, the role of circRNAs in the occurrence and/or development of type
2 diabetes mellitus (T2DM) have also been shown. For example, hsa_circ_CCNB1 and/or
hsa_circ_0009024 could be utilized as possible biomarkers for T2DM [89]. CircTulp4 may
stimulate cell cycle progression, thereby discharging INS-1 cell dysfunction under glyco-
side toxicity [90]. In these ways, circRNAs may also participate in the occurrence and/or
development of T2DM through various mechanisms with circRNAs. Furthermore, sev-
eral circRNAs have been reported to be dysregulated in gestational diabetes mellitus [91].
Moreover, some of them may be of noteworthy diagnostic value even for T2DM [92]. Here
too, it has been reported that circRNAs may regulate gene expression by controlling the
functions of miRNAs, RBP, and/or PABP [93], which may be followed by binding to the
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5′-untranslated region (UTR) of insulin mRNA to increase the protein translation and/or
the secretion of insulin in β cells [94].

3.4. CircRNAs and Bone Related Diseases

Attention has been paid to the role of circRNAs in osteogenic differentiation [95].
CircRNAs have been reported to influence the differentiation of osteoblasts and/or osteo-
clasts [96,97], which might be deeply involved in the regulation of bone metabolism [96,98].
For example, circRNA_009934 is particularly expressed during osteoclast differentiation,
which could attach miR-5107 to promote the expression of tumor necrosis factor receptor-
associated factor 6 (TRAF6) [99]. On the contrary, the expression of circ_0021739 could
inhibit osteoclast differentiation via the targeting of miR-502-5p [100]. Circ_0024097 could
also promote osteogenic differentiation by binding to miR-376b-3p [101]. In addition,
circ_0076906 could promote the expression of osteoglycin before inducing the differen-
tiation of bone marrow derived mesenchymal stem cells (BMSCs) into osteoblasts [102].
Circ_0006215 could also bind to miR-942-5p to encourage the differentiation of BMSCs
into osteoblasts by regulating runt-related transcription factor 2 (RUNX2) and/or vascu-
lar endothelial growth factor (VEGF) expression [103]. Therefore, the overexpression of
circRUNX2 could help the osteogenic differentiation to move away from the progression
of osteoporosis [104]. Consistently, circRNA-fibroblast growth factor receptor 2 (Fgfr2)
could sponge miR-133 to regulate the expression of bone morphogenetic protein-6 (BMP6)
for osteogenesis [105]. Similarly, circRNA-23525 could also promote osteogenic differen-
tiation by sponging miR-30a-3p to regulate RUNX2 expression [106]. In the meantime,
however, circ_0011269 could regulate the expression of RUNX2 to enhance the progression
of osteoporosis [107]. APRO family proteins may also be involved in osteogenesis. For
example, miR-26a exerts its effect by directly targeting Tob1, the negative regulator of the
BMP/Smad signaling pathway, by binding to the 3′-untranslated region with PABP and,
thus, repressing Tob1 protein expression [108]. In addition, Tob2 could also inhibit the
formation of osteoclasts by interacting with the vitamin D receptor (VDR) to suppress the
expression of the receptor activator of the nuclear factor-kappa B ligand (RANKL) [109].
BTG2 has been shown to be significantly downregulated in the cartilage of osteoarthritis
animal models [110].

3.5. Polycystic Ovary Syndrome

CircRNAs are also associated with follicular development, ovarian senescence, sper-
matogenesis, and/or the process of germ cell development, suggesting that circRNAs might
function in the regulation of several germ cells [111]. Polycystic ovary syndrome (PCOS) is
a complex metabolic disorder seen in females of reproductive age. The pathology of PCOS
may be multifactorial dysfunction in several pathways including ovarian folliculogenesis,
gonadotropin production, and/or gut microbiota imbalance [112]. The cause of PCOS
may also be affected by environmental factors [113]. Low-grade inflammatory conditions,
such as obesity, with elevations of inflammatory cytokines, may be common metabolic
disorders in women with PCOS. Interestingly, it has been reported that PCOS is related
to cardiovascular risk factors [114]. The incidence of PCOS in premenopausal women has
been reported to be 6–20%, and it might be the most common endocrine disease in adult
women [115]. There is no test to conclusively diagnose PCOS [116]. The role and/or mech-
anism of circRNAs in PCOS have gradually become a research hotspot [117]. Remarkably,
the circRNAs have been shown to be mainly enriched in the AGO2 complex in PCOS [118].
The other circRNAs including circPUM1, could promote the progression of PCOS through
sponging of miR-760 [119].

4. Mechanism of circRNAs’ Action with PABP and APROs

As shown here, a lot of evidence suggests that circRNAs may play a key role in
disease initiation and/or progression. In addition, circRNAs may play a key role in the
proliferation, differentiation, and/or apoptosis of various cells in those diseases. Given the
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diverse roles attributed to circRNAs and miRNAs, the molecular biological mechanisms of
these RNAs might be quite elaborate. Again, circRNA could regulate gene transcription,
alternative splicing, molecular sponges of miRNA, RNA-binding proteins, and/or protein
translation. In translation, miRNAs might be bound with AGO proteins in the 3′ UTR of
complementary mRNA sites. The AGO-miRNA activity might be further modulated by
adjacent RBPs by interacting with target proteins. A single circRNA can bind to one or more
miRNAs through its circular sequences. Accordingly, circRNAs could also interact with
transcription machinery including RNA Pol II and/or U1 snRNP to promote their parent
gene expression in the nuclei. Probably, long non-coding RNA could act as a competitive
endogenous RNA to compete for miRNA binding. Some p-element induced wimpy testis
(piwi)-interacting RNAs could also interact with BTG1 expression [120]. Piwi proteins
have been shown to be a subfamily of Argonaute proteins that maintain germ cells in
eukaryotes. The knockdown of piwil1, a member of the piwi-like protein family, could
increase the expression of the transcriptional co-regulator BTG2 [121]. Piwi-interacting
RNAs and PIWI proteins may be essential in cells to repress transposons and/or to regulate
mRNAs. Consequently, circRNAs could regulate mRNA stability and immune cell death by
binding to specific RBPs. In addition, circRNAs could indirectly regulate gene expression
by binding targeted miRNAs in cells including immune cells [122]. Certain circRNAs might
also block the translation of the host gene by binding to the adjacent PABP [123]. The
association of circRNAs and PABP might affect the combination of PABP and eIF4G on the
5′ cap region of mRNA, which specifically affects the translation and/or the expression of
certain mRNA [123] (Figure 2).
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mRNA translation. The AGO2 protein interacts with GW182 constructing the miRNA-loaded RNA-
induced silencing complex (miRISC), which may facilitate the deadenylation and/or mRNA 

Figure 2. Schematic representation of circRNA- and/or miRNA-mediated functional inhibition
of mRNA translation. The AGO2 protein interacts with GW182 constructing the miRNA-loaded
RNA-induced silencing complex (miRISC), which may facilitate the deadenylation and/or mRNA
degradation process by CAF1/CCR4/NOT1 with the PABP and APRO protein complex. Conse-
quently, the circRNA and/or miRNA could play an active role in regulating post-transcriptional gene
expression via the decapping, translational inhibition, deadenylation, and degradation of mRNA.
The CAF1/CCR4/NOT1 complex is recruited to the 3′ UTR of specific mRNAs through an inter-
action with the PABP protein. APRO family proteins might also interact with PABP to recruit the
CAF1/CCR4/NOT1 complex. The arrowhead means stimulation, and the hammerhead represents
inhibition. Note that some critical pathways have been omitted for clarity. Abbreviations: ORF, open
reading frame; miRISC, microRNA-induced silencing complex, “?” means for our speculation.

Some circRNAs are subject to endoribonucleolytic cleavage with the target of mRNA
and/or miRNA [124]. Several members of the APRO family are also shown to be implicated
in cytoplasmic mRNA deadenylation and its turnover [125]. The N-terminal conserved
APRO domain is capable of binding to DNA-binding transcription factors as well as the
deadenylase subunits of the CCR4/NOT complex [126]. Likewise, some of the APRO family
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proteins could interact with the poly(A) nuclease complex CCR4/CAF1 and the cytoplasmic
PABP [25,127]. In addition, it has been shown that the Tob1 and Tob2 proteins contain an
extra-long C-terminal domain with two PAM2 motifs [128]. These APRO proteins (Tob1
and Tob2) could interact with CAF1 and PABP simultaneously, which might stimulate the
deadenylation of mRNA [127]. Interestingly, the antiproliferative effects of Tob1 have been
suggested to be involved in the exploitation of the CAF1/CCR4 deadenylase complex [129],
suggesting that APRO proteins could exert their antiproliferative activity by modulating
the turnover of mRNA [130]. In fact, BTG2 could also interact with CAF1 deadenylase
through its APRO domain to control cell proliferation [131]. It has been shown that mRNA
destabilization by BTG1 and/or BTG2 may sustain cell quiescence [132]. Hence, circRNAs
and miRNAs could inhibit mRNA expression by base-pairing to the 3′ UTR of the target
mRNAs, which consequently inhibits translation by initiating poly(A) tail deadenylation
and mRNA destabilization with APRO family proteins [133]. In fact, the miRISC could
interact with PABP, CAF1, and CCR4 deadenylases [134]. Importantly, a core component
of the miRISC could interact with the PABP and APRO family proteins, which may be
compulsory for the miRNA-mediated deadenylation [134]. Since the APRO family proteins
have the potential to interact with the CCR4/CAF1 complex, APRO family proteins could
be a key modulator of circRNAs- and/or miRNAs-function. Therefore, APRO and the
CCR4/CAF1 protein complex might be a multifunctional regulator that plays an important
role in multiple cellular processes in eukaryotes [135]. The expression of APRO family
proteins may be also regulated by certain circRNAs and/or miRNAs [120,136].

5. Future Perspectives

Non-coding RNAs are involved in the regulation of diverse cellular processes, includ-
ing transcription, RNA processing, translation and genome organization. In particular,
circRNAs may play crucial roles in cancers, nervous system diseases, immune diseases
and metabolic diseases. In detail, circRNAs could regulate gene expression, RNA bind-
ing protein interactions, and polymerase II transcription regulation by miRNA sponge
activity. Certainly, circRNAs have attracted general interest for their stability and their
highly tissue-specific expression. Given the growing interest in RNA biomarkers for several
diseases, circRNAs could represent reliable and affordable candidates. First, their circular
structure endows them with high RNase resistance and with peculiar structural confor-
mations unlike linear RNAs. They are present in the blood circulation supporting their
possible usefulness as disease biomarkers. For example, the observation that differentially
expressed circRNAs in the brain overlaps with those in the plasma of patients affected with
neurodegenerative diseases has led to the promising perspective of their potential use as
peripheral biomarkers [137]. Differentially expressed blood circRNAs may also be novel
inflammatory biomarkers. The mechanism of circRNAs with RBPs, including the APRO
family proteins, for disease progression needs further investigation. Their differential ex-
pression in disease-associated genes suggests that they also represent crucial determinants
of pathophysiological processes implicated in those diseases. A deeper understanding of
their molecular mechanisms in physiological as well as pathological conditions should
remain warranted. It is necessary to study the function of circRNAs and circRNA-binding
proteins further, which will help us to integrate circRNAs into the treatment of related
diseases as well as provide new promising therapeutic and diagnostic approaches.

6. Conclusions

CircRNAs and several RNA-binding proteins including APRO family molecules could
be crucial modulators for gene expression, which might be linked to the pathogenesis of
various diseases.
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Abbreviations

AGO Argonaute
ALS amyotrophic lateral sclerosis
APRO antiproliferative
BBB blood–brain barrier
BMSC bone marrow derived mesenchymal stem cell
BMP6 bone morphogenetic protein-6
BTG2 B-cell translocation gene 2
BTG3 B-cell translocation gene 3
CNS central nervous system
circRNA circular RNA
miRNA microRNA
miRISC miRNA-loaded RNA-induced silencing complex
MSC mesenchymal stem cell
ncRNA non-coding RNA
PABP poly(A)-binding protein
PAM2 PABP-interacting motif 2
PCOS Polycystic ovary syndrome
RBP RNA-binding protein
T1DM type 1 diabetes mellitus
T2DM type 2 diabetes mellitus
VDR vitamin D receptor
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