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Abstract: The analysis of small RNA sequencing data across a range of biofluids is a significant
research area, given the diversity of RNA types that hold potential diagnostic, prognostic, and
predictive value. The intricate task of segregating the complex mixture of small RNAs from both
human and other species, including bacteria, fungi, and viruses, poses one of the most formidable
challenges in the analysis of small RNA sequencing data, currently lacking satisfactory solutions.
This study introduces sRNAflow, a user-friendly bioinformatic tool with a web interface designed for
the analysis of small RNAs obtained from biological fluids. Tailored to the unique requirements of
such samples, the proposed pipeline addresses various challenges, including filtering potential RNAs
from reagents and environment, classifying small RNA types, managing small RNA annotation
overlap, conducting differential expression assays, analysing isomiRs, and presenting an approach
to identify the sources of small RNAs within samples. sRNAflow also encompasses an alternative
alignment-free analysis of RNA-seq data, featuring clustering and initial RNA source identification
using BLAST. This comprehensive approach facilitates meaningful comparisons of results between
different analytical methods.

Keywords: bioinformatics; small RNA; microbiome; non-coding RNA; biofluids; miRNA; isomiR;
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1. Introduction

Next-generation sequencing (NGS) has brought about a transformative impact on
various fields of biology, particularly in the realm of small RNA (sRNA) research. Small
RNAs, typically less than 200 nucleotides in length, predominantly consist of non-coding
RNAs engaged in cellular regulatory mechanisms [1–3]. Many sRNAs are even shorter, such
as microRNAs (miRNAs) with a characteristic length of approximately 22 nucleotides [4]
and PIWI-interacting RNAs (piRNAs) spanning 24–30 nucleotides [5]. These sRNAs
exhibit altered expression profiles in different disease states, rendering them potential
non-invasive biomarkers for diagnosing and monitoring various conditions, including
cancer [6–9]. Circulating sRNAs have been detected in a variety of biofluids, including
blood serum, plasma, saliva, urine, and cerebrospinal fluid [10].

One of the most intricate challenges in analysing RNA-seq data obtained from diverse
biofluids lies in the unpredictable mixture of sRNAs originating from both human and non-
human sources [11,12]. The accurate analysis of sRNA reads of human origin necessitates
the separation of reads originating from other species, such as bacteria, fungi, and viruses.
At the same time, the determination of the origin of small RNAs is difficult with popular
utilities based on K-mers due to the small length of reads.

Traditional approaches involve mapping reads separately to the human genome or
miRBase, followed by mapping the unmapped portion to microbial genomes (or vice versa).
However, this two-step process poses challenges in correctly identifying the source species
of sRNA reads, especially when they do not align with the highest similarity in the second
alignment step after reaching a threshold in the first step. An alternative solution is a
one-time alignment to a metagenome that encompasses all reference genomes.
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Small RNA analysis encounters specific challenges due to overlapping features in
available annotation databases [13–15]. This overlap conundrum forces most common
counters to make a binary choice for reads mapped to such regions: they should be either
marked as ambiguous and excluded from subsequent analysis or counted for all overlap-
ping features [14,16]. This problem is particularly pronounced in uncurated databases like
piRBase [17] but remains significant even in well-curated and popular databases. The issue
of overlapping features, as illustrated in Figure 1, can result in cases where up to 50% of
reads are marked as ambiguous (unpublished data) and are consequently excluded from
the analysis. This problem can be categorised into two types: overlapping between annota-
tions from different databases (sRNA types) and overlapping within annotations from the
same source. While the second type problem is less intricate for miRNA than other RNA
types, the miRTop/mirGFF3 project introduces a novel GFF3 format for the output of small
RNA pipelines. This format is specifically designed to support the description of isomiRs,
enabling tasks such as differential expression analysis at the isomiR level [18]. Expanding
the novel annotation format to encompass other RNA types and curating databases within
the RNAcentral [19] resources provided by a collaborating group of Expert Databases can
be a viable solution to achieve a clearer consensus in some databases. However, it has been
reported that RNAcentral does not check for overlapping piRNAs, lncRNAs, and several
other ncRNA types [19].
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Figure 1. Example of overlapping annotations, demonstrating six features in piRBase [17] overlapping
with a feature in GtRNAdb [20] shown in IGV [21]. All reads that are mapping to regions containing
such features are identified and labelled as ambiguous by the counter.

In small RNA analysis, a substantial portion of reads is often mapped outside an-
notated expressed regions. Classical methods are not tailored for analysing unannotated
expressed regions. Despite employing repositioning algorithms [22], up to 80% of mapped
reads in certain analysed datasets [23] remained unannotated. Consequently, exploring
these unannotated data can offer complementary insights to traditional biomarkers or refine
biological signatures in machine learning by incorporating unknown regions. Additionally,
the examined samples may contain RNA fragments whose source is from species whose
genomes are not yet represented in the databases. Substantial challenges also emerge when
short RNA sequences undergo post-transcriptional changes, making precise mapping
difficult. The recently introduced alignment-free profiling strategy offers a solution to
these challenges by bypassing the need to map reads to a reference genome [24]. Instead,
actual read sequences are used to determine expression intensity. Following the differential
expression analysis of individual sequences, significant sequences are annotated against
user-defined databases. This strategy provides a more comprehensive representation of
small RNA populations without any data loss or distortion.

The field of small RNA data analysis is rapidly advancing, with new tools for analysing
specific subsets of data being published each year [25–31]. However, many of these tools
demand computational or basic programming expertise from users.
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In response to these challenges, we introduce the sRNAflow tool, which offers potential
solutions to these issues. The source code can be accessed at https://github.com/zajakin/
sRNAflow (accessed on 29 December 2023) under the GPL3 licence.

2. Materials and Methods

sRNAflow accepts input data in various formats, including flat or gzipped (.gz) FASTQ,
FASTA, SAM, CRAM, or BAM files. The sRNAflow protocol comprises several essential
steps and seamlessly integrates recognised tools into the pipeline (Figure 2):

• Adapter removal and quality trimming (cutadapt [32]);
• Quality assessment (fastqc [33]/multiQC [34]);
• BLAST of a representative subset of reads (BLAST [35]);
• Reads mapping (Bowtie [36]/Bowtie2 [37]);
• Realignment by local coverage (ShortStack [22]);
• Reads counting (Rsubread [38]);
• Differential expression analysis (DESeq2 [39]/edgeR [40]);
• Non-template isomiRs identification (isomiR-SEA [41]);
• Cluster analysis (ClustalW MSA [42]);
• Data visualisation (Krona [43]).
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Specific algorithms necessary for analyses of small RNA samples from biofluids
described below are included as well.

2.1. Installation

To install sRNAflow on a server or workstation with Docker service installed, execute
the following command in your terminal:

mkdir -m 777 sRNAflow
docker pull ghcr.io/zajakin/srnaflow
docker run -d -p 3838:3838 -v ‘pwd‘/sRNAflow:/srv/shiny-server/www ghcr.io/zajakin/srnaflow

After running, access the user interface in a web browser at http://<your server name
or IP>:3838 (or another port if modified).

All uploads, databases, and analysis results are stored in the “sRNAflow” subfolder of
the terminal’s current working folder.

2.2. Shiny-Based User Interface

sRNAflow is specifically designed to be user-friendly, catering to inexperienced users
in the field. All necessary operations, including data upload, analysis configuration, and
reports download, can be performed via the graphical user interface.

Considering that users’ desktop computers may lack sufficient resources and to enable
the analysis to be run on a server, the program must have the capability to be controlled
remotely. The most intuitive user interface can be facilitated via a web server.

The user interface (Figure 3), built on the Shiny R package [44], facilitates file uploading,
selection for analysis, grouping for differential expression analysis, local BLAST database
creation, annotation file regeneration (with a primary set pre-uploaded due to its time-
consuming nature), settings adjustment, and report downloading.
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2.3. Annotations Files

Human genome annotations used in the pipeline include those from the Ensembl
database, categorised by small RNA types. Additionally, annotations are sourced from
miRBase [45], LNCipedia [46], piRBase [17], piRNAdb [47], GtRNAdb [20], and Repeat-
Masker [48].

sRNAflow provides ready-to-use annotation files and offers the option to recreate
them on demand.

2.3.1. Generation of Annotation Files

To recreate annotation files, access the tab “Setup” > “Update GTF files”. This oper-
ation can be time-consuming. Some databases are provided in FASTA format, and it is
necessary to convert them to GTF format. To accomplish this, specific algorithms have been
developed. This approach is based on 100% identity alignment without gaps to the genome,
followed by SAM to GTF conversion. Moreover, a script is created to derive transfer RNA
fragments (tRFs) annotation from GtRNAdb databases using tRNAscan-SE [49] output.
This comprehensive annotation process ensures a diverse and detailed representation of
small RNA types in the analysis.

2.3.2. Merging of Overlapped Annotations Features

The challenge of overlapping features can be classified into two categories: overlap
between annotations sourced from different databases (representing various sRNA types)
and overlap within annotations originating from the same source. To address the first
problem, a prioritisation procedure is employed. This is crucial because different types
of small RNAs are explored to varying degrees, and uncurated databases for some of
them likely contain erroneous entries. The prioritisation algorithm used to construct
a catalogue of expressed RNA types resolves issues arising from the use of different
annotation databases, particularly addressing problems related to overlapping annotations.
The prioritisation algorithm, integrated into the pipeline’s default settings, follows the
priority order adopted from [31] and has been updated for additional RNA type annotations:
miRNA > tRNA > rRNA > mRNA > processed pseudogenes > snRNA > snoRNA >
mtRNA > piRNA > lncRNA > vaultRNA > Y RNA > other types RNA > repeats and low
complexity RNA (tRNA > rRNA > other).

The second problem of overlapping features within the same annotations file is re-
solved by merging them into a unified feature, with corresponding changes to its name
and attributes.

2.4. Using the Pipeline

sRNAflow itself does not consume a significant amount of memory or CPU resources,
but the BLAST alignment, especially with a local database, can be CPU and time-intensive.
The creation of the Bowtie2 index for a large metagenome database can also be resource-
intensive. It is advised to create a local BLAST database using the button in the “Setup” tab
to enable filtering by taxa, an option not available with remote databases, and to reduce the
likelihood of selecting incorrect species. We recommend using a system with at least 30 GB
of memory. To regulate CPU usage, include the flag “--cpus x” in the command, where x
denotes the number of allowed cores.

To use the pipeline, follow these steps:

2.4.1. Data Upload

Upload your data in flat or gzipped (.gz) FASTQ, FASTA, SAM, CRAM, or BAM files
on the “Seq Data Input” tab. Alternatively, select files already situated on the server or use
Example files. Click on uploaded files to select for analysis or remove the selection.
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2.4.2. Group Selection

On the tab “Select groups”, choose a group (test, control, environment, or ignore) for
each selected file.

2.4.3. Analysis Options

On the tab “Analysis” (Figure 3), you can set the necessary options:

• Trimming—used adapters, size, and quality (QC) limits;
• BLAST—Switch taxa filter option for local database and number and size of the

representative subsets. This selection is a tradeoff between resource consumption and
the sensitivity of the pipeline to detect a rarely represented species in the sample. We
recommend starting with a size of 200 reads, especially for a remote BLAST database
and increasing if necessary.

• Differential expression—thresholds to filter expressible RNA (sequence in alignment-
free analysis) and log2FoldChange and adjusted p-values to filter out statistically
insignificant results.

• Strategy of the pipeline (Figure 2), where, in the case of “metagenome”, all reads at
once will be mapped to generated on BLAST results metagenome or more traditional
“successive” strategy, where, at first, samples mapped to the human genome and only
reads unmapped to it will be mapped to the generated metagenome.

• Provide an email address and mail server if you prefer to receive notifications and
report files on email.

2.4.4. Analysis Start

Start analysis and check for report files that are accessible in the “Reports” tab.

2.5. Filtering of Environmental Contamination

Filtering data against environmental samples is an essential step that has a profound
impact on the results obtained. These environmental samples, excluding biological material,
encompass all components used in RNA extraction and library preparation specific to the
current laboratory. This ensures data accuracy and reliability and should be planned during
experiment design. In our pipeline, we exclude all reads that have sequences identical to
those from environmental samples or include those sequences as part of their composition.
This rigorous filtering approach enhances the precision of our analysis by minimising the
influence of potential contaminants.

2.6. Source of Presented Small RNA Recognition

Users should choose one of two strategies: the newly proposed “metagenome strategy”
algorithm designed to minimise the false-positive matching of reads to improper species,
where reads are mapped to host species and microbiomes in one turn, and a more tradi-
tional “successive strategy”, where, at first, samples mapped to the human genome and
only unmapped to its reads will be mapped to the generated metagenome. Analysis initi-
ates with a two-pass analysis based on the BLAST [35] output on the entire “nr” database or
specified taxons (only available for locally downloaded BLAST databases, accessed through
“Setup” > “Create/Update local BLAST DB”). This analysis employs a representative ran-
dom subset of reads, and the size of this subset should be determined by the user during the
analysis setup step. Caution is advised, particularly for remote databases with a subset size
larger than 200 reads. This choice involves a tradeoff between resource consumption and
the pipeline’s sensitivity to detect species that are infrequently represented in the sample.
While this approach may inherently introduce some false-positive results, refinement is
possible by adjusting the list of comparable taxa. The current list encompasses host species
and taxonomic trees of potential host parasites and microbiomes (The taxa IDs is given
in brackets):

• Homo (9606);
• Bacteria (2);
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• Fungi (4751);
• Viruses (10239);
• Archaea (2157);
• Amoebozoa (554915);
• Discoba (2611352);
• CRuMs (2608240);
• Metamonada (2611341);
• Sar (2698737);
• Eukaryota incertae sedis (2683617);
• Aphelida (2316435);
• Ichthyosporea (127916);
• Rotosphaerida (2686024);
• other sequences (28384).

Identified species are ranked by their frequency of presence in the sample. In the
second pass, the hit is assigned to the species with a higher rank in the first pass in case
of a similar obtained BLAST score. Simultaneously, valuable research information on
accompanying species is obtained and visualised using Krona 2.8.1 [43].

2.7. Metagenome Generation and Alignment

Only the genomes of the most represented species in successful BLAST hits, covering
more than 1% of the hits, will be utilised for subsequent alignment steps. Genomes of these
reported species are downloaded in FASTA format from RefSeq, Ensembl, or GenBank
and added as additional entries with accordingly changed descriptions. The size of the
constructed metagenome can vary based on the number of genomes used and may reach
200–300 Gb in some cases. In such instances, the generation of mapper indices will be
memory-consuming and require a substantial memory server.

Unlike full-length mRNA, sRNA reads typically align in multiple sites of the genome.
Our pipeline aligns the reads using Bowtie 2 [37], allowing for multiple alignments per
read. Subsequently, the reads are reassigned, taking into account local coverage, using the
ShortStack algorithm [22].

2.8. Small RNA Types and Identified Species Catalogues

This pipeline includes the creation of a catalogue of expressed RNA types, utilising
human genome annotations as a percentage of all non-intronic identified features. This
catalogue is a valuable resource for understanding and characterising the diverse landscape
of expressed RNA types in the analysis.

A catalogue of identified species was prepared, presenting assigned read counts for
detected species in all samples. The visualisation of identified species for each sample was
performed using Krona 2.8.1.

2.9. Differential Expression Analysis

Differential expression analysis was performed by DESeq2 [39] for classifiable RNA
types (miRNA, piRNA, tRNA, and other sRNAs) when analysing two sample groups.

2.10. Alignment-Free Sequence Analysis

In our proposed pipeline, we adopted an approach that includes alignment-free
analysis of RNA-seq data, featuring clustering and the initial identification of the RNA
source, similar to the R DEUS package [24], with variations in additional data filtering.
Notably, the adjustable “keep hits” variable enables a substantial reduction in the analysed
dataset, leading to accelerated creation and analysis times. In the subsequent step, we
focus on the most significantly changed sequences, limiting the analysis to no more than
1000 upregulated and 1000 downregulated sequences. These sequences are then clustered
using ClustalW 2.1, and initial RNA source identification using BLAST 2.5.0 is performed.
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The ultimate goal is to obtain consensus sequences that unite clustered sequences. The final
selection at this stage is carried out manually.

2.11. Reports

• A consolidated Excel file report is presented, encompassing a comprehensive set of
information (example report attached as Supplementary File S1):

# Analysis settings;
# Sample and trimming statistics;
# A catalogue of identified species;
# A catalogue of sRNA types;
# Counts of identified features;
# Spearman sample correlation tables with heatmap visualisation;
# Differential expression analysis for annotated RNA types;
# The file includes visualisations such as Volcano [50] and PCA plots.

• Quality Diagrams:

# Sample quality diagrams, generated by fastQC [33] and consolidated by mul-
tiQC [34], are provided as downloadable zip files.

• Alignment-free Analysis (example report attached as Supplementary File S2):

# Results of the alignment-free analysis of RNA-seq data, featuring clustering
and the initial identification of the RNA source, are presented in a separate
Excel file.

• Post-translational Modifications and Enrichment Analysis, formatted in Excel for user
convenience (example report attached as Supplementary File S3):

# Acknowledging the significant role of miRNA and other sRNA post-translational
modifications in adaptive regulation [51,52], the pipeline includes the identifi-
cation of non-template isomiRs using isomiR-SEA [41].

3. Results and Discussion

The identification of differentially expressed small RNAs holds considerable diagnos-
tic potential, particularly in cancer and cardiovascular diseases [6–9,53]. A preliminary
iteration of the presented program has been utilised in recent publications focusing on
the analysis of extracellular vesicle contents, engaging in discussions about the biological
interpretations of the results [51,53,54].

3.1. Merging of Overlapped Annotations Features

Versions of databases of small RNA used in the current pipeline and the results of
merging overlapped annotation features are detailed in Table 1. The last column indicates
the percentage of features merged per database. This step reveals a significant divergence
in the necessity of this operation for various RNA types, ranging from being completely
unnecessary for tRNA to being highly essential for mRNA and lncRNA exons, which,
as fragments, can be present in small RNA samples. Notably, the proposed approach
successfully addresses challenges posed by overlapped annotation features, ensuring that
reads and features excluded in conventional methods as ambiguous are retained in the
analysed samples. This underscores the tool’s ability to preserve valuable information in
complex datasets.

The latest version of piRBase (version 3, [55]) requires additional preparation to be
integrated into the described pipeline. Its rapid size growth underscores the necessity
to transition from individual piRNA analysis to piRNA cluster analysis [56]. This shift
is motivated by findings demonstrating contamination of many piRNA databases with
non-coding RNA fragments, particularly in somatic tissues. Notably, the piRNA cluster
database stands out for its remarkably low incidence of such contaminations [57]. We are
assessing a transition to the analysis of piRNA clusters in future versions of the pipeline.
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Table 1. Human genome annotations used in the pipeline: results of merging overlapped annotation
features. the Ensembl database is categorised by small RNA types.

Database Version Accessed Format Features Merged % Merged

miRBase_hairpin
v22

December
2013 GFF3 1918 1859 3

miRBase_mature December
2013 GFF3 2883 2813 2

GtRNAdb v21 December
2013 FASTA 432 432 0

LNCipedia
v5.2

December
2013 GTF 357,620 151,562 58

LNCipedia_hc December
2013 GTF 288,174 127,290 56

piRNAdb v1.7.6 December
2013 FASTA 814,994 558,329 31

piRBase v1 December
2013 FASTA 797,231 549,328 31

Ensembl GRCh38.p14 December
2013 GTF 1,649,690 345,110 79

miRNA 1879 1822 3
rRNA 53 53 0

protein_coding 1,387,673 235,196 83
processed_pseudogene 11,773 11,731 0

snRNA 1910 1910 0
snoRNA 942 925 2

MT 37 32 14
lncRNA 217,724 71,419 67

vault_RNA 1 1 0
YRNA 814 814 0

notY_misc_RNA 1407 1407 0
Other_types 25,477 19,800 22

RepeatMasker Gencode v44 December
2013 FASTA 5,683,690 5,536,563 3

RepeatMasker_tRNA 2164 2164 0
RepeatMasker_rRNA 565 538 5

3.2. Testing the BLAST-Based Approach on Simulated Positive and Negative Controls

Since experimental samples cannot be guaranteed to be free of any contamination, as
a positive and negative control of the method, we simulated samples from the Escherichia
coli and Homo sapiens ncRNA databases using the R package polyester [58] with a length
variation of 10–44 bp. These samples are provided with the Docker image. sRNAflow
showed for both of them 99% sensitivity and 99% specificity for a sample simulated from
E. coli data where 1% of reads with lengths of 15–17 bp were identified as human. In
the sample simulated from human data, 0.7% of reads with lengths of 16–23 bp were
not identified.

3.3. Example sRNAflow Reports on a Simulated Dataset

The efficiency of the sRNAflow tool has been tested using a simulated short read
dataset (10 samples with 10,000 reads in each) was established based on the experimental
samples from the sequencing of sRNAs in plasma and urinary extracellular vesicles from
a longitudinal cohort of 20 prostate cancer patients [54]. Inside the user interface, as an
additional example, RNA-seq data obtained by sequencing small RNAs from urinary cells
and extracellular vesicles can be downloaded [52].

The consolidated Excel file report, generated by sRNAflow and attached as Supple-
mentary File S1, includes sample and trimming statistics, a catalogue of identified species,
a catalogue of sRNA types (Figure 4), counts of identified features, Spearman sample corre-
lation tables with heatmap visualisation, and differential expression analysis performed by
DeSeq2 for annotated RNA types. The visual representation of the catalogue of small RNA
for the simulated dataset (Figure 4) illustrates the variability in the proportion of different



Non-Coding RNA 2024, 10, 6 10 of 16

small RNA types. The results presented in the report indicate statistically significant dif-
ferential expression for only one miRNA, one mRNA, three snoRNAs, four piRNAs, and
three lncRNAs. This limited number of differentially expressed RNAs can be attributed to
the small size of the simulated samples.
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Supplementary File S2 provides an Excel file with alignment-free reports showcasing
the results of the alignment-free differential expression analysis of small RNA-seq data.
The file includes visualisations such as Volcano and PCA plots, along with clustering
performed by ClustalW and the initial identification of the RNA source using BLAST. While
only 12 RNAs annotated as statistically significant differentially expressed are presented
above, the alignment-free analysis reveals 73 statistically significant differentially expressed
sequences, with 30 of them preliminarily identified as human and 24 as bacterial sources.
Some of these may represent isoforms of small RNA, as alignment-free analysis compares
expression levels of completely identical sequences.

Supplementary File S3 contains results of post-translational modifications and enrich-
ment analyses generated by isomiR-SEA [41], specifically focusing on the identification of
non-template isomiRs.

3.4. Comparison of Small RNA Analysis Pipelines on a Simulated Dataset

Using a simulated dataset, we conducted a performance comparison of sRNAflow
with several programs designed for small RNA analysis and traditionally used pipelines.
These include sMETASeq [30], exceRpt [31], and sRNAtoolbox [29], which is well-known



Non-Coding RNA 2024, 10, 6 11 of 16

and encompasses analysis of microbiome and host small RNAs. Kraken2 is a taxonomic
classification system using exact k-mer matches, widely used in the analysis of microbiomes.
The pipelines that include cutadapt, bowtie2, and Rsubread are also widely recognised for
sRNA analysis of human RNA-Seq data [59,60].

The results of sMETASeq [30], as presented in Table 2, show a significant alteration in
the proportion of ambiguous reads depending on the source of annotations utilised. This
effect is attributed to the overlapping of annotations of different RNA types included in
the RNACentral annotation file supplied with sMETASeq, whereas miRBase includes only
miRNA annotations. The results, shown in the “Annotated human” column, highlight the
significant efficiency of the RNA type prioritisation procedure employed by sRNAtool-
box [29], exceRpt [31] and sRNAflow, which yields 30–46% of annotated reads compared to
1–15% when such a procedure is not employed. Significantly, sRNAflow exhibits a slight
improvement over sRNAtoolbox, which follows closely at 42%, in this metric, showcasing
a performance of 44–46%. The results demonstrate a distinction between the two strategies
employed in sRNAflow, specifically in the identification of certain reads as either human or
microbiome. In the successive strategy, these reads are identified as human reads, moreover,
in annotated areas. In the metagenome strategy, aligning in a one-time alignment to a
metagenome that encompasses all identified reference genomes, these same reads align
with the highest similarity to the microbiome. This difference undoubtedly influences the
selection process during the subsequent stages of the differential expression analysis.

Table 2. Comparison of proportions of identified and annotated reads in simulated dataset by
different small RNA analysing pipelines.

Pipeline
Filtered
QC and
<15 bp

Filtered
Environment

Annotated
Human

Ambiguous
Human

Unannotated
Human

Identified
Other

Species
Unidentified

sMETASeq
(RNACentral) 14% - 1% 17% 41% 5% 22%

sMETASeq (MiRBase) 14% - 6% 0.01% 52% 5% 22%

Cutadapt + Kraken2 14% - - - 13% 13% 59%

Cutadapt + bowtie2 +
Rsubread(Ens.) +

Kraken2
14% - 15% 12% 25% 6% 26%

exceRpt 36% - 30% 4% - 30%

sRNAtoolbox 14% - 42% 14% 17% 9 * + 4%

sRNAflow
(metagenome) 14% - 44% 0% 5% 16% 19%

sRNAflow
(successively) 14% - 46% 0% 6% 14% 19%

Pipelines that include filtering against an environmental sample

Cutadapt + Kraken2 14% 28% - - 7% 11% 40%

Cutadapt + bowtie2 +
Rsubread(Ens.) +

Kraken2
14% 28% 7% 5% 15% 6% 25%

sRNAflow
(metagenome) 14% 28% 19% 0% 6% 15% 18%

sRNAflow
(successively) 14% 28% 21% 0% 6% 13% 18%

* The status of these reads is not clear from the files provided by sRNAtoolbox.

The most effective outcomes in the comprehensive identification of the source of reads,
with the minimum value observed in the “Unidentified” column (13%), are achieved using
sRNAtoolbox. Subsequently, sRNAflow follows closely with a percentage of 19%.
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The demonstration of the presence of all types of RNA in the environmental sam-
ple, as illustrated in Figure 4, along with the proportion of reads filtered out (Table 2)
due to their close similarity to reads in the environmental sample, underscores the im-
portance of incorporating such samples into experimental design when isolating small
RNAs. Contamination sources may vary for each laboratory, set of reagents, or operator.
Therefore, we suggest that the preparation of environmental samples should be included
in the experimental design, encompassing all components used in RNA extraction and
library preparation.

The analysis of the source of the presented small RNA results in Table 2 suggests
that, overall, our approach and other alignment-based methods exhibit greater sensitivity
(Figure 5B) for small RNA analysis compared to Kraken2 (Figure 5A) [61] or MetaPhlAn [62]
(not shown in Table 2, as it did not detect any taxa in the simulated samples). This
heightened sensitivity is attributed to the fact that the K-mers used to construct their
databases must be longer (35-mers, 100-mers, 150-mers, and 200-mers) than the majority of
the small RNA-derived reads. This requirement is essential to prevent program usage from
becoming impractical due to high resource utilisation. While some false positive hits are
observed, particularly for the shortest small RNAs, this outcome was anticipated as these
sequences can be identical across various biological species.
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of small RNA-Seq simulated based on experimental data: (A) Kraken2 [61], (B) sRNAflow approach
based on BLAST.

3.5. Analysis of Microbiome in Ancient DNA samples

An unexpectedly successful outcome of sRNAflow was its application to 20 archaeo-
logical microbiome DNA shotgun samples dating back to the XVI-XVII centuries [63,64].
Our approach demonstrates more sensitive results (Figure 6B) compared to Kraken2 [61]
(Figure 6A) for highly damaged DNA, presumably due to substantial degradation over time.
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4. Conclusions

The presented pipeline for small RNA analysis is a user-friendly bioinformatic tool
with a graphical user interface designed for non-programmer users. Tailored for the specific
demands of small RNA analysis, this pipeline addresses various challenges. It includes
features for filtering potential contaminant RNAs from the environment, categorising small
RNA types, handling overlap in small RNA annotations, conducting differential expression
assays, analysing isomiRs, and an approach to identify the sources of small RNAs within
samples. Additionally, it offers an alternative alignment-free analysis of RNA-seq data,
incorporating clustering and initial RNA source identification using BLAST.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ncrna10010006/s1. File S1: Example of consolidated Excel file re-
port; File S2: Example of Alignment-free Analysis report; File S3: Example of Post-translational
Modifications Analysis report.
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