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Abstract: Long non-coding RNAs (lncRNAs) are a rapidly expanding field of research, with many
new transcripts identified each year. However, only a small subset of lncRNAs has been characterized
functionally thus far. To aid investigating the mechanisms of action by which new lncRNAs act,
bioinformatic tools and databases are invaluable. Here, we review a selection of computational tools
and databases for the in silico analysis of lncRNAs, including tissue-specific expression, protein coding
potential, subcellular localization, structural conformation, and interaction partners. The assembled
lncRNA toolkit is aimed primarily at experimental researchers as a useful starting point to guide
wet-lab experiments, mainly containing multi-functional, user-friendly interfaces. With more and
more new lncRNA analysis tools available, it will be essential to provide continuous updates and
maintain the availability of key software in the future.

Keywords: non-coding RNAs; long non-coding RNAs; databases; computational analysis;
bioinformatic prediction software; RNA interactions; coding potential; RNA structure; RNA function

1. Introduction

For decades, the human genome was thought to be a desert of ‘junk DNA’ with sporadic
oases of transcriptionally active genes, most of them coding for proteins. This theory has since
fallen out of favor with the growing support of pervasive transcription [1]. The human genome
is now thought to be more akin to a jungle, where great swathes are transcriptionally active and
interacting with other constituents, forming a delicate milieu of reciprocity [2]. The majority of
known human genes are non-coding [3], and approximately half of these are long non-coding RNAs
(lncRNAs), according to the latest release of GENCODE (Figure 1). Estimates of the exact number
of lncRNA genes vary, with high numbers of up to 100,000 genes [4]. A lncRNA is a non-coding
transcript longer than 200 nucleotides (nt) comprising both RNA polymerase II and III transcripts,
with the former often being spliced, capped, and polyadenylated [5]. LncRNAs have been shown to
serve a myriad of functions, from X-chromosome inactivation [6] to regulation of gene expression
on the chromatin level [7] and post-transcriptional regulation [8]. They have been implicated as
drivers of numerous diseases, including cancers [9–11], Alzheimer’s disease [12], inflammatory bowel
disease [13], autoimmune disease [14] and diabetes [15]. Although there are several well-characterized
lncRNAs, there are currently orders of magnitude more that are poorly understood. This illustrates
the need for new predictive tools and databases to aid in their study. Computational tools can be
useful for researchers aiming to investigate a newly discovered and previously uncharacterized
lncRNA, as obtained in silico results may be helpful in guiding experimental set-up. For example,
if a localization predictor indicated that a lncRNA is nuclear-retained, and an interaction predictor
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returned DNA-binding motifs, investigating the potential of gene expression regulation may be a useful
starting point for the lncRNA of interest.

Figure 1. Pie chart of gene categories in the human genome. Data taken from GENCODE release 35.

In this review, we detail a selection of lncRNA predictive tools and databases with the aim
of providing a toolkit for experimental scientists. Although numerous tools and databases are
available, with new ones being added frequently, we chose the tools discussed here based on accuracy,
functionality, frequency of updates, and ease of use for biologists. Links to all included tools and
databases are included in Table A1.

2. General lncRNA Databases

In recent years, there has been an exponential increase in lncRNA research (Figure 2) and the
number of new non-coding transcripts being identified [5]. Accurate and easily accessible databases
are needed to curate this influx of putative lncRNA genes, especially considering that the identification
of new lncRNA genes is usually based on RNA-sequencing (RNA-seq), and every transcript annotated
as lncRNA may not, in fact, be one. Here we will discuss two current ‘meta-databases’ of lncRNAs,
which integrate data from a variety of sources. These were chosen as they are well curated, collate data
from many sources and integrate them in an easily accessible format. Numerous other databases of
lncRNAs are available; however, most of these are subsets of the databases covered here (NONCODE,
FANTOM CAT, etc.), or were constructed for a specific purpose, such as for a particular disease
(Lnc2Cancer [16]) or species (GreeNC [17]).

Figure 2. Number of lncRNA papers published from 2001. Identified by keyword, accessed from
PubMed October 2020.
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2.1. LNCipedia

Originally released in 2013 [18], the latest release (v5) of LNCipedia was published in
2019 [19]. LNCipedia contains data from ten different sources as of 2019: LncRNAdb version 1 [20],
the Broad Institute human body map of lincRNAs [21], Ensembl release 92 [22], RefSeq 106 [23],
NONCODE v4 [4], FANTOM CAT (stringent set, a version of the database with more strict
entry criteria) [24] and three research papers: Hangauer et al. 2013 [1], Nielsen et al. 2014 [25],
and Sun et al. 2015 [26]. The dataset was aggregated to remove low confidence lncRNAs with less
than two transcripts each from a different source matching perfectly at each exon [19]. In addition,
transcripts that did not map to the current hg38 reference genome, were shorter than 200 nucleotides,
or contained exons overlapping with coding sequences were filtered out [19]. After aggregation
and filtering, LNCipedia v5 contains 127,802 transcripts from 56,946 genes in the full dataset [19].
The high-confidence set, which showed no coding potential using coding prediction tools (covered in
Section 4 of this review) , contained 10% fewer lncRNAs than the full set [19]. LNCipedia represents
one of the largest lncRNA databases to date. Since its initial release, LNCipedia has received major
updates with extensive improvements in the database itself as well as to the user interface [19].
Consistent updating is crucial for a lncRNA database, as multitudes of novel lncRNA transcripts are
identified each year. LNCipedia offers a well-designed and intuitive web-based interface, with the
option to download the database for offline accession. LncRNAs can be searched using their
transcript name or Gene ID. The results page provides data including the sequence, known isoforms,
coding potential, locus conservation across a few species, and any published literature. A potential
drawback of LNCipedia is the stringent filtering criteria. Considering that many lncRNAs such as
antisense transcripts overlap with protein coding genes [27], this may have resulted in numerous
biologically relevant lncRNAs being omitted from the database. Although LNCipedia offers built-in
prediction of coding potential (as discussed in Section 4 of this review) there is no automated prediction
of subcellular localization, association with disease or functional prediction.

2.2. LNCBook

In contrast to LNCipedia, LNCBook collates lncRNAs from both pre-existing databases and
experimentally verified community-curated transcripts [28]. The pre-existing databases include
GENCODE v27 [29], NONCODE v5.0 [4], and LNCipedia v4.1 [19]. LNCipedia was used in addition
to NONCODE and other databases within LNCipedia to ensure that any lncRNAs omitted from
LNCipedia during filtering were still included in LNCBook. The community-curated transcripts
are derived from LncRNAWiki, a community driven database created by the authors of LNCBook
in 2015 [30]. This MediaWiki-based database allows users to upload lncRNAs identified in their
own research [28]. From both sources a total of 268,848 transcripts were identified from 140,356
non-redundant lncRNA genes [28]. LNCBook offers multi-omics integration, such as expression
profiles across tissue types (both normal and cancer), DNA methylation patterns in different gene
regions, genomic variation and microRNA (miRNA) interaction predictions using TargetScan [31] and
miRanda [28,32]. Similar to LNCipedia, LNCBook offers built-in coding potential prediction through
CPAT [33] and PLEK [34], which are discussed later in this review in Section 4 [28]. Although LNCBook
provides an extensive amount of information for each lncRNA, it has not received a major update since
version 1 since its initial release in October 2018. As frequent updating is one of the most important
features of databases, it remains to be seen whether LNCBook will become the new standard of
lncRNA databases.

Both general lncRNA databases covered here offer an extensive list of long non-coding transcripts,
in addition to intuitive interfaces, integrated literature searches and conservation across species.
Future improvements for these and other databases could include further integration of predictive
tools and additional experimental data, such as subcellular localization, and interaction partners of
lncRNAs. Although no comprehensive review of lncRNA databases has been published recently,
there are a multitude of different databases available, ranging from general to highly specific.
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These include but are not limited to: MONOCLdb for mouse lung lncRNAs [35], the Cancer lncRNA
Census [36] and GreenNC for plant lncRNAs [17]. LncRNAs often have several different identifiers,
including gene IDs, HUGO gene names, ENSEMBL identifiers, ENTREZ gene IDs and many more.
This can make it difficult to find information on a specific lncRNA when only one identifier is known,
or when a database uses a separate set of identifiers. A comprehensive list of identifiers for each
lncRNA, or overall more standardized nomenclature, would be useful for the field.

3. LncRNA Expression Databases

LncRNAs are usually expressed in a cell-type and tissue-specific manner [37], indicating their
importance in developmental processes and disease mechanisms [38]. When characterizing a new
lncRNA, expression databases compiling numerous RNA-seq experiments are a useful starting point
to elucidate the function. Here, we will discuss two well-known expression databases for human
tissue, and one for lncRNA expression in plants.

3.1. GTEx

The Genotype-Tissue Expression database (GTEx) is a project first described in 2013 by the Broad
Institute [39]. It is being updated continuously, with a major update in September 2020 (GTEx v8) [40].
Although originally conceived as an expression database, GTEx version 8.2 (the most recent release at
the time of writing) contains high-throughput sequencing data from 948 human subjects, spanning
54 different tissues, with RNA-, DNA-, and CHIP-seq (Chromatin Immunoprecipitation-sequencing)
data for at least 70 samples per tissue [40]. In addition to comprehensive expression data from 17,382
RNA-seq experiments, GTEx also contains whole genome sequencing data to a depth of 32x coverage,
providing an extensive inventory of genetic, epigenetic and splicing variants [40]. Information on
disease associations and context specific genetic effects, and Quantitative Trait Locus (QTL) information
is available, further allowing insight into genomic loci which affect expression (eQTL data) or splicing
(sQTL data) of both protein coding and long non-coding genes [40]. GTEx has compiled datasets
available for download, and histology images categorized by tissue type. It even provides access to
biospecimens upon application. Although GTEx is a useful resource for the scientific community,
it should be noted that out of a total of 17,382 RNA samples, 42% (7251 samples) showed an RNA
integrity number (RIN) value between 5.5 and 6.5, where 7 is usually the minimum quality cutoff for
an RNA sample [41]. Additionally, race, gender and age are not equally represented across all samples,
which may confound the data to some degree.

3.2. TANRIC

The Atlas of Non-coding RNAs in Cancer (TANRIC) was first compiled in 2015 [42]. The database
is designed specifically to explore the genomic and clinical relevance of lncRNAs in cancer.
TANRIC v2.0 was released online only in late 2019, expanding the database content to cover over
40 different cancer types and cell lineages. This information was taken from The Cancer Genome Atlas
(TCGA) [43], the Cancer Cell Line Encyclopedia (CCLE) [44], and from three additional independent
cancer cohorts [45–47]. For some tumor samples, RNA-seq information is available for matched
metastases and normal tissue as well. Expression levels were quantified using RPKM, and clinical
metadata (such as staging, grade, subtype and survival) have been included, along with molecular
characteristics of the cancer (for example, HER2 receptor or microsatellite instability status). TANRIC is
a useful tool to explore cancer-specific expression of any given lncRNA. The results can be inspected in
the context of clinical information, such as the automatically generated correlation with patient survival,
or expression across different cancer subtypes. TANRIC also outputs correlation information for
somatic copy number variation, and mutations, as well as associated mRNAs, miRNAs and proteins.
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3.3. CANTATAdb

CANTATAdb is a lncRNA database specifically for plants [48]. It was first released in 2016,
containing 45,117 lncRNAs from ten different model plant species, including A. thaliana, B. rapa, G. max
and M. domestica. This has since been updated to CANTATAdb v2.0 in 2019, increasing the database
content to 239,631 lncRNAs across 39 different plant species (three of which are algal species) [48].
LncRNAs were manually curated from paired-end RNA-seq data from 328 separate experiments [49].
CANTATAdb can be queried by gene ID for a particular species, and outputs the resulting lncRNA
sequence, genomic location, coding potential status prediction, information on expression across
RNA-seq libraries and any matches against transcripts present in the Basic Local Alignment Search
Tool (BLAST) [50] and NONCODE [4] databases. Overall, CANTATAdb is a well compiled database of
great value for plant biologists.

An emerging field in lncRNA expression databases is the collation of single-cell expression profiles.
This allows researchers to understand the transcriptomes of single cells, as opposed to the average
expression across a tissue as a whole [51]. What lies on the horizon for this field is the release of
a complete atlas of human single-cell transcriptomes, which would offer an unprecedented glimpse
into truly cell-type specific expression across the human body [52,53].

4. Protein Coding Potential

Identifying the coding potential of a novel transcript is the vital first step in accurate
annotation and downstream analysis of a lncRNA [54]. Determining coding potential through in vitro
methodologies can be time consuming and resource intensive, especially when assaying multiple
transcripts simultaneously. The in silico approaches described here provide a viable starting point
in determining the localization of a lncRNA. In recent years, a number of predictive tools have been
released that are able to determine the probability of a transcript producing a protein, based on
the sequence alone. One of the earliest established tools is CPC (Coding Potential Calculator) [54],
which was first released in 2007. CPC uses six features in its predictive model, including coverage
of the predicted open reading frame (ORF), and sequence similarity to known protein coding
genes [54]. These features were incorporated into an SVM (Support Vector Machine) machine learning
classifier [54]. Although CPC was very well received at its release, more accurate tools have been
published since. Detailed here are two tools used in predicting the coding potential of a transcript,
chosen based on their ease of use and accuracy.

4.1. CPPred

Recent studies revealed that some transcripts previously classified as lncRNAs encode
micropeptides [55–57]. Micropeptides are polypeptides with a length of <150 amino acids (aa),
transcribed from short ORFs (sORFs) [58]. Many coding potential predictive tools fail to account
for these micropeptides, and thus could incorrectly classify a transcript as non-coding. Building on
the work on CPC by Kong et al. [54], CPPred (Coding Potential Prediction) was developed to
better distinguish between transcripts encoding micropeptides, and true non-coding RNAs [59].
The sequence features chosen for machine learning in CPPred were: ORF length, ORF coverage,
ORF integrity, Fickett score, Hexamer score, Isoelectric point (pI) of a predicted peptide, Grand average
of hydropathicity (Gravy) of a predicted peptide, estimation of the stability of a predicted peptide
and global descriptor features [59]. These ten sequence features were used in an SVM to differentiate
between coding and non-coding RNAs [59]. Data for training and testing was collated from NCBI
and Ensembl, for a total of 50,040 coding and 36,360 non-coding RNAs respectively [59]. The data set
was split, with two thirds being used to train the model and the remainder used as a testing set [59].
To evaluate the performance of CPPred, it was benchmarked against other established predictive
tools (CPAT [33], CPC2 [60] and PLEK [34]) in H. sapiens, D. melanogaster, D. rerio, and S. cerevisiae.
CPPred outperformed the other tools in the non-human tests, but was less accurate than PLEK in
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the human set. Although most tools available for coding potential prediction are implemented in a
web-server-based interface, CPPred is only available as a Python package at present, potentially making
it difficult to use for those unfamiliar with programming languages.

4.2. CNIT

CNIT (Coding-Non-coding Identifying Tool) [61] was built on the authors’ previous predictive
algorithm, CNCI (Coding-Non-Coding Index) [62], and as such uses a similar methodology [61].
First, 19,752 coding RNAs and 19,752 non-coding RNAs of human origin (GRCh38) were collected
from RefSeq [23] and Ensembl [22]. Two thirds were used as a training set, and one third as a testing
set [61]. Multiple features were extracted from the testing set for model construction, all based around
a comparison frequency matrix of adjoining nucleotide triplets [61]. Next, the authors benchmarked
the model against three other well-established predictive tools, CPC2 [60], CPAT [33] and PLEK [63],
in addition to their previously published tool, CNCI [62]. The comparison was performed by using
established datasets from six species: H. sapiens, A. thaliana, M. musculus, D. melanogaster, D. rerio and
C. elegans. CNIT performed better than the other programs in H. sapiens, A. thaliana, and D. rerio [61].
CNIT was also tested with sORFs to determine its accuracy in predicting micropeptide synthesis,
where it was only out competed by PLEK [61]. In addition to their animal model, CNIT also offers
a model trained in plants, which greatly improves the versatility of the tool [61].

An important consideration in the development of new tools for coding potential prediction
is training them to work across species, and ensure that micropeptide producing transcripts are
not misclassified. The tools covered here are by no means an exhaustive list of options, with other
commonly used tools including PhyloCSF [64] and COME [65]. In vitro methodologies for determining
the protein coding potential of a putative lncRNA include in vitro transcription/translation assays
coupled with chemiluminescent or colorimetric detection [66].

5. Subcellular Localization

The subcellular localization of lncRNAs is an important factor in understanding their potential
function. LncRNAs localizing to the nucleus are often involved in regulating gene expression
and/or splicing [67], imprinting genes [68] or inactivating the X-chromosome [6]. On the other
hand, lncRNAs exported to the cytoplasm can modulate mRNA stability [69] and translation [70],
regulate protein modification [71], or compete for miRNAs [72]. Databases of known lncRNA
localization and tools to predict the localization of novel lncRNAs can be useful to guide
experimental approaches.

5.1. LncSLdb

Published in 2018, LncSLdb (lncRNA subcellular localization database) is a database driven
application detailing the subcellular localization data for >11,000 non-coding transcripts [73]. The data
for LncSLdb was collected using two complementary approaches. First, literature available on PubMed
under the key words ‘lncRNA’ and ‘subcellular localization’ was retrieved, yielding 3000 papers [73].
The list was refined to 100 papers, based on manual curation of the localization data [73]. Secondly,
multiple pre-existing databases including UCSC [74], Ensembl [22], GENCODE [29] and Flybase [75]
were used to gather lncRNA gene information (e.g., transcript length and genomic location) and
localization data where available [73]. Each entry in the compiled database describes the subcellular
localization of a lncRNA as nuclear or cytoplasmic, unless more detailed compartmental information
is available. LncSLdb is a comprehensive database of lncRNA localization, with an easy-to-use web
server interface.
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5.2. LncATLAS

The LncATLAS database of lncRNA localization was developed from subcellular RNA-Seq
data published by the ENCODE Consortium [3]. Data was collected from 15 human cell lines,
across 48 separate experiments, comprising both adult and embryonic cell lines, for a total of 6668
genes [76]. In addition, reference genes with well documented localization (such as MALAT1 which
is nuclear-retained, or DANCR which predominantly localizes to the cytoplasm) can be added to the
query. The localization of each lncRNA is quantified using their Relative Concentration Index (RCI),
a log2-transformed ratio of respective FPKMs in the nucleus and cytoplasm. The RCI is proposed to
simplify assessment of localization of a lncRNA, with a positive value indicating cytoplasmic and
a negative value indicating nuclear localization.

Although databases of lncRNA localization provide accurate data across several cell lines, they are
limited by the need for pre-existing experimental data, and are not suitable for lncRNAs that have
not been previously captured by high-throughput experiments. Recently, new computational tools to
predict subcellular localization for novel transcripts have been developed, including LncLocator [77],
iLoc-lncRNa [78], and DeepLncRNA [79]. In comparison, MemPype, the first protein localization
prediction tool was published a decade ago [80]. This lag in lncRNA localization prediction is
likely due to lncRNAs being an emerging field, and a comparative lack of large-scale lncRNA
localization data for training. Below we discuss the currently most popular tool for predicting lncRNA
localization, LncLocator.

5.3. LncLocator

Released in 2018, LncLocator was the first tool dedicated to predicting the subcellular localization
of lncRNAs [77]. The web-based software integrates two features for prediction, fed into two statistical
learning models. The first of these features is raw k-mer frequency, which has been proven as a powerful
feature for differentiating between lncRNAs and mRNAs [81] and lncRNA-miRNA interactions [82].
However, prediction of subcellular localization based on k-mer frequency can be challenging due
to potential mutational noise [77]. To overcome this, the authors used an unsupervised stacked
autoencoder to extract high-level abstractions from the sequence [77]. This is a model of an artificial
neural network where the input data is encoded into a compressed representation, and then decoded
into a reconstruction of the original data [83]. The two features, k-mer frequency and high-level
abstractions, were each used in two prediction engines: random forest and SVM [77]. A stacked
ensemble takes the prediction results from each of the four classifiers and combines them into a final
decision, increasing the power of the prediction [84]. The interface will generate a probability score
on a scale from 0 to 1 for each of five subcellular locales: cytoplasm, nucleus, ribosome, cytosol,
and exosome, where a higher score indicates a higher probability of the lncRNA localizing to that
compartment. It should be noted that LncLocator was found to achieve an accuracy of 0.59 when
tested on a constructed benchmark dataset [77]. Although a useful addition to the in silico lncRNA
toolkit LncLocator, such as many predictive tools, will only provide a best guess and always require
experimental validations, such as RT-qPCR of fractionated cells [85] or RNA fluorescence in situ
hybridization (RNA-FISH) [86].

6. Structural Conformation

The secondary and tertiary structure of a lncRNA may reveal information about possible
interaction partners and function of the transcript, such as for the lncRNA Maternally Expressed Gene
3 (MEG3), which comprises three predicted structural motifs which are conserved across its multiple
isoforms [87]. Two of these three motifs are required for the activation of the tumor suppressor p53,
while the other is involved in suppression of DNA synthesis [87]. However, experimental investigation
of lncRNA structures is challenging for several reasons. First, RNAs can change in conformation
depending on their binding partners, such as in the case of the lncRNA Braveheart, which changes
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its 3D structure upon binding to Cellular Nucleic acid Binding Protein (CNBP) [88]. Secondly,
lncRNA structures tend to contain dynamic regions, such as those found in the lncRNA HOTAIR,
the structure of which was recently determined using atomic force microscopy [89]. It is challenging to
determine dynamic regions of RNAs using traditional methods such as X-Ray crystallography [90].
Finally, one lncRNA gene may give rise to multiple splicing isoforms, resulting in several different
corresponding RNA structures, such as the lncRNA Steroid receptor RNA activator (SRA) [91].
The implications of lncRNA structural conformation and function have been reviewed in detail by
Chillón and Marcia (2020) [92], and Zampetaki et al. (2018) [93]. Here, we will discuss a database [94]
and two prediction tools [95,96] for the investigation of 2D lncRNA structures.

6.1. RMDB

Determining the structural conformation of RNAs is an emerging field, with many contributing
factors remaining unknown thus far [93]. As the importance of RNA structure on its function
became increasingly evident recently, several experimental methods to probe RNA structure were
developed, first on individual RNA level and later transcriptome-wide. These approaches include
selective 2’ hydroxyl acylation with primer extension (SHAPE) and its derivatives SHAPE-Map and
SHAPE-seq [97–99], as well as psoralen analysis of RNA interactions and structures (PARIS) [100],
sequencing of psoralen crosslinked, ligated, and selected hybrids (SPLASH) [101] and Ligation of
interacting RNA followed by high-throughput sequencing (LIGR-seq) [102]. With the influx of such
high-throughput datasets, computational efforts to compile and share community-based structural
information started alongside. This has resulted in the formation of a database designed to be the
RNA equivalent of the Protein DataBank (PDB) [103] called the RNA Mapping Database (RMDB) [94].
The RMDB was first compiled in 2012 [104], before undergoing a major update in 2017 [94]. To date,
it contains 769 structure entries from 148,037 RNA sequences. These are from multiple different
types of experiments, including SHAPE, hydroxyl radical footprinting [105] and base methylation
by dimethyl sulfate [106], among others [104]. RMDB could be further improved by the addition of
structures detected by more recently developed methods such as PARIS [100]. RMDB is currently
somewhat limited for lncRNA-focused biologists; however, as the number of high-throughput datasets
of RNA structures is likely going to increase, the database may become more valuable for the lncRNA
field in the future.

If structural information for a lncRNA of interest is not part of a database or previously generated
experimental datasets, RNA structure prediction tools can be used to predict secondary structure.
These tools use a variety of methods, including Minimum Free Energy (MFE)-based approaches [95]
and deep learning [96]. Here, we will discuss tools from both categories, covering structure prediction
tools RNAfold [95] and DMfold [96].

6.2. RNAfold

RNAfold is an RNA structure prediction tool from the Vienna Websuite [95]. RNAfold predicts
MFE structures for single stranded sequences up to 10,000 nts in length by taking into account
both binding energy and sequence accessibility, improving the likelihood of accurate results in two
independent benchmarks of structure prediction tools [107,108]. RNAfold is built on Zuker and
Stiegler’s dynamic programming algorithm [109], which incorporates stacking and destabilizing
energies, at the same time gradually increasing the sequence length in a stepwise fashion, to predict the
best structure at each increasing length. This incremental length increase allows for rapid prediction
of the final, full length structure. RNAfold also uses the McCaskill partition function [110] to
predict base-pairing probabilities of the structure (limited to structures of up to 7500 nts in length).
Both algorithms have been adjusted by the authors to take into account the formation of circular RNA
structures (circRNAs), which some lncRNAs are known to form [111]. RNAfold outputs both an
optimal MFE structure prediction as well as a centroid structure, which represents the total base-pair
distance to all structures that fall within the thermodynamic ensemble [95]. A high level of agreement
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between the MFE structure and the centroid structure indicate a more reliable prediction [95]. Both the
MFE and the centroid structure outputs can be downloaded directly, or viewed using the forna
visualization tool [112], which provides an interactive visualization of secondary structure. RNAfold is
set up as an intuitive webserver and able to provide rapid structural predictions. However, it is limited
in its ability to predict more complex structures, in particular, pseudoknots, a common structural
motif [113]. These RNA structures fold back on and base-pair with itself, and are known to be
challenging for many RNA structure prediction tools [113,114].

6.3. DMfold

DMfold is an alternative prediction tool that unlike RNAfold, can take pseudoknots into account
using deep learning [96]. DMfold comprises two stages: the prediction unit and the correction unit.
The prediction unit is based on a multilayered, long short-term memory, sequence to sequence
deep learning model that was proposed by Sutskever et al. in 2014 [115]. The prediction unit takes
FASTA formatted RNA sequences as input and makes a prediction on the secondary structure,
using an encoder and decoder module to encode sequences as vectors and then decode these into
secondary structure symbols. The decoder outputs a dot-bracket sequence complementary to the
RNA sequence. The prediction unit was trained on a publicly available dataset of 3975 known RNA
primary sequences and structures [116]. Ten percent of these sequences were set aside as a pure testing
set. Once the prediction unit has generated a secondary structure prediction, the correction unit
analyses it and determines if there are any errors based on stem and loop region rules. The correction
unit then uses an improved base-pair maximization principle to determine optimal compatible
stem regions, making corrections to the output of the prediction unit, and outputting a set of
pseudoknot-free secondary structures in dot-bracket notation. These are then spliced to predict
the secondary structure with pseudoknots present [96]. On the testing dataset, DMfold performed
remarkably well, with positive predictive values of >0.9 (on a scale of 0 to 1, where 1 is a perfect
predictor) for short sequences (70–200 nts, such as tRNA and 5s rRNA families). For longer sequences of
300–500 nts in length (such as those from transfer-messenger RNA and RNaseP families), the positive
predictive value dropped to values >0.7; however, DMfold still outperformed similar tools [96].
Although DMfold is a command-line tool and therefore less accessible to non-specialist users, it excels
at accuracy and pseudoknot determination. This is important for lncRNAs, which have been shown to
form pseudoknot structures, such as for the conserved motifs of MEG3 required for p53 activation [117].

Finally, RNA structure prediction in general is relatively error prone [95], emphasizing the need
for experimental validations using techniques such as SHAPE [97], PARIS [100], and SPLASH [101].

7. LncRNA Interactions

Identifying molecular lncRNA interaction partners is critical in the process of understanding
function, and thereby their potential impact on cellular processes. For example, the lncRNA XIST,
which inactivates one of the two X chromosomes in females, requires a physical interaction with
Polycomb repressive complex 2 (PRC2) to achieve its function [78]. In addition, the lncRNA TINCR is
known to control somatic tissue differentiation by interacting with mRNA [118], while the lncRNA
FENDRR binds directly to DNA to regulate gene expression [119]. The topic of lncRNA functional
interactions has recently been reviewed in detail by Marchese et al. [120], and is also discussed by
Cech and Steitz [121]. Here, we will focus on databases and tools to identify and characterize RNA,
DNA and protein interaction partners of lncRNAs (Figure 3).
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Figure 3. LncRNAs interact with a variety of biological molecules, including DNA, RNA,
proteins and chromatin.

7.1. RNA Interactome Databases

There are several databases cataloging interactions, as well as numerous prediction tools,
which use a variety of methods to predict RNA interactions. Although prediction tools are continuously
improving in accuracy, it should be noted that databases containing experimental evidence will be
more reliable. Importantly, interaction partners of a lncRNA may also vary in different cell types or in a
disease context, depending on the respective transcriptome and proteome of the cell, neither of which
are taken into account by prediction algorithms. Here, we discuss two databases of experimentally
determined interactions: RNAInter (previously known as RNA Associated Interaction Database
(RAID)) [122] and RNA Interactome from Sequencing Experiments (RISE) [123,124], which were
chosen based on the breadth of included interactions and ease of use.

7.1.1. RNAInter

RNAInter is designed to be a “one-stop” RNA interactions database [122]. It lists selected
interactions of RNAs with proteins, DNA/Chromatin and other RNAs from 35 different
databases. The selection comprises targeted as well as high-throughput sequencing experiments,
predicted interactions (through miRanda MirTarget and others), and experimental validations of
computational predictions [122]. RNAInter was compiled by performing a literature search on over
31,000 published studies, and corresponds to a total of more than 41 million RNA interactions
across 154 different species [122]. RNAInter provides an interaction map and a confidence score
for the likelihood of the interaction, based on the type of evidence provided [122]. Interactions
are automatically ranked by confidence score on a scale of 0 to 1, with 1 being most confident.
In addition to experimentally detected interactions, RNAInter has the option to run interaction
prediction tools directly from the web server, including IntaRNA, which will be discussed in further
detail below [122]. While not being lncRNA-specific, RNAInter contains information for many
lncRNAs due to its inclusion of data from various lncRNA-specific databases. Overall, RNAInter is
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a highly comprehensive database, with an accessible interface that allows for straight-forward in silico
investigation of a lncRNA of interest.

7.1.2. RISE

RISE is a database published in 2018, and contains 328,811 RNA-RNA interactions from
H. sapiens, M. musculus and S. cerevisiae, as well as from 10 different cell lines across these
species [123]. These interactions have been extracted from several high-throughput sequencing
experiments [100–102,125] and targeted studies, which used methods including Cross-linking,
Ligation and Sequencing of Hybrids (CLASH) [126,127], RNA Interactome Analysis and sequencing
(RIA-seq) [118] and RNA Antisense Purification (RAP-RNA) [128]. The targeted studies were curated
from the RAIN [129], RAIDv2.0 [130], and NPInter [131] databases. For the human interactome,
there are 112,444 RNA-RNA interactions, with lncRNA interactions accounting for 20%. Approximately
15,000 of the lncRNA-specific interactions are with mRNAs, with the remaining 7500 interactions spread
across miRNAs and a variety of other ncRNA species [123]. RISE compiled many lncRNA interactions,
which sets it apart from other databases as a valuable tool. However, it currently lacks a scoring system
similar to that of RNAInter [77], providing an estimate of the strength of evidence behind the detected
interaction. Overall, RISE is an intuitive database which provides concise information for several
lncRNA interactions.

7.2. LncRNA-RNA Interaction Prediction

Tools to predict RNA-RNA interactions have been available since the late 2000 s, with the
number of tools released continuously increasing. Although these algorithms are useful in the absence
of experimental evidence for a lncRNA of interest, they often result in low prediction accuracy
when benchmarked [107,108], similar to many other in silico prediction approaches. The majority
of RNA-RNA interaction prediction tools use the thermodynamic principle of finding the MFE of
the interaction [108]. Other methods include alignment-based approaches such as RIsearch [132],
homology based methods including PETcofold [133], and deep learning models such as GPLPI [134].
Here, we discuss two tools to analyze RNA-RNA interaction potential. The first tool, IntaRNA [135],
uses MFE principles, and takes into account sequence accessibility, equating to both the binding
energy and the unbinding (opening) energy of the two sequences being assessed. The second
tool, LncRRIsearch [136] is a web server integrating the methodology of the authors’ previously
released command-line tool, RIblast [137] (based on interaction energy that is computed by using
both accessibility energy and hybridization energy) with tissue-specific expression and subcellular
localization data to improve prediction accuracy [138]. IntaRNA requires prior knowledge of sequence
information for both interaction partners, making it more suited for the prediction of specific targeted
interactions. On the other hand, LncRRIsearch requires only one query lncRNA, making it more useful
for lncRNA interaction discovery.

7.2.1. IntaRNA

IntaRNA 2.0 [135] is an open-source tool developed as part of the Freiburg RNA Tools suite [139].
It was reimplemented in 2017 based on the highly popular IntaRNA 1.0, which was originally
published in 2008 [140]. IntaRNA 1.0 performed in the top three of tools benchmarked by Umu
and Gardner [108], receiving a Matthews correlation coefficient (MCC) of 0.58 (on a scale of −1 to 1,
where 1 is a perfect tool). IntaRNA 2.0 has not yet been benchmarked against other similar tools.
IntaRNA 2.0 makes predictions on the likelihood of RNA-RNA interactions, based on MFE and
sequence accessibility, and uses seed stability constraints, providing further reproducibility to data
outputs [135]. The algorithm also takes into account energy contributions of “dangling end” base
pairs and investigates suboptimal interaction alternatives [135]. IntaRNA 2.0 has an easily accessible
web server available, using FASTA formatted sequences as input [135]. Outputs are available in both
tabulated formats and dot-bracket output alongside a visual representation. IntaRNA is likely to be
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most useful for those investigating whether a novel lncRNA may interact with previously identified
genes or transcripts of interest in a low-throughput context, and where experimental information is
not available.

7.2.2. LncRRIsearch

LncRRIsearch is a web server for rapid identification of lncRNA-mRNA and lncRNA-lncRNA
interactions in human and mouse [136], and differs from IntaRNA in several areas. First, in order to
increase the accuracy of prediction, subcellular localization data from lncATLAS [76] and tissue-specific
expression data from five human [21,141–144] and four mouse RNA-seq datasets [145,146] have been
included in the prediction algorithm. Secondly, while it still uses principles of MFE estimation and
accessibility, the integrated prediction tool RIblast [137] reduces prediction times by using a heuristic
seed search and extension approach. This method identifies short seed regions in all interactions
compared to all possible interactions, and scores according to length and hybridization energy, prior to
putative interactions being extended from each end of the seed. If the interaction energy exceeds the set
threshold energy, the seed extension is terminated. LncRRIsearch has used this method to pre-calculate
comprehensive human and mouse lncRNA interactomes, which are stored in a MySQL database.
This system is similar to that used by BLAST to ensure results are provided rapidly to the user [50].
LncRRIsearch also allows lncRNA query searches without specifying interaction partners, meaning that
users can get an estimation of possible interacting RNA sequences without prior knowledge of what
these may be.

7.3. LncRNA-DNA Interaction

Investigation of lncRNA-DNA interactions have the potential to elucidate lncRNA-mediated
regulation of gene expression. This is exemplified by the recruitment of chromatin modifying
enzymes by the lncRNA HOTAIR, resulting in histone modifications [147], and the direct binding
of DNA promoter elements by the lncRNA FENDRR, forming a lncRNA-DNA triplex resulting
in recruitment of the PRC2 complex [119]. The field of lncRNA-DNA interactions has been
reviewed in detail by Rinn and Chang (2012) [148], and discussed more recently by Marchese et al.,
(2017) [120]. Here, we will distinguish between direct lncRNA-DNA interactions and more general
lncRNA-chromatin interactions, discussing LnChrom [149], an experimentally validated database of
lncRNA-chromatin interactions, and Triplexator [150], a popular command-line tool for predicting
lncRNA interactions directly with DNA.

7.3.1. LnChrom

Although the existence of lncRNA-chromatin interactions has been established for several
years, development of databases and tools for investigation of such interactions is still
an emerging field. LnChrom is a recently published, comprehensive database of experimentally
validated lncRNA-chromatin interactions [149]. Although 138,062 RNA-DNA interactions from four
datasets [151–154] compiled in LnChrom are included in the RNAInter database [122] discussed earlier,
this makes up only one third of the available data in LnChrom, meriting the LnChrom database further
discussion here. The aim of LnChrom is to elucidate regulatory mechanisms of lncRNAs [149].
It contains expertly curated information on 382,743 experimentally detected lncRNA-chromatin
interactions, involving 2390 lncRNAs across 263 human and mouse tissue types. It also includes
multi-omic and metadata on each interaction pair, such as chromatin modifications, associated proteins,
and any diseases associated with lncRNA-mediated chromatin regulation. The majority of the
information in the database is from high-throughput experiments such as ChIRP-seq [151] and
CHART-seq [155], and 70% of the total data is categorized as human. To compile LnChrom into
a functional and broad dataset, the authors inquired PubMed for interaction information using
keywords, yielding 8000 papers, and searched the NCBI GEO datasets [156] for interaction pairs
detected using high-throughput experiments. The combined search results were filtered to a total
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of 27 high quality datasets, which were processed to retrieve lncRNA binding site information
according to their standard pipeline, described in detail in Chu et al., 2011 [151]. LnChrom provides
a genome browser for visualization of interactions, accompanied by outsourced expression data [157],
transcription factor occupancy data [158] and a cancer exploration panel [42,43]. Although not all
interactions are associated with additional information, LnChrom provides references to the original
publication, and/or further literature to validate the interaction when available. Overall, LnChrom
is user-friendly, easily searchable and provides useful information on many lncRNA-chromatin
interactions. LnChrom will be constantly improving as the authors aim to continue updating the
database as new datasets become available, with the goal of generating a supervised interaction
prediction tool in the future [149].

7.3.2. Triplexator

One method of predicting a direct lncRNA-DNA interaction is to estimate the likelihood of
triplex formation, where a single stranded RNA undergoes Hoogsteen base-pairing with the double
stranded DNA, forming a three stranded structure [159,160]. In the absence of experimental evidence
for the formation of such a triplex by a lncRNA of interest, there are a limited number of prediction
algorithms available to assess the likelihood of lncRNA-DNA triplex formation. These have been
discussed in a benchmark by Antonov et al., in 2018 [161], suggesting Triplexator [150] as the most
accurate and usable tool currently available. Triplexator is a brute force prediction algorithm for
the identification of RNA-DNA triplexes in H. sapiens, M. musculus, D. rerio, D. melanogaster and
C. elegans [150]. Brute force algorithms rely on compute power to conduct exhaustive searches of
all possible options in any given query, as described by Mohammad et al. [162]. Triplexator uses
the same methodology alongside a q-gram-based filter, which discards sequence regions that do not
meet triplex formation criteria prior to testing all remaining options. The algorithm works under the
assumption that triplexes are sufficiently modeled by the canonical binding rules of Hoogsteen and
reverse Hoogsteen nucleotide triad formation [150]. First, it identifies sequence features of a query
lncRNA that has the potential to bind to a DNA target site. In the absence of a specified target sequence,
Triplexator then scans a q-gram filtered reference genome (hg19 for human targets) for putative binding
sites [150]. The user can specify the minimum and maximum length of a triplex interaction, the number
of errors allowed (with more errors usually being allowed in longer triplexes, due to their increased
stability [150]), and the minimum guanine content allowed for a triplex. While being a very useful
tool for the scientific community, Triplexator could be improved in two ways. When benchmarked by
Antonov et al. [161], Triplexator performed with an Area Under the Curve (AUC) value of 0.61, leaving
some room for optimization of the algorithm, perhaps by taking into account chromatin accessibility
of target regions. Secondly, the genomes used to scan for target DNA sites could be updated to the
most recent annotations.

7.4. LncRNA-Protein Interaction Prediction

LncRNA interactions with proteins have been shown to drive important cellular processes
such as recruitment of protein complexes to chromatin [163,164] as well as post-transcriptional
regulation of gene expression, splicing and translation [8]. There is an abundance of tools to predict
lncRNA-protein interactions, and these have been reviewed in great depth by Peng et al., (2020) [165].
Here, we will discuss a machine-learning, ensemble-based method called SFPEL-LPI (sequence-based
feature projection ensemble learning method–lncRNA-protein interaction) [166]. It had the highest
performance score when benchmarked by Peng et al., with an AUC value of 0.97 in their leave-one-out
cross validation, and of 0.92 on a five-fold cross validation.

7.4.1. SFPEL-LPI

SFPEL-LPI is a prediction algorithm that finds known and predicted interactions between RNAs
and proteins by using a feature projection ensemble learning frame to integrate sequence derived
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features and similarities [166]. The SFPEL-LPI algorithm comprises several steps. Based on a lncRNA
NONCODE ID [4] query, it first downloads known lncRNA-protein interactions from NPInter [131],
lncRNA sequences from NONCODE [4] and finally, protein sequences from SUPERFAMILY [167].
Next, it describes query features based on their dinucleotide or amino acid composition for the
lncRNA and query protein, respectively. More specifically, this is known as parallel correlation pseudo
dinucleotide or amino acid composition. SFPEL-LPI then assesses potential interaction partner features
in the same way, according to their dinucleotide or amino acid composition. Finally, it compiles
these into a features matrix, and compares their similarity, producing association scores for potential
lncRNA-protein interactions. SFPEL-LPI outputs a downloadable list of experimentally validated
and predicted interactions, which can be filtered by association score and visualized as a network.
The association score is based on the Smith Waterman algorithm for calculating similarity of biological
sequences, on a scale of 0 to 1, with 1 being an experimentally validated protein interaction.
The network visualization color codes the known and predicted interactions, and provides the top
gene ontology (GO) terms associated with each. SFPEL-LPI is a highly accurate and user-friendly tool,
which generates important information about the possible function of a lncRNA of interest.

The myriad of possible interaction partners makes lncRNA interaction databases and predictive
tools a complex and emerging field of research. Understanding the interactions of lncRNAs is
an important starting point towards elucidating their potential functions. Additional tools take it one
step further, directly providing functional prediction of lncRNAs, as reviewed below.

8. Function Prediction

Predicting the function of a lncRNA from sequence alone has been a challenging task in the field
of lncRNA biology [168,169]. Here we describe a predictive tool, SEEKR, which uses k-mer-based
classification to compare lncRNAs and infer their function.

SEEKR

LncRNAs which broadly serve similar functions, for example Xist and Kcnq1ot1i, which both
regulate gene expression in cis through the PRC, often have little to no sequence similarity. Accordingly,
discerning the function of one lncRNA experimentally likely does not yield insights into the functions
of other lncRNAs. To overcome this, Kirk et al. developed SEEKR (Sequence Evaluation from
K-mer Representation), which uses the relative frequencies of k-mers in lncRNA sequences to infer
function based on similarity to other lncRNAs [168]. SEEKR is designed to count the appearance
of k-mers of specified lengths along the sequence of a lncRNA, and normalize these counts to
develop a “k-mer profile” [168]. The k-mer profiles for two lncRNAs can be tested for similarity
using a Pearson correlation, allowing for two lncRNAs which would share little linear homology to
have their k-mer profile similarities brought to light [168]. In practice, this would guide a researcher
on experimental methodologies to validate the function of a lncRNA if it shows high k-mer similarity
to a well-characterized lncRNA.

SEEKR can be used to infer the function of a lncRNA of interest, providing researchers with
a useful starting point for further functional characterization in the lab. Examples for experimental
validation include the generation and in vitro characterization of knockout/knock-in/knockdown
models coupled to RNA-Seq, mass spectrometry, and/or metabolic assays [170,171]. A problem with
several published lncRNA functional prediction tools, with citations in the hundreds, is that they are
occasionally not maintained reliably or cease to be available altogether.

9. Conclusions

With rapidly increasing interest in lncRNAs and their widespread roles across disease,
genomic regulation and development, databases and prediction tools are essential as a first step
in characterizing a new lncRNA. For example, if the LncATLAS database shows a lncRNA localizes to
the nucleus, and Triplexator predicts that it can form a triplex with a DNA sequence, the next step
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of characterization could be a ChIRP experiment, to determine which particular regions of DNA the
lncRNA is interacting with.

Future directions in the field are wide-ranging. Subcellular localization prediction is still
an emerging field with few tools at present. As more experimental localization data becomes available,
prediction algorithms should improve in accuracy, due to larger and more accurate training and
benchmarking datasets, in addition to more robust algorithm design platforms becoming available.
Although there are many programs to predict RNA interactions and structures, these often struggle
with longer or more complex structures, especially those containing pseudoknots. This may be
a long-term weakness due to the complexity of pseudoknots; however, some newer tools are
beginning to touch on the area (for example, DMfold [96,172]). Although there is high-throughput
information available for many lncRNA-chromatin interactions such as that stored in LnChrom [149],
tools to predict RNA-chromatin interactions that have not been experimentally detected are very
limited in number, and those that are available do not have a high level of usability for a less
specialized audience. Development of an easy-to-use web server could be an improvement for this
area. One fascinating aspect of predictive algorithms is the implementation of neural networks over
older machine learning methodologies. One predictive tool covered here (LncLocator) uses neural
networks; however, this is only the beginning of more advanced artificial intelligence methodologies
being applied to lncRNA research.

As more tools and databases are released each year, keeping track of the most accurate and
expansive of each will be important for lncRNA researchers. As such, annual benchmarks of tools
and reviews of databases would be helpful. What could aid in the benchmarking of existing tools,
and in the training of new tools, is the construction of a ‘master lncRNA training database’. This would
consist of many well-characterized and thoroughly experimentally validated lncRNAs, which would
include localization data, known interactions, disease associations, and expression levels across tissue
types/species.
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Appendix A

Table A1. List of tools and databases reviewed.

Tool/Database Name Description Link Citation

General lncRNA Databases

LNCipedia General lncRNA database, expertly curated https://lncipedia.org/ [18,19]

LNCBook General lncRNA database, some community curation http://bigd.big.ac.cn/lncbook/index [29]

Expression Databases

GTEx Comprehensive public resource to study tissue-specific gene expression and regulation. https://gtexportal.org/home/ [39,40]

TANRIC Database of non-coding RNAs in cancer www.tanric.org [42]

CANTATAdb Database of plant lncRNAs http://cantata.amu.edu.pl/ [48,49]

Protein Coding Potential

CPC Protein coding potential prediction http://cpc.gao-lab.org/ [55]

CPPred Protein coding potential prediction http://www.rnabinding.com/CPPred/ [60]

CNIT Protein coding potential prediction http://cnit.noncode.org/CNIT/ [62]

Subcellular Localization

LncSLdb Database of lncRNA subcellular localization http://bioinformatics.xidian.edu.cn/lncSLdb/ [72]

LncATLAS Database of lncRNA subcellular localization https://lncatlas.crg.eu/ [76]

LncLocator LncRNA subcellular localization prediction http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/ [77]

Structural Conformation

RMDB Database of RNA structures https://rmdb.stanford.edu [94]

RNAfold RNA structure prediction
http://rna.tbi.univie.ac.at/,
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi [95]

DMfold RNA structure prediction with pseudoknots https://github.com/linyuwangPHD/RNA-Secondary-Structure-Database [96]

Interactions

RNAInter Database of RNA interactions http://www.rna-society.org/rnainter/ [130]

RISE Database of RNA interactions http://rise.life.tsinghua.edu.cn [123]

IntaRNA 2.0 RNA-RNA interaction prediction http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp [135]

LncRRISearch LncRNA-RNA interaction prediction http://rtools.cbrc.jp/LncRRIsearch/ [137]

LnChrom Database of lncRNA-Chromatin interactions http://biocc.hrbmu.edu.cn/LnChrom/ [149]

Triplexator RNA-DNA interaction prediction http://bioinformatics.org.au/tools/triplexator/ [157]

SFPEL-LPI LncRNA-protein interaction prediction http://bioinfotech.cn/SFPEL-LPI/ [166]

Function Prediction

SEEKR K-mer similarity predictor http://seekr.org/home [168]
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