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Abstract: Exosomes carry molecules of great biological and clinical interest, such as miRNAs. The con-
tents of exosomes vary between healthy controls and cancer patients. Therefore, miRNAs and other
molecules transported in exosomes are considered a potential source of diagnostic and prognostic
biomarkers in cancer. Many miRNAs have been detected in recent years. Consequently, a substantial
amount of miRNA-related data comparing patients and healthy individuals is available, which
contributes to a better understanding of the initiation, development, malignancy, and metastasis of
cancer using non-invasive sampling procedures. However, a re-analysis of available ncRNA data
is rare. This study used available data about miRNAs in exosomes comparing healthy individuals
and cancer patients to identify possible global changes related to the presence of cancer. A robust
transcriptomic analysis identified two common miRNAs (miR-495-3p and miR-543) deregulated
in five cancer datasets. They had already been implicated in different cancers but not reported in
exosomes circulating in blood. The study also examined their target genes and the implications of
these genes for functional processes.

Keywords: miRNA; extracellular vesicles; cancer

1. Introduction

In the past three decades, the accumulation of gene expression data in databases
al-lowed an extensive study to understand the molecular processes involved in diseases
and their diagnosis using transcriptomic biomarkers. It also helped refine treatments
and identified pharmacologically interesting genes [1]. High-throughput sequencing has
recently allowed identifying and quantifying small RNAs (sRNAs) in eukaryotes, revealing
their central role in diseases and their potential use as biomarkers. Since they can be found
both in disease-affected tissue and extracellular vesicles circulating in the blood, they are
far more useful for this purpose than transcriptomic gene biomarkers [2].

Extracellular vesicles are small structures with a lipid bilayer, produced by the endo-
cytic machinery of the cell and secreted by most nucleated cells [3]. Exosomes and other
types of extracellular vesicles circulating in the body fluids of cancer patients could be a
source of diagnostic and prognostic cancer biomarkers. During the past decade, there was
a dramatic increase in studies demonstrating that extracellular vesicles carry molecules of
great biological and clinical interest. For example, exosomes contain non-coding RNAs,
especially miRNAs, which have been strongly suggested to be associated with the de-
velopment of cancer [4–8]. MicroRNAs are small non-coding RNAs of approximately
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20–25 nucleotides (nt) in length, with the ability to modulate gene expression by binding to
specific regions at the 3′ UTR end of genes, inducing the repression or complete degradation
of mRNAs [9,10].

The first step towards a possible use of sRNAs (especially miRNAs) contained in
exosomes is to explore available information related to their presence, relationship with
disease, and potential use as biomarkers for prognosis, diagnosis, and treatment. Many
sRNAs have been detected in recent years; consequently, a substantial amount of sRNA-
related data comparing patients and healthy individuals is available at present, especially
in cancer. Although there exists some specific knowledge on the role of miRNAs in
isolated types of cancer, the use of these datasets for an overall and integrative analysis of
vesicle content has been very limited. It can, however, provide significant insight about the
potential use of non-coding RNAs contained in them and promote the use of liquid biopsies.
Combining this information with evidence on the roles of sRNAs mainly in regulatory
processes should deepen our understanding of the initiation, development, malignancy,
and metastasis of cancer using noninvasive sampling procedures. This study partly fulfills
this need.

Methods for analyzing gene expression data need to be adapted and integrated prop-
erly with information in the literature and databases to clarify and develop biological
hypotheses about the roles of miRNAs in cancer [11,12]. In this study, we analyzed avail-
able data about miRNAs contained in exosomes comparing healthy individuals and cancer
patients to identify possible global changes related to the presence of cancer. Using robust
transcriptome analysis, we identified two common miRNAs (miR-495-3p and miR-543)
deregulated in all five cancer datasets analyzed in this work. They had already been
implicated in different cancer types but not reported in exosomes circulating in blood.
These common miRNAs can serve as a starting point for monitoring tumorigenesis by
studying their target genes and the involvement of these genes in functional processes.
We, thus, investigated the molecular processes possibly affected by them by identifying
their target genes using a network-based approach. We also discussed how the direction of
deregulation in each cancer type and the molecular functions affected by their target genes
make these two miRNAs potentially useful biomarkers in cancer.

2. Results
2.1. miRNA Expression in Different Types of Cancer

The established criteria for identifying miRNAs with differential expression in different
types of cancer included a fold change >1 or ≤1 and a p-value adjusted by the FDR method
<0.2. We chose this soft threshold given that our main goal was to globally identify potential
central miRNAs common to several and very different types of cancer (Table 1) in the sense
of a meta-analysis. Table S1 summarizes the results of the differential expression analysis.

Table 1. Results summary of exosomal miRNA expression in seven cancer datasets (patients vs. controls).

Cancer Number of Upregulated
miRNAs

Number of Downregulated
miRNAs

Prostate cancer 6 25

Gastric cancer 7 -

Colon cancer 39 -

Glioblastoma 21

Multiple myeloma 109 97

Lung cancer 3 10

Liver cancer 19 46

To determine a possible miRNA master regulator between different tumor types,
we inspected the differential expression datasets of these seven cancer types using a
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Venn diagram (Figure S1). In these datasets, we found that at least one miRNA with
altered expression in common was found among five types of cancer. In gastric cancer
and colorectal cancer, miR-495-3p and miR-543 were overexpressed, while in multiple
myeloma, only miR-495-3p was overexpressed. In contrast, in prostate cancer, miR-495-3p
and miR-543 were found to be deregulated; in glioblastoma, only miR-543 was deregulated
(Table 2).

Table 2. Identification of common miRNAs (patients vs. controls).

Cancer Upregulated miRNA
(Fold Change)

Downregulated miRNA
(Fold Change)

Prostate cancer miR-543 + (1.16 × 10−6) miR-543 (−5.07), miR-495-3p (−4.25)

Gastric cancer miR-495-3p (1.86), miR-543 (1.47)
miR-543 + (1.35 × 10−10)

Colon cancer miR-495-3p (4.62), miR-543 (5.7)
miR-495-3p + (3.72 × 10−12)

Glioblastoma miR-543 (−4.64)
miR-495-3p–(0.0120)

Multiple myeloma miR-495-3p (1.32)

2.2. External Validation of Differentially Expressed miRNAs

We used the UALCAN tool [13] (http://ualcan.path.uab.edu/analysis.html, accessed
on 20 March 2022) to test the expression of common miRNAs in the studied cancer types (ex-
cept multiple myeloma, which is not available) (Table 2). Next, the findings were validated,
including the direction of the deregulation of miRNAs present in extracellular vesicles.

Subsequently, a network was built with miRNAs in exosomes that overlapped among
the five types of cancer in the miRNet web application (https://www.mirnet.ca/ accessed
on 20 March 2022), to search for the target genes of these miRNAs.

2.3. miRNA–mRNA Bipartite Interaction Network

The constructed miRNA–mRNA network had 1121 nodes and 1255 edges based on
information from the literature in the miRNet database. For miR-495-3p, we found connec-
tions with respect to 981 genes; on the other hand, for miR-543, there were connections
with respect to 183 genes. Notably, two exosomal miRNAs’ shared connections to 45 genes
(Figure S2) were as follows: HMGA2, MIEF1, FNDC3B, ZNF703, KLHL15, SIGLEC14, AMD1,
BACH1, CLTC, DDX3X, NOTCH2, NRAS, UBL3, PTP4A1, STX7, MATR3, WDFY3, ARL6IP1,
C16orf72, LIN7C, GPCPD1, FBXO11, ADAM22, TMEM33, COL12A1, ANKRD13C, YPEL5,
ACSL3, ZBTB1, BTBD3, DYNC1LI2, EGLN1, SERPINE2, RPLP1, ARHGAP29, SMARCA5,
GNAQ, ZNF281, IRGQ, KIF5C, CFL1, NAP1L1, F1, PGAP1, and GFPT1.

Of these common target genes of miR-495-3p and miR-543, NRAS, HMGA2, and
EGLN1 present in KEGG cancer metabolic pathways stand out (p-value < 0.05) (Figure
S3). The top three target genes with the highest degree and betweenness in the bipartite
network were AKT1, JUN, and GSK3B, which were involved in the miR-495-3p community.
Interestingly, these hubs were not present in the large community detected with the Louvain
algorithm. However, GSK3B (Glycogen Synthase Kinase 3 Beta) acts as a negative regulator
in the phosphorylation of key cancer-related genes, such as APC, JUN, and CTNNB1/beta-
catenin. For its part, AKT1 is a regulator of GSK3B [14,15].

2.4. Community Detection and Functional Enrichment Analysis

We used the Louvain algorithm to detect communities in the bipartite network. The
community associated with miRNA-495-3p was the largest one, and it was further em-
ployed to perform functional enrichment analysis. For analysis, we selected overrepre-
sented KEGG pathways and GO terms identified as significant based on Fisher’s exact test
with a p-value adjusted by the Benjamini–Hochberg method of less than 0.05. Table 3 lists

http://ualcan.path.uab.edu/analysis.html
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the top six metabolic pathways (Figure S4). The GO terms in the category of biological
process (BP) with the highest representation among the genes of this community were
synapse organization, axo-dendritic transport, RNA splicing, regulation of RNA splicing,
and dendrite development. A network was built with the most representative terms to
assess the principal biological process represented in miRNA–mRNA targets. It showed
how these genes connect with other BPs of interest in transcriptomic and RNA regulation
processes, which can be affected in diverse cancer types (Figure 1).

Table 3. Kyoto Encyclopedia of Genes and Genomes pathways enriched for mRNAs involved in the
miR-495-3p community.

Description Adjusted
p-Value Gene ID

GABAergic synapse 0.001
GABRA1/NSF/GABRA4/GLS/SLC12A5/

GAD1/SLC38A2/GAD2/GABBR2/GABRB2/
CACNA1D/GABRG1/GABRB3/PRKCB/GABARAP

AMPK signaling pathway 0.002
SREBF1/RAB10/EEF2K/ELAVL1/PPP2R2C/
PPP2R5C/LIPE/SCD/RHEB/PRKAG2/AKT3/

RAB14/PFKFB2/MAP3K7/SCD5/PIK3R1/IRS2

MAPK signaling pathway 0.020

HSPA1B/LDLR/TGFBR2/RNF41/RAB10/RAB31/
TFRC/EPS15/SNX5/EEA1/RAB11A/RAB5B/ACAP2/
SNX4/STAM2/CHMP3/CAPZA1/DNAJC6/RAB22A/

HSPA2/PSD3/KIF5B/DNM3/CAPZA2

Endocytosis 0.0204017

HSPA1B/LDLR/TGFBR2/RNF41/RAB10/RAB31/
TFRC/EPS15/SNX5/EEA1/RAB11A/RAB5B/ACAP2/
SNX4/STAM2/CHMP3/CAPZA1/DNAJC6/RAB22A/

HSPA2/PSD3/KIF5B/DNM3/CAPZA2

Oxytocin signaling pathway 0.0204017

EEF2K/CAMK2A/PTGS2/MEF2C/PRKAG2/ITPR2/
CAMK2G/GUCY1A2/CACNA2D1/CACNA1D/

RCAN1/CALM3/PRKCB/CAMK1D/ACTG1/
CALM1/PPP1CB
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Figure 1. Enrichment network for results obtained from the hypergeometric enrichment test: linkages
of genes, GO biological process, and enriched terms are connecting overlapping gene sets.

For the enrichment of KEGG metabolic pathways, we identified genes annotated to
more than one metabolic pathway were also found, demonstrating the complexity of the
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biological processes. Among the top five metabolic pathways with a several members and
low associated adjusted p-values, there were interconnections between potential target
genes of miR-495-3p and ncRNA participating in several metabolic functions (Figure 2).
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Figure 2. Gene-concept networks from the KEGG enrichment analysis; the beige circles represent
pathways while the gray ovals indicate genes.

The community with the second largest number of members was the one associated
with miRNA-543. This community had 70 members, on which functional enrichment was
carried out with enrichKEGG from the clusterProfiler package. For this community, we
only identified one metabolic pathway was identified with adjusted p-value < 0.05, namely,
SNARE interactions in vesicular transport (SNAP23/STX4/STX7/STX1B). This pathway
is composed of a family of proteins that participates in the biogenesis and secretion of
extracellular vesicles, which has been studied in various fields such as autophagy and
diseases such as Parkinson’s [16–18].

3. Discussion

Epigenetic modifications are closely associated with the development of cancer. Specif-
ically, histone modifications, DNA methylation, and the regulation of gene expression by
ncRNAs have been revealed to be related to this disease [19,20]. An miRNA can have
hundreds or thousands of mRNAs targets; in turn, a single gene can be modulated by
several miRNAs [21]. Therefore, it is necessary to bear in mind that the molecular signature
of each type of tumor is unique. Cancer is considered a heterogeneous disease, due to
which it is crucial to start focusing efforts on deciphering common patterns of different
tumors [22,23].

Furthermore, miRNAs are closely related to other species of ncRNAs such as lncRNAs
and circRNAs, generating a close network of interactions and competition for molecular
targets. This network forms the basis for Salmena’s competitive endogenous RNA (ceRNA)
hypothesis proposed in 2011 [24,25].

Given the complexity of molecular interactions, focusing only on a single type of
biomolecule for the understanding of a complex disease such as cancer creates difficulties
in the understanding of biological processes and disease development. Thus, it is vital to
apply systems biology and network analysis, including protein–protein interaction net-
works, metabolites, and transcription factor genes [26–28]. Recent advances in systems
biology and bioinformatics have also increased our understanding of heterogeneous inter-
action networks in cancer [29] and have highlighted the importance of miRNAs in cancer.
Therefore, identifying two common miRNAs in five cancer types is an important starting
point to develop biomarkers for diagnosis and treatment tuning.
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Notably, we found that two miRNAs circulating in exosomes were upregulated in
each cancer studied here in comparison to levels in healthy patients: hsa-miR-543 and
hsa-miR-495-3p. External validation with TCGA data using the UALCAN tool highlighted
that screening deregulated miRNAs in available databases generates valuable results.
Although the literature has reported that hsa-miR-543 and hsa-miR-495-3p are involved in
different types of cancer, there are no mentions of their detection in circulating exosomes as
potential oncogenic markers. miR-543 has already been shown to suppress breast tumor
cell viability, proliferation, and progression by repressing VCAN [30]. miR-543 also plays
an oncogenic role in prostate cancer cells by suppressing Numb and promoting tumor
growth, metastasis, and the acquisition of stem cell-like traits [31]. The knowledge that this
miRNA is deregulated in different cancer types but is also related to other genes not directly
involved in cancer renders this non-coding RNA a promising candidate for monitoring
tumor-related processes; therefore, it should be a subject of further investigation [32].
CircTLK1 sequesters miR-495-3p by sponging, thus contributing to tumor growth and
metastasis in renal cell carcinoma [33]. In contrast, the hypermethylation of the miR-495-3p
promoter increases the expression of at least 10 epigenetically modified oncogenes that
are overexpressed in gastric cancer [34]. Moreover, studies have demonstrated the tumor-
suppressing potential of miR-495-3p in stomach, melanoma, and prostate tumors, which
raises many questions about the role of this miRNA in all cancers analyzed here [35–37].

Our findings showed that miR-495-3p and miR-543, recognized modulators of car-
cinogenesis, were downregulated in prostate cancer. This result was possibly due to
competition with other ncRNAs, such as NORAD and MCM3AP-AS1 lncRNAs that silence
these miRNAs by increasing the expression of TRIP13 and the SLC39A10/PTEN/Akt axis,
accelerating tumor progression [37,38]. We also found deregulated miR-543 in glioblastoma,
which has been reported as a preoperative and classification biomarker in glioma [39]. In
contrast, our results indicated that miR-495-3p and miR-543 are upregulated in gastric and
colorectal cancer, in line with some published reports. In colorectal cancer, the overexpres-
sion of miR-543 was reported to increase chemoresistance by blocking tumor suppressor
PTEN [40,41]. This miRNA also suppresses histone deacetylase SIRT1 in gastric tumor
cells, increasing proliferation and tumor progression [42]. As for multiple myeloma, recent
studies have indicated the importance of using non-invasive biomarkers to study this
disease [43]. We found that miR-495-3p was deregulated, which has been proposed as a
tumor suppressor in some hematological malignancies, such as acute myeloid leukemia
and mixed lineage leukemia [44]. Previous studies suggested that miR495-3p modulates
the expression of aquaporin-1 (AQP1), a protein with a potential role in osteosarcoma and
multiple myeloma development [45–47].

To further investigate the role of these two common miRNAs, we identified their target
genes using the miRNet tool. Experimental evidence allowed us to build a network where
nodes were miRNAs and their target genes and edges represented interactions between
them. Based on this network, network theory metrics were applied to find miRNA-mRNA
regulatory patterns. The application of modularity algorithms for detecting communities
allowed the identification of groups with a high density of connections. These groups
of clustered genes associated with hsa-miR-543 and hsa-miR-495-3p indicated a closer
community of relevant target genes, which helped clarify the potential global role of these
target genes in cancer and physiological processes.

The metabolic pathways associated with the miRNA-495-3p community have already
been described in cancer development. Gamma-aminobutyric acid (GABA) synapse is
one of the main metabolic pathways of neurotransmitters in mammals, with implications
in regulating inflammation and immune response. It has been found to promote cell
proliferation due to the overexpression of the GABAA receptor activating MAPK signaling
in brain, gastric, breast, and prostate cancers [48–50].
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4. Material and Methods

In this study, we reanalyzed openly available data on miRNAs contained in exosomes
from recognized genomic databases. We examined datasets of cancer-associated exo-
somes circulating in human plasma or serum, from tumor samples and normal controls, to
detect differentially expressed miRNAs. We proceeded to predict the target genes of the
most significant miRNAs, using an miRNA-gene bipartite network to illustrate the most
important findings regarding the roles of miRNAs in biological functions and metabolic
pathways (Figure 3).
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4.1. High-Throughput Gene Expression Data Retrieval

For the present study, we retrieved datasets from the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo, accessed on 1 June 2021), Expression Atlas
(https://www.ebi.ac.uk/gxa, accessed on 5 June 2021), and Genomic Expression Archive
(GEA, https://www.ddbj.nig.ac.jp/gea, accessed on 5 June 2021). We also applied special-
ized search tools, such as Google Dataset Search (https://datasesearch.reearch.google.com,
accessed on 6 June 2021), OmicsDI (http://www.omicsdi.org, accessed on 6 June 2021),
and DataMed (https://datamed.org, accessed on 7 June 2021), using the following key-
words: “cancer”, “exosomes”, “RNAseq”, and “exosomal RNA”. Table 4 provides detailed
information on the six RNAseq datasets selected for this study, with seven representative
cancer types. All selected datasets had respective healthy or normal controls to perform
differential expression analysis.

Table 4. Summary of miRNA datasets among different cancer types for this study.

Accession
Number Sample Type Patient Features Methodological

Analysis

GSE130654
[51]

Extracellular vesicles
derived from gastric

cancer patients

36 non-cardia adenocarcinoma
patients (stages I and II) and 12

healthy individuals
DEseq2

GSE111803
[52]

Extracellular vesicles
derived from lung cancer

patients

5 patients with lung
adenocarcinoma and 5 healthy

controls
DEseq2

GSE94564
[43]

Extracellular vesicles
derived from multiple

myeloma patients

10 patients newly diagnosed
with MM and 5 healthy

individuals
DEseq2

http://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/gxa
https://www.ddbj.nig.ac.jp/gea
https://datasesearch.reearch.google.com
http://www.omicsdi.org
https://datamed.org
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Table 4. Cont.

Accession
Number Sample Type Patient Features Methodological

Analysis

GSE123972
[53]

Extracellular vesicles
derived from

Hepatocellular carcinoma
patients

10 individuals with HCC pooled
into 2 libraries and 10 healthy
donors pooled into 2 libraries

DEseq2

GSE71008
[54]

Extracellular vesicles
derived from colon and
prostate cancer patients

100 colon cancer patients and 36
prostate cancer patients, and 50

healthy controls
SAM

GSE122488
[39]

Extracellular vesicles
derived from

glioblastoma patients

12 patients with glioblastoma,
10 with glioma stages II–III,

and 16 healthy controls
SAM

4.2. Data Processing

Each selected database was subject to quality control before processing, which in-
volved filtering out miRNAs with low counts and outliers and independent normalization.
To identify potentially deregulated miRNAs, we used the R DESeq2 and siggenes pack-
ages [55,56]. For this first filter of potentially deregulated miRNAs, we established a False
Discovery Rate (FDR) of 20% and a fold-change threshold of >1.0.

4.3. Bipartite miRNA–Gene Network

Using miRNAs that passed the first filter in the five types of cancer studied to predict
possible target genes, we applied the miRNet web tool (http://www.mirnet.ca/, accessed
on 20 August 2021). In association with 20 databases, this tool forms a unique database of
information on exosomes in various species [57]. The miRNA–mRNA interactions found in
miRNet were processed with R package igraph [58]. Subsequently, we built a network with
the miRNAs of exosomes overlapping among the five types of cancer in the miRNet web
application, looking for the target genes of these miRNAs. As a source of the miRNAs, we
selected “exosomes”, which is an advantage of miRNet and is achieved by linking ExoCarta
to the analysis [59]. The versions used were miRTarBase v8.0 [60] and TarBase v8.0 [61] for
gene search.

4.4. Network Community Detection

The basic topological properties of the network, such as degree (representing the
level of connectedness), were analyzed using the R package igraph. For the detection of
communities, we evaluated three algorithms, Louvain [62], label propagation [63], and
Walktrap [64], in the same R package [58]. The communities found in the constructed
interaction network were identified using the modularity index with respect to their mem-
bers [65].

Q =
k

∑
i=1

(
eii − a2

i

)
4.5. Enrichment Analysis

We analyzed metabolic pathway overrepresentation (KEGG) and Gene Ontology (GO)
using the enrichKEGG (KEGG metabolic pathways), enrichMKEGG (KEGG modules), and
enrichGO functions of the R clusterProfiler package [66], after collecting terms and pathways
with an adjusted p-value < 0.05, a minimum count of 10, and an enrichment factor > 1.5
(ratio between the observed counts and the counts expected by chance) for analysis.

5. Conclusions

Our study provides an integrative analysis of miRNA targets expressed in extracellular
vesicles in different types of cancer, their possible relationships with vital physiological
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functions, and their potential roles in cancer. miRNAs and their relationships with target
genes of diverse functional groups are valuable for diagnostic and therapeutic purposes.
Beyond acting as potential transcriptomic biomarkers, they serve for monitoring disease
status and treatment tuning because they are polyfunctional molecules: in certain types
of tumors, they can play an oncogenic role (oncomiR) while acting as tumor suppressors
in others. Therefore, there is much interest in further investigating the content of vesicles,
including more data sets, which has not happened very often, and wet lab experiments. The
use of miRNAs as biomarkers of cancer onset or progression and in monitoring therapeutic
outcomes is promising. Nevertheless, considering their multiple roles and partners, their
use needs to be preceded by large-scale prospective studies on various types of cancer to
identify the molecular signatures of each disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ncrna8030033/s1: Table S1. DE across seven types of cancer; Figure S1. A Venn diagram was
elaborated as a tool to find miRNAs in common between different datasets Figure S2. The complete
miRNA–mRNA network based on interaction data from miRNet; Figure S3. Three miRNAs in
common to miR-495-3p and miR-543 in KEGG cancer pathways; Figure S4. KEGG metabolic pathways
analysis of the target genes; Supplementary file S2. miRNA–mRNA bipartite interaction network.
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