
Citation: Warwick, T.; Brandes, R.P.;

Leisegang, M.S. Computational

Methods to Study DNA:DNA:RNA

Triplex Formation by lncRNAs.

Non-Coding RNA 2023, 9, 10. https://

doi.org/10.3390/ncrna9010010

Academic Editors: Shizuka Uchida

and Mirolyuba Ilieva

Received: 1 December 2022

Revised: 16 January 2023

Accepted: 18 January 2023

Published: 21 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

non-coding 

RNA

Review

Computational Methods to Study DNA:DNA:RNA Triplex
Formation by lncRNAs
Timothy Warwick 1,2 , Ralf P. Brandes 1,2 and Matthias S. Leisegang 1,2,*

1 Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
2 German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
* Correspondence: leisegang@vrc.uni-frankfurt.de; Tel.: +49-69-6301-6996; Fax: +49-69-6301-7668

Abstract: Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the
nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical
nucleic acid structures seems to be particularly relevant. Along with interactions between single-
stranded RNA (ssRNA) and single-stranded DNA (ssDNA), such as R-loops, ssRNA can also interact
with double-stranded DNA (dsDNA) to form DNA:DNA:RNA triplexes. A major challenge in the
study of DNA:DNA:RNA triplexes is the identification of the precise RNA component interacting with
specific regions of the dsDNA. As this is a crucial step towards understanding lncRNA function, there
exist several computational methods designed to predict these sequences. This review summarises
the recent progress in the prediction of triplex formation and highlights important DNA:DNA:RNA
triplexes. In particular, different prediction tools (Triplexator, LongTarget, TRIPLEXES, Triplex Domain
Finder, TriplexFFP, TriplexAligner and Fasim-LongTarget) will be discussed and their use exemplified by
selected lncRNAs, whose DNA:DNA:RNA triplex forming potential was validated experimentally.
Collectively, these tools revealed that DNA:DNA:RNA triplexes are likely to be numerous and make
important contributions to gene expression regulation.

Keywords: triplex; DNA–RNA triplex; DNA:DNA:RNA triplex formation; long non-coding RNA;
interaction of DNA and RNA

1. Introduction

A huge portion of the human transcriptome is not translated into proteins, and instead
persists as so-called non-coding RNAs. The most common class of non-coding RNA is long
non-coding RNA (lncRNA). LncRNAs are defined as RNAs longer than 200 nucleotides
without apparent potential to code for proteins. They share mRNA-like features but are
often less well conserved and expressed compared to protein-coding transcripts. Interest-
ingly, the majority of lncRNAs appear to be expressed in a cell- or tissue-specific manner [1].
Despite the fact that most lncRNAs remain uncharacterised, numerous examples of physi-
ologically important lncRNA have meanwhile been reported [2]. Functionally, lncRNAs
are involved in different cellular processes. These include transcriptional regulation, post-
transcriptional regulation (e.g., splicing), structural organisation and genome integrity. Of
particular interest is that lncRNAs usually exert their functions through interactions with
proteins, small molecules, metabolites, other RNAs or even DNA [1,2].

Interactions between an RNA and DNA can occur in either heteroduplex (DNA:RNA)
or triplex (DNA:DNA:RNA) conformations (Figure 1A) [1]. Where R-Loops are considered
heteroduplexes formed by the displacement of a DNA strand by an RNA [3], triplexes
are formed by the accommodation of single-stranded RNA (ssRNA) in the major groove
of double-stranded DNA (dsDNA) [4]. In the context of a triplex, the ssRNA is referred
to as a triplex-forming oligonucleotide (TFO), whereas the major groove of the target
dsDNA is named the triplex target site (TTS) [5]. It is methodologically challenging to
distinguish between R-loops and triplexes. One experimental approach is an enzymatic
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digestion of the nucleic acids with RNase H, which preferentially digests the RNA strand
within R-loops but not in triplexes [6,7]. Within triplexes, the binding of the nucleic
acids occurs via Hoogsteen or reverse Hoogsteen hydrogen bonds (Figure 1B,C), which
are weaker than Watson–Crick bonds, but provide more flexibility. Depending on the
nucleotide composition of the RNA strand, a purine-rich sequence of DNA is bound by
the RNA strand in a parallel or antiparallel manner [8]. A variety of biophysical and
biochemical methods can be applied to study triplexes, including circular dichroism-
(CD) and nuclear magnetic resonance-spectroscopy (NMR) [9–12] and electrophoretic
mobility shift assays (EMSA) [13]. To identify triplexes in a cellular context, triplex-seq
or triplex capture assays have been developed [13,14]. So far, several lncRNAs have
been reported to participate in DNA:DNA:RNA triplex formation. Among these are
FENDRR [15], KHPS1 [16], MEG3 [9], PAPAS [17], SARRAH [11] and HIF1α-AS1 [12].
However, the number of studies investigating triplex formation in living cells and therefore
in a physiologically or disease-relevant context is still limited. Although methods such as
Chromatin-Associated RNA sequencing (ChAR-seq) [18], global RNA interactions with
DNA by deep sequencing (GRID-seq) [19], in situ mapping of RNA–genome interactome
(iMARGI) [20], RNA ends on DNA capture (Red-C) [21], RedChIP [22], RNA And DNA
Interacting Complexes Ligated and sequenced (RADICL-Seq) [23] and triplex-seq [13] have
been developed, the accurate genome-wide analysis of DNA:DNA:RNA triplex formation
is still a domain of computational prediction.
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Figure 1. Overview of DNA:DNA:RNA triple helix formation (A) Schematic of DNA:DNA:RNA
triple helix formation between double-stranded DNA and single-stranded RNA. (B,C) Canonical
Watson–Crick and Hoogsteen (red) base pairings which permit the formation of DNA:DNA:RNA
triple helices. (D) Putative mechanisms by which DNA:DNA:RNA triple helix formation permits the
control of gene expression via interactions with gene loci and transcription factors.

Prediction of DNA:DNA:RNA triplex formation is a key step in driving mechanistic
hypotheses of lncRNA function (Figure 1D). Establishment of accurate predictive tools has
been a challenge in the field for the past decade. This is predominantly due to the relative
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scarcity of appropriate data to train complex predictive models. A number of algorithms
have been proposed which instead implement DNA:DNA:RNA base pairings which have
been reported from in vitro experiments. Whilst the reasoning for this implementation is
clear, benchmarking studies have shown the performance of these tools in the accurate
recall of RNA–DNA interactions to be modest [24]. It is perhaps unsurprising that in vitro
DNA:DNA:RNA base pairings are limited in their prediction of RNA–DNA interactions
taking place in a cellular context with high accuracy. Numerous confounding factors are
present in the cell, and the process surrounding triplex formation is complex and dynamic.
Chromatin conformation and secondary RNA structures are likely to play key roles in
where and how triplexes form. Recently, next-generation sequencing data detecting triplex-
forming RNA and DNA have become available [13]. This information could therefore
serve as an input to machine learning models and captures triplex formation in a cellular
context. The outputs of these models have subsequently been implemented in the prediction
of both triplex-forming sequences and genome-wide RNA–DNA interactions. Notably,
despite divergent approaches, each proposed tool has been used successfully to support
lncRNA research.

2. Computational Methods to Identify Triplex-Forming lncRNAs and Their DNA
Target Sites
2.1. Triplexator: The First Triplex Prediction Tool

Multiple methods have been developed so far to predict the triplex-forming potential
of RNAs (Figure 2A–F). Triplexator represents the first published piece of software for the
prediction of DNA:DNA:RNA triplex formation [25] (Figure 2A). The method focuses on
identifying regions of DNA and RNA which are likely to participate in triplex formation
based on canonical DNA:DNA:RNA binding rules [26]. Given an input set of ssRNA and
dsDNA, Triplexator defines candidate TFOs and TTSs, which satisfy a set of constraints
including—but not limited to—length, non-canonical triad occurrence and guanine oc-
currence in the potential triplex. These constraints are relative to the set of triplex motifs,
namely the pyrimidine motif, purine motif and purine–pyrimidine motif. By utilising
these discrete motifs as templates for triplex formation, candidate TFOs and TTSs may
be easily identified from user-supplied sequences. Following this, Triplexator identifies
putative triplex interactions between the classified TFOs and TTSs by detecting maximal
tracts of subsequences, which follow any one of the aforementioned triplex motifs. Tracts
are considered to end when the triplex-forming rule sets are no longer followed, or the
constraints used in the classification of TFOs and TTSs are breached. Using this approach,
Triplexator returns maximally scoring predicted triplex interactions between maximally
scoring TFOs and TTSs.

2.2. KHPS1 as an Example for Triplex-Mediated Transcriptional Activation and the
Interchangeability of Triplex-Forming Regions

The lncRNA KHPS1 activates gene transcription in cis through triplex formation [16]
(Figure 3A). KHPS1, which is transcribed antisense to SPHK1, binds to the SPHK1 promoter—as
shown by a pull-down assay, triplex capture assays and EMSA—and recruits the histone
acetyltransferase p300/CBP. Acetylation of the histones around the SPHK1 promoter in-
creases promoter accessibility, leading to the transcriptional activation of SPHK1 through
the transcription factor E2F1. Thereby, triplex formation by KHPS1 promotes cell prolif-
eration, in turn inhibiting E2F1-induced apoptosis. In a follow-up study [27], the authors
provided evidence that the triplex-mediated anchoring of KHPS1 leads to the transcription
of an eRNA (eSPHK1), which is required for the transcription of SPHK1. Furthermore, the
authors suggested that the concept of triplex formation relies on the interchangeability of
triplex forming sequences and triplexes as molecular anchors. This concept was exempli-
fied by replacement of the TFO of KHPS1 by the TFO of MEG3, which consequently links
KHPS1 to the MEG3 target gene TGFBR1 instead of SPHK1.
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Figure 2. Computational tools used to predict the formation of DNA:DNA:RNA triple helices
(A) Schematic representing the implementation of Triplexator. Triplexator classifies putative triplex-
forming sequences in RNA (triplex-forming oligonucleotides, TFOs) and DNA (triplex target sites,
TTSs) sequences prior to predicting potential interactions. (B) Implementation of LongTarget. LongTar-
get implements observed in vitro DNA:DNA:RNA base triplets to generate candidate triplex-forming
RNA sequences. Local alignment is used to classify subsequences of user-input RNA as triplex-
forming regions. (C) Workflow of TRIPLEXES and Triplex Domain Finder. TRIPLEXES classifies
potential triplex-forming subsequences of input DNA and RNA (DNA-binding domains, DBDs).
Triplex Domain Finder detects the statistical enrichment of predicted triplex formation between an
input RNA and set of DNA regions versus appropriate background regions. (D) Training of the
convolutional neural networks (CNNs) used in TriplexFPP. Known triplex-forming RNAs along with
enriched RNA and DNA regions of triplex-sequencing data are used to train classifiers of triplex-
forming RNA or DNA. (E) The development of TriplexAligner. TriplexAligner implements probabilistic
RNA–DNA base pairings learned by expectation–maximisation (EM) from enriched triplexRNA and
triplexDNA motifs detected in triplex-sequencing data as scoring matrices in local alignment between
RNA and DNA sequences. Results are stratified using Karlin–Altschul statistics. (F) The workflow of
Fasim-LongTarget, which enhances the computational performance of LongTarget through the use of
SIMD (single instruction, multiple data) parallel processing of local alignments.



Non-Coding RNA 2023, 9, 10 5 of 15

Non-Coding RNA 2023, 9, x FOR PEER REVIEW 5 of 16 
 

 

the histone acetyltransferase p300/CBP. Acetylation of the histones around the SPHK1 

promoter increases promoter accessibility, leading to the transcriptional activation of 

SPHK1 through the transcription factor E2F1. Thereby, triplex formation by KHPS1 pro-

motes cell proliferation, in turn inhibiting E2F1-induced apoptosis. In a follow-up study 

[27], the authors provided evidence that the triplex-mediated anchoring of KHPS1 leads 

to the transcription of an eRNA (eSPHK1), which is required for the transcription of 

SPHK1. Furthermore, the authors suggested that the concept of triplex formation relies on 

the interchangeability of triplex forming sequences and triplexes as molecular anchors. 

This concept was exemplified by replacement of the TFO of KHPS1 by the TFO of MEG3, 

which consequently links KHPS1 to the MEG3 target gene TGFBR1 instead of SPHK1. 

 

Figure 3. DNA:DNA:RNA triplex interactions and their proposed mechanisms of action (A) Triplex 

formation in cis by the lncRNA KHPS1. Through interactions with the transcription factors 

p300/CBP and E2F1, KHPS1 enhances the transcription SPHK1. (B) Binding of the antisense lncRNA 

PARTICLE at the promoter of its sense gene. The transcription of the gene MAT2A is downregulated 

by PARTICLE-associated transcription factors. (C) Triplex formation by MEG3 at a distal enhancer 

of the gene TGFBR1. This leads to the downregulation of gene expression, potentially via the actions 

of the polycomb repressive complex 2 (PRC2) complex which interacts with the MEG3 transcript. 

(D) Formation of a DNA:DNA:RNA triple helix at the promoter of IFNB1 by the lncRNA lnc-MxA 

upon viral infection. This results in the interruption of the binding of the transcription factors p65 

and LSD1 to the region, thereby preventing upregulation of the target gene. (E) Association between 

REG1CP and the DNA helicase FANCJ at a distal promoter site of REG3B. This interaction permits 

DNA unwinding and gene upregulation by the glucocorticoid receptor. (F) Triplex formation by 

Figure 3. DNA:DNA:RNA triplex interactions and their proposed mechanisms of action (A) Triplex
formation in cis by the lncRNA KHPS1. Through interactions with the transcription factors p300/CBP
and E2F1, KHPS1 enhances the transcription SPHK1. (B) Binding of the antisense lncRNA PARTICLE
at the promoter of its sense gene. The transcription of the gene MAT2A is downregulated by
PARTICLE-associated transcription factors. (C) Triplex formation by MEG3 at a distal enhancer of
the gene TGFBR1. This leads to the downregulation of gene expression, potentially via the actions
of the polycomb repressive complex 2 (PRC2) complex which interacts with the MEG3 transcript.
(D) Formation of a DNA:DNA:RNA triple helix at the promoter of IFNB1 by the lncRNA lnc-MxA
upon viral infection. This results in the interruption of the binding of the transcription factors p65
and LSD1 to the region, thereby preventing upregulation of the target gene. (E) Association between
REG1CP and the DNA helicase FANCJ at a distal promoter site of REG3B. This interaction permits
DNA unwinding and gene upregulation by the glucocorticoid receptor. (F) Triplex formation by
lncRNA Fendrr. Through interactions with the chromatin modifiers PRC2 and MLL, Fendrr facilitates
the decoration of target genes such as Foxf1 with repressive marks H3K27me3 and H3K4me3. This
leads to the repression of Fendrr target genes. (G) Binding of the lncRNA KCNQ1OT1 in conjunction
with its protein interaction partners HP1 and DNMT leads to genome-wide repression of transposable
element transcription via H3K9me3 decoration and DNA methylation. (H) The lncRNA SARRAH
forms DNA:DNA:RNA triple helices at multiple loci. It activates transcription via recruitment of
the transcription factors p300 and CRIP2, which deposit H3K27ac at target loci. (I) DNA:DNA:RNA
triplex formation by the lncRNA HIF1α-AS1 at specific gene loci represses target gene transcription
by the recruitment of members of the HUSH complex. This leads to the formation of repressive
chromatin at target loci and results in the downregulation of target genes such as EPHA2 and ADM.



Non-Coding RNA 2023, 9, 10 6 of 15

2.3. PARTICLE Links Triplex Formation to Irradiation, a Model System for Cellular Stress

O’Leary et al. identified the lncRNA PARTICLE (promoter of MAT2A-antisense
radiation-induced circulating ncRNA), which is transcribed antisense to the promoter
of Methionine adenosyltransferase 2A (MAT2A) and which is induced by low doses of
ionising radiation. With the help of Triplexator, the authors predicted that PARTICLE forms
a triplex with the MAT2A gene promoter, which was experimentally validated by surface
plasmon resonance (SPR) experiments. Conceptually, PARTICLE represses MAT2A pro-
moter activity and MAT2A expression through recruitment of PRC2, which methylates
CpG islands within the triplex-forming site [28] (Figure 3B). In a follow-up study [29], the
authors performed another in silico analysis of PARTICLE triplex target sites, this time
using the mouse and human genomes and the Triplex Domain Finder tool. Using SPR
and EMSA in conjunction with RNase H treatment, O’Leary et al. provided evidence
that PARTICLE forms a triplex with another target, the tryptophan domain containing
oxidoreductase WWOX. After irradiation, PARTICLE was predominantly localised in the
nucleus and associated with chromosome 16, where the WWOX gene is located. As in the
case for MAT2A, PARTICLE negatively regulates WWOX gene expression as demonstrated
by knockdown and over-expression experiments, suggesting that PARTICLE potentially
recruits additional epigenetic complexes as in the case of MAT2A.

2.4. MEG3-Dependent Triplex Formation Is Involved in the Regulation of Signalling Pathways

Another example of a lncRNA involved in triplex formation is Maternally Expressed 3
(MEG3) [9]. Mondal et al. identified repressive chromatin-associated lncRNAs by using a
modified chromatin RIP followed by high-throughput sequencing protocol (ChRIP-Seq)
and analysed how MEG3 recognises its target genes. An EZH2–MEG3 interaction is
important to repress the expression of several genes involved in the transforming growth
factor β pathway (Figure 3C). In that particular study, motif enrichment analysis as well
as Triplexator identified GA-rich sequences present in MEG3 target loci and MEG3 RNA
as critical sequences. EMSA with and without RNase A/H digestion, CD spectroscopy,
triplex capture assays and triplex ChIP-qPCR validated triplex formation of MEG3 at its
target genes TGFBR1, TGFBR2 and SMAD2. Using different MEG3 mutants, the authors
showed that the interactions of MEG3 with chromatin and PRC2 are mediated by distinct
sequences within the lncRNA. This study demonstrated that triplex formation by lncRNAs
is able to regulate gene expression in trans.

2.5. Lnc-MxA and REG1CP: Triplex Formation Meets Immune Response and Cancer

Li et al. reported on an lncRNA, Lnc-MxA, capable of triplex formation on a gene
involved in immune responses [30]. Using Triplexator, Lnc-MxA was predicted to bind to
the promoter of IFNB1 (Figure 3D), which was validated by Chromatin Isolation by RNA
Purification (ChIRP)-qPCR, in vitro triplex pulldown assay, EMSA with RNase treatment
and different mutants. The authors found that during viral infection, lnc-MxA inhibits
interferon β transcription by blocking the binding of the transcription factor p65 and IRF3
to the IFNB1 promoter.

Another example of the use of Triplexator is lncRNA REG1CP. This lncRNA links triplex
formation to tumorigenesis through an enhancer complex involving the FANCJ helicase
(Figure 3E). REG1CP forms a triplex with the REG3A gene as validated by EMSA and RNase
A/H treatment, in vitro binding assays and different triplex mutants [31]. Upregulation of
REG1CP occurs in colorectal cancer cells and is associated with poor outcomes.

2.6. LongTarget

The next publication of a computational tool for the prediction of triplex formation
was that of LongTarget [32] (Figure 2B). Instead of following only canonical Hoogsteen base
pairing rules [33], LongTarget implements an extended set of reported DNA:DNA:RNA
base pairing rules with the intent of capturing potential triplex interactions which may go
undetected by Triplexator. Base pairings for which biophysical evidence had been reported,
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as well as those for which a triplex has been observed [34], were incorporated into Long-
Target. The result of this approach was 24 triplex rule sets, of which 6 reflected Hoogsteen
base pairing rules and the remaining 18 covered potential reverse Hoogsteen binding.

The algorithm itself works by constructing ideal triplex RNA sequences against the
DNA (one per DNA strand) per triplex base-pairing rule, per user-supplied genomic
region of interest. This results in 48 potential RNA sequences which would be assumed to
form DNA:DNA:RNA triplexes with the dsDNA supplied to the algorithm. In order to
determine whether the candidate RNA sequence supplied by the user is likely to interact
with the genomic region in-question, the sequence is compared against the ideal candidate
sequences using local alignment [35]. The configuration of the local aligner to report
multiple alignments means that multiple putative TFOs may be reported along the length
of the user-supplied RNA sequence. TFOs are subsequently ranked by several metrics. One
of these is the number of DNA:DNA:RNA triplex interactions which each TFO is predicted
to participate in, with TFOs involved in more interactions deemed to be more convincing.
Another metric used to rank TFOs is how densely triplex-forming sequences are distributed
across the breadth of the TFO. Dense, recurrent triplex-forming sequences are considered
to be more convincing candidates.

Triplexes predicted by LongTarget are also annotated with in vitro DNA:DNA:RNA
base triplet stability values. These values have been reported per base triplet [34,36], and
LongTarget reports a summed value for the breadth of the predicted triplex. To assign a
specificity value to the best-ranked TFO and its predicted interactions, triplex prediction is
also carried out using shuffled versions of the user-supplied sequences.

Several studies have exemplified the use of LongTarget as a promising triplex predic-
tion tool. Zhao et al. showed that LncRNA DLX6-AS1 binds to the promoter of DLX6
forming triplexes [37], and Ou et al. demonstrated that lncRNA CDKN2B-AS1 forms
triplexes at the promoter of CDKN2B [38]. Both validated their findings with triplex pull-
down/capture assays, EMSA with RNase treatment and mutated TFOs. Interestingly,
FENDRR (FOXF1 Adjacent Non-Coding Developmental Regulatory RNA) was one of
the first lncRNAs shown to form triplexes and to recruit PRC2 to control developmental
processes [15] (Figure 3F). Although this finding by Grote et al. was achieved without using
LongTarget, the tool was used later in another study showing that FENDRR additionally
forms triplexes with the DRP1 promoter in hypoxic pulmonary artery endothelial cells [39].
In that study, the triplex forming sequences predicted by LongTarget were experimentally
verified by ChIRP-qPCR, EMSA and RNase A/H treatments. The data suggested that
FENDRR repressed DRP1 expression through triplex formation, thereby increasing DRP1
promoter methylation.

2.7. TRIPLEXES

As interest in DNA:DNA:RNA triplex formation continued to grow, along with the
advent of novel wet-lab methods for detection of RNA–DNA interactions, the demand
for the accurate prediction of triplex formation grew in turn. Similarly to Triplexator [25],
TRIPLEXES [5] works by initially establishing putative TFOs and TTSs in user-supplied
RNA and DNA sequences, respectively (Figure 2C). The classification of these regions
is performed against a similar background of constraints to Triplexator. Namely: error
rate relative to a triplex motif, consecutive errors, occurrence of guanine residues and
length of the region. A key difference between TRIPLEXES and Triplexator is that the TFOs
assigned by TRIPLEXES are initially limited to seeds of a defined length, controlled by a
parameter. These seed regions are subsequently matched to the DNA sequence according
to the same triplex motifs used by Triplexator, resulting in a set of seed triplexes. These are
then extended using a heuristic algorithm, and any overlapping interactions are merged.
TRIPLEXES also searches for regions of potential auto-binding of supplied RNA-sequences,
which reflect cis interactions between a transcript and its gene locus. Such interactions have
been linked to the regulation of gene expression, with examples including the lncRNAs
Fendrr [15] and Khps1 [16].
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2.8. Triplex Domain Finder

Triplex Domain Finder is a framework for the statistical stratification of genomic regions
and their propensity for forming triplexes with a user-supplied RNA [5] (Figure 2C).
The method works by comparing predicted triplex formation between given transcripts
and candidate regions of the genome, compared to a background set of genomic regions.
Rather than working at the level of individual TFOs (computed by either Triplexator or
TRIPLEXES), Triplex Domain Finder merges overlapping TFOs to form what are termed
as DNA-binding regions of transcripts. The total number of TTSs mediated by a single
DNA-binding region may then be enumerated by summing the total triplex interactions of
each TFO incorporated into the region. This summed total is then statistically compared
to the number of triplex interactions predicted between the DNA-binding domain and a
representative set of background genomic regions. Any statistically enriched DNA-binding
domains are returned as putative triplex-forming domains of the transcript. Triplex Domain
Finder was used as a triplex-prediction tool in two lncRNA studies. First, Kalwa et al.
demonstrated with EMSA and RNase H treatment the predicted regions for PCDH7 and
HOXB2 to form triplex structures with HOTAIR domain II [40], and second, Kuo et al.
used TDF to detect known and novel DNA binding domains of MEG3 and FENDRR
and newly identified GATA6-AS to form triple helices and affecting cardiac mesoderm
differentiation [5].

In practice, the combination of Triplexator/TRIPLEXES and Triplex Domain Finder may
be used to study whether a set of user-supplied genomic regions (e.g., promoters, peaks)
are likely to be triplex targets of a transcript-of-interest. Triplex Domain Finder returns both
empirical and false discovery rate-adjusted [41] p-values to summarise this. Additionally,
genomic regions and multiple input RNAs can be stratified by the number of interactions
they are predicted to be involved in, normalised nominally by sequence lengths.

2.9. Triplex Domain Finder as a Tool to Analyse Large Datasets

In a global analysis to identify DNA-associated RNAs [13], Triplex Domain Finder was
used to determine whether these RNAs have the potential to form triplexes. Sentürk-Cetin
et al. reported a large set of RNAs, among them RNAs from non-coding and coding loci, to
be associated with DNA. Interestingly, the results suggest that triplex formation could be
a general mechanism of RNA-mediated target-site recognition. Triplex formation seems
to preferentially occur at open and active chromatin regions (around promoters), and the
majority of RNAs engage in trans interactions with DNA. Among other triplex-forming
RNAs, validation experiments concentrated on the lncRNA NEAT1, which was associated
with DNA sequences from FLI1, GRIK4 and CYP4F22 in EMSA experiments. Also here, the
presence of complex formation after treatment with RNase H excluded the possibility that
the retardation of electrophoretic mobility was due to heteroduplex formation.

In a second study, the lncRNA KCNQ1OT1 was shown to be important for DNA
methylation and H3K9me3 histone decoration on KCNQ1OT1-targeted transposons [42]
(Figure 3G). Triplex Domain Finder was used to predict the triplex-forming potential of
lncRNA KCNQ1OT1. The authors identified 12 triplex-forming domains within KCNQ1OT1,
with 9 of these being L1 sequences and 7 found within a repeat-rich region of the lncRNA.
Triplex Domain Finder predicted more than 1600 KCNQ1OT1 ChIRP-Seq binding sites to be
potential triplex target sites. Interestingly, the L1 RNA sequence derived from KCNQ1OT1
was shown to form a triplex with L1 or Alu DNA. This interaction was abolished by the
replacement of the poly(A) in L1 RNA with poly(G). Using a specific CRISPR knock-in
inserting the responsible TFO into the non-repeat-rich region, the authors demonstrated
that TFOs in KCNQ1OT1 are sufficient to guide the lncRNA to its targets, thereby enabling
their methylation.

2.10. SARRAH: Triplex Formation Associated with Aging and Myocardial Infarction

In the following example, triplex formation was studied in the context of aging.
The conserved lncRNA SARRAH (SCOT1-antisense RNA regulated during aging in the
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heart), also known as OXCT1-AS1, was found to be downregulated in aged mice as well
as infarcted hearts. The lncRNA was also shown to be important for the survival of
cardiomyocytes [11]. Interestingly, overexpression of SARRAH in mice enhanced their
recovery from acute myocardial infarction. The authors identified that SARRAH has triplex-
forming potential using Triplex Domain Finder, and they validated triplex formation at
the GPC6 locus using NMR spectroscopy for both human and murine SARRAH/Sarrah
transcripts (Figure 3H). Other triplex target genes were identified after the downregulation
of SARRAH. As in the case of KHPS1, SARRAH-mediated triplexes probably serve to
activate gene expression: induction of NRF2 and the binding of CRIP2 and p300 facilitated
the transcriptional activation of SARRAH target genes.

2.11. HIF1α-AS1 Is a Triplex-Forming lncRNA Validating the Concept of Interchangeability

HIF1α-AS1 is a lncRNA transcribed in antisense direction of the physiologically impor-
tant transcription factor HIF1α, whose triplex-forming potential was recently reported by
us [12]. A search for DNA-associated lncRNAs using the triplex-seq data set published by
Sentürk-Cetin et al. [13] revealed that lncRNA HIF1α-AS1 is a triplex- and DNA-associated
lncRNA in endothelial cells [12]. HIF1a-AS1 was important to limit endothelial spheroid
outgrowth and to promote apoptosis, and its expression was decreased in specific pul-
monary diseases and glioblastoma. We identified TFOs and TTSs of HIF1α-AS1 using
ATAC-seq and Triplex Domain Finder, and validated the triplex formation of HIF1α-AS1 at
the EPHA2 and ADM gene loci using NMR spectroscopy, CD spectroscopy, EMSA, CRISPR
and several RIP and ChIP experiments involving RNase A/H. Moreover, as in the case
of KHPS1, we could show the interchangeability of triplex-forming sites by replacing the
TFO of HIF1α-AS1 with the TFO of MEG3 and observing the subsequent interaction of
HIF1α-AS1 at the MEG3 triplex target TGFBR1. Mechanistically, triplex formation of HIF1α-
AS1 leads to the transcriptional repression of EPHA2 and ADM through the recruitment of
the epigenetic HUSH complex members MPP8 and the histone methyltransferase SETDB1
(Figure 3I).

2.12. TriplexFFP

All of the tools described up to this point either implemented canonical Hoogsteen
and reverse Hoogsteen DNA:DNA:RNA base pairing rules [5,25,26,33], or fixed triplex base
combinations which have been observed under in vitro conditions [32,34]. However, with
the development of next-generation sequencing methods designed to capture chromatin-
associated RNAs or RNA-associated DNA [13], using machine learning algorithms to
predict triplex formation became feasible.

TriplexFPP was the first method published with this aim [43]. By training a convolu-
tional neural network (CNN) [44] using RNA or DNA sequences reported to be triplex-
forming, extracted features can subsequently be used to predict any other sequence as
triplex-forming (Figure 2D).

For the training of any machine learning model, the choice of input data is key. In case
of TriplexFFP, the input data consisted of a mixture of published triplex-forming RNA se-
quences such as MEG3 [9], PARTICLE [28], MIR100HG [45], FENDRR [15] and HOTAIR [40],
as well as Triplexator-identified TFOs present in triplexRNA-seq peak regions [13]. For
negatively labelled data, lncRNAs which had Triplex Domain Finder-predicted DNA-binding
domains but no experimentally validated triplex formation were used. To train the CNN for
the prediction of triplex target sites in DNA sequences, RNA-associated genomic regions
from Sentürk-Cetin et al. [13] were used as a positive dataset. A set of random promoter
regions with an identical length distribution to the positive data was used as negatively
labelled input data. TriplexFPP was effective at classifying the input data, although the
performance in recall of further triplex-forming transcripts and genomic regions remained
unexplored. TriplexFPP does not aim to predict RNA–DNA interaction pairs, although in
practice, positively predicted regions could be used as input to any one of the other tools
described herein.



Non-Coding RNA 2023, 9, 10 10 of 15

2.13. TriplexAligner

We recently published TriplexAligner, a computational tool which also uses machine
learning to predict the formation of DNA:DNA:RNA triplexes [46]. The approach to the
problem in TriplexAligner is, however, fundamentally different to all other tools. Whereas
all other tools use canonical DNA:DNA:RNA base pairing rules to some extent, Triplex-
Aligner instead implements rules learned by expectation–maximisation from triplexRNA-
sequencing and triplexDNA-sequencing data [13] (Figure 2E). These learned RNA:DNA
base pairings—termed codes—are then implemented as substitution matrices in local
alignment between user-supplied RNA and DNA sequences.

Where the input data to the machine learning model used in the development of
TriplexAligner were similar to that of TriplexFPP (chromatin-associated RNA peaks or RNA-
associated chromatin peaks from [13]), TriplexAligner did not filter and preselect regions
using Triplexator. Instead, motif enrichment analysis [47] was utilised to identify short,
repetitive sequence elements which were assumed to be constituent subsequences of triplex-
forming regions. Following the characterisation and filtering of RNA and DNA triplex motif
sets, these were used as input to an expectation–maximisation algorithm [48]. The function
of this algorithm was to return probabilistic RNA–DNA pairing matrices, which support
the pairing of a number of RNA–DNA motif pairs. The in vitro stability of the reported
codes was assessed by annotation with DNA:DNA:RNA triplex base pair stabilities [49].

In order to use the learned RNA–DNA base pairing rules in the prediction of DNA:DNA:
RNA triplex formation, the matrices were implemented in a local alignment program. User-
supplied RNA and DNA sequences are aligned using each of the eight reported RNA–DNA
base pairing matrices, with the output being alignments stratified by E-value [50].

Given the lack of explicitly canonical or in vitro DNA:DNA:RNA base pairing rules
implemented in TriplexAligner, validation of the tools ability to accurately predict RNA-
DNA interactions was carried out using genome-wide datasets arising from RADICL-
sequencing [23] and RedC [21]. In these validations, TriplexAligner outperformed both
LongTarget and Triplex Domain Finder in the accurate recall of RNA–DNA interactions. In
addition, triplex formation experiments performed in the characterisation of SARRAH
could be recapitulated using TriplexAligner. Finally, predicted triplex forming sequences
were biophysically validated using CD- and NMR-spectroscopy.

2.14. Fasim-Longtarget

The prediction of genome-wide triplex formation remains an open challenge in the
field. In an attempt to fill this gap, a modified version of LongTarget was developed which
takes advantage of advances in local alignment algorithms [51]—Fasim-LongTarget [52].
Given that the implementation of LongTarget requires 48 separate local alignments per
RNA–DNA pair, the computational gains to be made by implementation of modified local
alignment algorithms is sizable. Fasim-LongTarget computes parallelised local alignments
using the Single-Instruction Multiple-Data (SIMD) instruction [53], resulting in marked
gains in computational efficiency whilst maintaining a similar prediction accuracy to Long-
Target during validation with genomic binding sites of MEG3 [9], NEAT1 and MALAT1 [54]
(Figure 2F).

3. Conclusions and Outlook

We are currently beginning to understand the importance of triplex formation for
cell function. The remarkable progress in the field during the last decades has provided
evidence that lncRNAs form triplexes with important physiological consequences. As such,
lncRNA-mediated triplex formation contributes to gene expression control, which could
even be indirectly important for disease development. Due to the extensive number of
lncRNAs in the genome and the possibility of hundreds and thousands of DNA interaction
sites, there is no doubt that lncRNA-mediated triplex formation offers a great potential and
perspective for future RNA-based therapeutics.
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However, as is the case for lncRNAs, other RNAs can also form triplexes. Physical
evidence for triplex formation has been provided for miRNAs, potentially explaining
why miRNAs could also lead to an upregulation of target genes. Paugh et al. claimed
that miRNAs thereby regulate gene expression since higher expression of triplex-forming
miRNAs was more frequently associated with increased gene expression [55]. Triplex
formation can also function as a cis-acting regulatory mechanism at the human β-globin
and FAU locus involving triplex-forming RNAs (potentially evolving from protein-coding
transcripts) from the same locus [7]. Cis-regulatory roles of triplex forming RNAs were also
observed for promoter-associated RNAs. The interfering RNA from the minor promoter
of the dihydrofolate reducates gene DHFR forms a triplex at the DHFR gene’s major
promoter region, disturbing transcription factor binding, which leads to decreased DHFR
expression [56]. Another example is the inhibitory effect of pRNA, which is complementary
to the rDNA promoter, on rDNA expression through triplex-mediated recruitment of DNA
methyltransferase DNMT3b, DNA methylation and interference of the target site of the
transcription factor TTF-I [57]. This underlines the fundamental roles of DNA:DNA:RNA
triplex formation and highlights their potential druggability in many disease scenarios.

Since only a relatively small fraction of lncRNAs have been investigated so far, triplex
formation of the majority of lncRNAs remains unstudied. Current research is just beginning
to reveal the great importance of lncRNA triplex formation in gene expression control.
Whether triplexes contribute to other processes beyond gene regulation, such as the regu-
lation of alternative splicing, the recruitment of accessory factors, the mediation of DNA
(or RNA) repair events, genome instability and senescence or the assembly of complexes
of higher ordered structures remains to be determined. Experimentally validated triplex
forming lncRNAs are highly important for testing predictive methods. Such lncRNAs used
for this purpose include MEG3, Fendrr, HOTAIR, SARRAH, NEAT1 and MALAT1. It should
be noted that using these lncRNAs imposes a positive selection bias on any computational
validation, though. Comparing different tools according to their predictions of interactions
of single lncRNAs is also very narrow, when all-to-all data arising from assays such as
RADICL-seq and RedC are available.

As an increasing number of lncRNAs and their potential triplex formation are in-
vestigated, the importance of choosing appropriate computational tools becomes more
important. In this review, we have highlighted the concepts and methodologies under-
lying each method. With the exception of TriplexFPP—which only classifies RNA and
DNA as triplex forming or not—all the tools described herein report predicted interactions
between user-supplied RNA and DNA. The regions of lncRNAs which are predicted to
undergo triplex formation are highly important, because they allow a targeted validation
of predicted interactions by wet-lab methods. In Triplexator and Triplex Domain Finder,
triplex-forming regions of RNA are predicted prior to the interaction prediction according
to potential Hoogsteen base pairing motifs. In LongTarget and TriplexAligner, these regions
can be extracted following the prediction of interactions based on the total number of inter-
actions that the region is predicted to be involved in. A large-scale comparison between
triplex-forming regions of RNAs is yet to be undertaken in a benchmark study at the time
of this review.

When examining benchmark studies on this topic, it is clear that the use of purely
canonical DNA:DNA:RNA base pairing rules for the prediction of triplex formation is
insufficient [24,46]. TriplexAligner, which follows a divergent approach and uses rules
learned from triplexes present in a cellular context, outperforms both Triplex Domain Finder
and LongTarget in recall of genome-wide RNA-DNA interactions [46]. The benchmarking
during the development of TriplexAligner used both RADICL-seq and RedC RNA–DNA
interactions. This revealed that TriplexAligner was more accurate than the other tools across
both interaction sets. Triplexator/Triplex Domain Finder outperformed LongTarget in recall of
RADICL-seq interactions, but not RedC interactions. This follows the benchmark results
reported by Antonov et al. (2019), where Triplexator marginally outperformed LongTarget
in the prediction of MEG3–DNA interactions as detected by ChOP-seq. However, in
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the manuscript describing Fasim-LongTarget, both LongTarget and Fasim-LongTarget were
reported to outperform Triplex Domain Finder in recall of the RNA–DNA interactions of
MEG3, NEAT1 and MALAT1. The use of different datasets and parameters across these
experiments make reporting a definitive gold-standard tool difficult. Future benchmarking
of these tools should focus on global RNA–DNA interaction data—available from RADICL-
seq and RedC—where TriplexAligner outperformed the other tested programs.

This shows that the complexities of triplex formation in vivo are not completely
reflected in canonical triplex base pairings. Notably, the rulesets learned in the course of
the development of TriplexAligner also include a mixture of canonical and non-canonical
DNA:DNA:RNA base pairings, each with a foundation in in vivo triplex formation [13].
Currently missing from TriplexAligner, though, is a statistical framework akin to that
implemented by Triplex Domain Finder. Therefore, these two tools seem to be the most
promising for the identification of accurate, statistically ranked triplex predictions. Given
that TriplexAligner was validated using global RNA–DNA interaction data, it seems best-
suited to large-scale exploratory analyses of triplex formation. Computational runtime
should also be considered as a factor when running these types of jobs, though. For smaller
analyses on select RNAs and DNA regions, either or both of the tools could be used,
given that both have been tested using experimentally validated triplex-forming lncRNAs.
However, it should be noted that the outputs of the tools differ considerably, and direct
comparison of results is not trivial. This may result in more confusion over results if tools
are used together in a meta-analysis style.

Also of consideration should be the user-friendliness and usability of tools for pre-
diction of triplex formation. In terms of the runtimes of the different prediction tools, a
concrete comparison is currently missing from the literature. In the benchmark study by
Antonov et al., Triplexator was reported to be faster to execute than LongTarget [24]. How-
ever, Fasim-LongTarget has subsequently been reported as having a shorter runtime than
Triplex Domain Finder [52]. TriplexAligner is yet to be time profiled, and such benchmarks
would require the standardization of data input, parameter selection and hardware. With
the exception of TriplexAligner, all of the software described herein must be run from the
command line, presenting an obstacle to use by non-experts. TriplexAligner is available as
an R package, and as such is more accessible to users, with many non-bioinformaticians
having some experience with R. To be truly accessible to users, the implementation of a
triplex prediction tool as a web server would be optimal.

In the field of DNA:DNA:RNA triplex formation, the relationship between wet-lab
research and computational prediction is extremely close. Where the prediction of triplex
formation has been an enabling factor for mechanistic research into lncRNA functions, fu-
ture development and improvement in predictions of genome-wide and context-dependent
triplex formation is reliant on the continued development and establishment of biochemical
methods for detecting these events. Whilst working from a basis of in vitro DNA:DNA:RNA
base pairings, the future direction of predicting triplex formation is in the development
of machine learning models which take into account the complexities and dynamics of
living cells. In addition, usability issues of predictive computational methods hamper the
development of the field. Among these are genome-wide scalability, user-friendliness and
downstream interpretation of results. Better implementation of these aspects will result in
more effective and more broadly used predictive tools which will in turn facilitate future
lncRNA research.
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