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Abstract: In this study, the unsteady Reynolds-averaged Navier–Stokes (URANS) equations are
employed in conjunction with the Menter Shear Stress Transport (SST)-Scale-Adaptive Simulation
(SAS) turbulence model in compressible flow, with an unstructured mesh and complex geometry.
While other scale-resolving approaches in space and time, such as direct numerical simulation (DNS)
and large-eddy simulation (LES), supply more comprehensive information about the turbulent
energy spectrum of the fluctuating component of the flow, they imply computationally intensive
situations, usually performed over structured meshes and relatively simple geometries. In contrast,
the SAS approach is designed according to “physically” prescribed length scales of the flow. More
precisely, it operates by locally comparing the length scale of the modeled turbulence to the von
Karman length scale (which depends on the local first- and second fluid velocity derivatives). This
length-scale ratio allows the flow to dynamically adjust the local eddy viscosity in order to better
capture the large-scale motions (LSMs) in unsteady regions of URANS simulations. While SAS may
be constrained to model only low flow frequencies or wavenumbers (i.e., LSM), its versatility and low
computational cost make it attractive for obtaining a quick first insight of the flow physics, particularly
in those situations dominated by strong flow unsteadiness. The selected numerical application is the
well-known M219 three-dimensional rectangular acoustic cavity from the literature at two different
free-stream Mach numbers, M∞ (0.85 and 1.35) and a length-to-depth ratio of 5:1. Thus, we consider
the “deep configuration" in experiments by Henshaw. The SST-SAS model demonstrates a satisfactory
compromise between simplicity, accuracy, and flow physics description.

Keywords: URANS; SST; SAS; turbulence model; compressible flow; unstructured grid; complex
geometry

1. Introduction

Computational fluid dynamics (CFD) has experienced a notable growth in the last
few decades. Nowadays, most engineering designs and technical projects rely on compu-
tational predictions before making critical design decisions. Additionally, CFD may also
be employed in order to gain important insight into the flow physics before performing
an expensive experiment, particularly in the aerospace industry, as recently reviewed
by [1]. The workhorse in industrial flow simulations over complex geometries has been the
Reynolds-averaged Navier–Stokes (NS) equations (RANS), obtained by time-averaging
the full Navier–Stokes equations [2]. These equations demand a closure to compute the
Reynolds stresses arising from the convective terms of the NS equations after applying
the time-averaging process. Unfortunately, the RANS approach exhibits a deficient perfor-
mance in massively separated flows or flows with inherently unsteady behavior [3] and
in highly accelerated flows [4]. Recently, significant attention has been paid to relatively
low-cost, scale-resolving, time-dependent computations of complex flows for industrial
applications, e.g., geometries with moving parts, wing flutter, noise prediction, etc. In
comparison with the high computational resources demanded by direct numerical or large
eddy simulations (DNS/LES) [5], low-cost scale-resolving approaches can provide the best
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tradeoff between unsteady simulations and unstructured meshes. Particularly, the unsteady
Reynolds-averaged Navier–Stokes (URANS) methodology has become quite popular, due
to its success in predicting the most energetic modes or coherent structures. However,
URANS has frequently been accused of inaccurately representing the correct spectrum of
turbulent scales, even if the numerical grid and the time step are of sufficient resolution.
In this study, the URANS equations for compressible flows are solved in conjunction with
the Menter SST turbulence model and the scale-resolving SAS model (Scale-Adaptive
Simulation) by Menter and Egorov [6–8]. The adaptive simulation concept allows more
details of the flow to be captured, or more turbulent structures. Furthermore, the most
significant advantage of the SAS approach over existing DES/LES methods is that the
model is developed independent of the grid spacing. The SAS approach introduced by
Menter and Egorov [6–8] is based on the use of the second derivative of the velocity, which
is highly active on short scales. As a consequence, this corresponds to an improvement over
the original DES (detached-eddy simulation) model by Spalart et al. [9], which strongly
depends on the grid spacing. More recently, a simple modification to the original DES
approach (i.e., the delayed DES or DDES) was introduced by Spalart et al. [10] to remedy
the grid-induced separation problem of the original DES version based on the shear stress
transport formulation (SST) by Menter and Kuntz [11].

Since the testbed for evaluating the Menter SST-SAS model in unstructured meshes
is a turbulent cavity in the present study, the most relevant investigation on this topic is
discussed hereafter. Comprehensive literature review studies on the physics, numerical
modeling, and controlling oscillations in the flow past a cavity have been performed
by [12,13] for low- and high-speed incoming flows. In [14], the acoustic influence of front
and aft wall modifications for the M219 cavity [15] was analyzed at a free-stream Mach
number of 0.85. They used the commercial SIMULIA PowerFlow flow solver, which is
based on the lattice Boltzmann method. Seker et al. [14] concluded that aft wall alterations
were more efficient in reducing noise. Li et al. [16] performed numerical simulations over
a supersonic cavity (Mach 1.5) via a nonlinear acoustic solver (NLAS) to evaluate the
near-field cavity noise. They also considered a slanted wall as a passive control technique,
achieving a noise reduction of approximately 5 dB with respect to the baseline case.

To our knowledge, most of the numerical fluid dynamics applications of the SAS
turbulence model as scale-resolving simulations (SRSs) have been performed in incom-
pressible flows and over structured meshes in relatively simple geometries [17–20]; whereas,
only a few studies have focused on unstructured meshes [21–23]. With the purpose of
filling that research gap, the Menter SST-SAS model is tested in complex geometries via
unstructured grids for the subsonic–supersonic flow regime, then validated with exper-
imental data for the M219 acoustic cavity [15]. The FLITE3D flow solver [24] is applied
in the present study, which is based on a finite volume approach with stabilization and
discontinuity-capturing features.

2. Governing Equations

The three-dimensional unsteady compressible Navier–Stokes equations are expressed
over a volumetric domain Ω ⊂ ℜ3 confined by a surface Γ and in integral form as follows:∫

Ω

∂U
∂t

dΩ +
∫

Γ
FjnjdΓ =

∫
Γ

GjnjdΓ, (1)

where n⃗ = (n1, n2, n3) is the unit normal vector to Γ. Furthermore, the unknown vector of
conservative variables is defined as

U =


ρ

ρu1
ρu2
ρu3
ρϵ

, (2)
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where ρ is the fluid density, ui denotes the ith component of the velocity vector (u1, u2, u3),
and ϵ is the specific total energy. The inviscid and viscous flux vectors are expressed as

Fj =


ρuj

ρu1uj + pδ1j
ρu2uj + pδ2j
ρu3uj + pδ3j
uj(ρϵ + p)

 Gj =


0

τ1j
τ2j
τ3j

ukτkj − qj

, (3)

respectively. The quantity

τij = −2
3

µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
(4)

is the deviatoric stress tensor, where µ is the dynamic viscosity. The quantity qj = −k∂T/∂xj
is the heat flux, where k is the thermal conductivity and T is the absolute temperature. The
viscosity varies with temperature according to Sutherland’s law and the molecular Prandtl
number is assumed to be constant and equal to 0.72. In addition, the medium is assumed
to be calorically perfect.

3. Solution Procedure

In this section, numerical strategies for unstructured mesh generation and spatial/time
discretization are explained and discussed.

3.1. Hybrid Unstructured Mesh Generation

The computational domain is represented by an unstructured hybrid mesh for viscous
problems [2]. The process of mesh generation begins with the discretization of the domain
boundary into a set of triangular or quadrilateral meshes that satisfy a mesh control function
specified by the user [25]. Additionally, the distribution of the mesh parameters [26], such
as spacing, stretching, and direction of stretching, are described by a background mesh
as well as point, line, and planar sources. For viscous flows, the boundary layers are
generated using the advancing layer method [27] and the rest of the computational domain
is filled with tetrahedral elements using a Delaunay incremental Bowyer–Watson point
insertion [28]. Hybrid unstructured meshes are constructed by merging certain elements of
this tetrahedral mesh in the boundary layers.

3.2. Spatial Discretization

The discretization of the governing equations can be performed in a number of dif-
ferent ways. A computationally efficient approach is implemented, consisting of a cell
vertex finite volume method. This involves the identification of a dual mesh, with the
medial dual being constructed as an assembly of triangular facets, ΓK

I , where each facet is
formed by connecting edge midpoints, element centroids, and face centroids in the basic
mesh in such a way that only one node is contained within each dual mesh cell. Hence,
the dual mesh cells form the control volumes for the finite volume process. When hybrid
meshes are employed, the method for constructing the median dual has to be modified in
order to ensure that no node lies outside its corresponding control volume. To perform the
numerical integration of the fluxes, a set of coefficients is calculated for each edge using the
dual mesh segment associated with the edge. The values of the internal edge coefficients,
CI J

j , and the boundary edge coefficients, DI J
j , are defined as follows:

CI J
j = ∑

K∈ΓI J

AΓK
I

nΓK
I

j , DI J
j = ∑

K∈ΓB
I J

AΓK
I

nΓK
I

j , (5)
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where AΓK
I

is the area of facet ΓK
I , nΓK

I
j is the outward unit normal vector of the facet, ΓB

I J is
the set of dual mesh faces on the computational boundary touching the edge between nodes

I and J, and nΓK
I

j denotes the facet normal to the outward direction of the computational do-
main. The numerical integration of the fluxes over the dual mesh segment associated with
an edge is carried out by assuming that the flux is constant and equal to its approximated
value at the midpoint of the edge, i.e., a form of midpoint quadrature. The calculation of a
surface integral for the inviscid flux over the control volume surface for node I is defined
as follows: ∫

∂ΩI

Fjnjdx ≈ ∑
J∈ΛI

CI J
j

2

(
FI

j + F J
j

)
+ ∑

J∈ΛB
I

DI J
j FI

j , (6)

where ΛI denotes the set of nodes connected to node I by an edge and ΛB
I denotes the set of

nodes connected to node I by an edge on the computational boundary. Thus, the last term
is non-zero only in a boundary node. A similar formula can be implemented for the viscous
fluxes. Such an edge-based data structure has become widely used due to its efficiency in
terms of memory and CPU requirements compared to the traditional element-based data
structure, in particular in three dimensions.

The resulting discretizations are basically central difference in character. Therefore,
the addition of a stabilizing dissipation is required for practical flow simulations. This is
achieved by replacing the physical flux function by a consistent numerical flux function,
such as the JST flux function [29] or the HLLC solver [30]. Discontinuity capture may
be accomplished by the use of an additional harmonic term in regions of high pressure
gradients, identified using a pressure switch.

3.3. Time Discretization

The FLITE3D flow solver can simulate both unsteady and steady problems. However,
in this investigation an unsteady flow analysis is performed. A three-level, second-order
accurate backward difference scheme is utilized in the present investigation:

∂Ui
∂t

|t=tn =
1
△t

(
3
2

Un
i − 2Un−1

i +
1
2

Un−2
i

)
+O(△t2), (7)

Additionally, the relaxation scheme employed at each physical time step consists
of a three-stage Runge–Kutta approach with local time-stepping. The viscous and artifi-
cial dissipation terms are only computed once at every time step in order to reduce the
computational requirements of the scheme. More details can be found in [31].

4. Turbulence Modeling in RANS

To obtain the compressible RANS equations, the unsteady Equation (1) is time-
averaged to smooth the instantaneous turbulent fluctuations in the flow field, while still
allowing the capture of the time-dependency on the time scales of interest. In many engi-
neering problems this assumption is valid, but this averaging procedure breaks down if
the timescale of the physical phenomena of relevance is similar to that of the turbulence
itself. For compressible flows, the density-weighted Favre averaging procedure is mostly
employed [31]. The Favre averaging procedure applied to Equation (1) generates the extra
convective term

τR
ij = −ρu′′

i u′′
j , (8)

which is the Favre-averaged Reynolds stress tensor. The most straightforward approach
is to associate the unknown Reynolds stresses with the computed mean flow quantities
by means of a turbulence model. If the Boussinesq hypothesis is applied, this results in a
linear relationship to the mean flow strain tensor through the eddy viscosity µt [32]:
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τR
ij = µt

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij

)
− 2

3
ρkδij, (9)

where k is the turbulent kinetic energy. The eddy viscosity depends on the velocity and
the length scales of the turbulent eddies, i.e., µt ∼ k1/2ℓ, where ℓ is the turbulence length
scale. In this paper, a two-transport-equation model is considered in which additional
partial differential equations are solved to describe the transport of the eddy viscosity. As
a consequence, nonlocal and history effects on µt are taken into account. Two-equation
turbulence models are complete, because transport equations are solved for both turbulent
scales, i.e., the velocity and the length scales. In particular, the k − ω turbulence model is
popular due to its good performance in boundary layer flows subjected to adverse pressure
gradients, with eventual separation. The original k − ω model [32] exhibits a free-stream
dependency of ω, which is generally not present in the k − ϵ model. Menter [33] combined
the advantages of both models by means of blending functions, that permit the switching
from k − ω, close to a wall, to k − ϵ, when approaching the edge of a boundary layer. A
further improvement [33] was a modification to the eddy viscosity based on the idea of
the Johnson–King model, which establishes that the transport of the main turbulent shear
stresses is crucial in the simulations of strong adverse-pressure-gradient flows. This new
approach was called the Menter Shear Stress Transport model (SST), which was already
implemented in FLITE3D for steady-state solutions via the RANS approach [2].

4.1. Scale-Adaptive Simulations (SASs) in Unsteady Flows

In this section, a brief description of the SAS equations is shown. The differential
equations are presented in the normalized form. A convenient scaling guarantees a unit
order of all variables, which decreases round-off errors of calculations. The reader is
referred to Appendix B of Sørensen’s thesis [31] for the scaling and the normalized versions
of the momentum and energy equations employed in the present study; however, the
normalization symbol ∗ is dropped for simplicity. The corresponding normalized transport
equations in the Menter SST model [33] for the turbulent kinetic energy, k, and the specific
dissipation rate, ω, in compressible flows read as follows:

1
St∞

∂(ρk)
∂t︸ ︷︷ ︸

transient term

+
∂(ρujk)

∂xj︸ ︷︷ ︸
convection term

= τij
∂uj

∂xj︸ ︷︷ ︸
production term

− βkρωk︸ ︷︷ ︸
dissipation term

+
1

Re∞

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
︸ ︷︷ ︸

diffusion term

(10)

1
St∞

∂(ρω)

∂t︸ ︷︷ ︸
transient term

+
∂(ρujω)

∂xj︸ ︷︷ ︸
convection term

= α
ω

k
τij

∂uj

∂xj︸ ︷︷ ︸
production term

− βωρω2︸ ︷︷ ︸
dissipation term

+
1

Re∞

∂

∂xj

[(
µ +

µt

σω

)
∂ω

∂xj

]
︸ ︷︷ ︸

diffusion term

+ 2(1 − F1)
ρσω2

ω

∂k
∂xj

∂ω

∂xj︸ ︷︷ ︸
cross-diffusion term

+QSAS,

(11)

where St∞ = U∞t/L and Re∞ = ρU∞L/µ∞ are the Strouhal and Reynolds numbers,
respectively, uj represents the Favre-averaged velocity, and µ∞ is the free-stream dynamic
viscosity. Furthermore, βk = 0.09, βω = 3/40, σk = 2, σω = 2, α = 5/9, and σω2 = 0.856. F1 is
a blending function defined as

F1 = tanh

{[
min

(
max

( √
k

βkωy
,

500ν

y2ωRe∞

)
,

4ρσω2k
CDkωy2

)]}
, (12)
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and

CDkω = max

(
2ρσω2

ω

∂k
∂xj

∂ω

∂xj
, 10−10

)
. (13)

Thus, the blending function F1 generates values close to one far from the wall (k − ϵ
model) and almost-zero values inside the boundary layer (k − ω model). More details can
be found in [33]. The main features of the Menter SST model can be summarized as follows:
(i) the consideration of a cross-diffusion term in the ω equation; (ii) the implementation of
a stress limiter for the maximum value of ω, as well as a production limiter to impede the
build-up of turbulence in stagnation zones; and (iii) the application of a blending function
to compute the corresponding constants of the k − ϵ and k − ω models, respectively.

The stress limiter in the Menter SST turbulence model is defined as

µt =
Re∞ρa1k

max(a1ω, SF2)
, (14)

where a1 = 0.31, S =
√

2SijSij is the strain rate, and the normalized function F2 is expressed as

F2 = tanh


[

max

(
2
√

k
βkωy

,
500ν

y2ωRe∞

)]2
. (15)

The production limiter consists in taking the minimum of
(

τij
∂uj
∂xj

, 10βkρkω
)

when
solving Equation (10).

The term QSAS in Equation (11) is the only modification to the SST model to consider
the von Karman length scale in the turbulence equation. Hence, the information provided
by the von Karman length scale, LνK, permits the SAS model to dynamically adjust to
resolve the large structures in a URANS simulation. This results in LES-like behavior in
unsteady regions of the flow field. In addition, the model yields standard RANS capabilities
in stable flow regions. The term QSAS is defined as follows:

QSAS = ρFSAS max

{
ζ2κS2

(
L

LνK

)2
− 2k

σϕ
max

[
|∇ω|2

ω2 ,
|∇k|2

k2

]
, 0

}
, (16)

where FSAS = 1.25, ζ2 = 1.755, κ = 0.41 (von Karman constant), and σϕ = 2/3. Further-
more, the corresponding length scales in Equation (16) are

L =

√
k

C1/4
µ ω

, (17)

LνK = max

{
κS

|∇2u| , CS∆

√
κζ2

βω/Cµ − α

}
, (18)

where CS = 0.11 (Smagorinsky constant), Cµ = 0.09, and ∆ is the cubic root of the control
volume size. Note that the term QSAS in Equation (16) is always positive, and basically
depends on the ratio between the length scale of the modeled turbulence, L, to the von
Karman length scale, LνK. Thus, where this ratio (i.e., L/LνK) is large enough in the
computational domain, the term QSAS becomes larger, making the turbulence viscosity, µt,
smaller. Consequently, the large unsteady structures break up into a turbulent spectrum.

4.2. Discretization of the Turbulent Transport Equations

The turbulence model equations involve the solution of partial differential equations,
which are discretized in a similar manner as the governing equations. Nevertheless, to
avoid instabilities from the convective terms, a first-order upwind discretization of this
term is used, plus an added term to introduce adequate dissipation for stabilization:
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∫
∂ΩI

uj tu nj dx ≈ ∑
J∈ΛI

CI J
j

2

(
uI

j tuI + uJ
j tuJ

)
−

CI J
j

uJ
j tuJ − uI

j tuI

tuJ − tuI

(tuJ − tuI)+

∑
J∈ΛB

I

DI J
j FI

j ,
(19)

where tu stands for turbulence unknowns (ν̃, k, and ω). Furthermore, the volume integrals
are calculated using the midpoint rule and the gradients appearing in the model are
calculated as follows: ∫

ΩI

∂ui
∂xj

dx =
∫

∂ΩI

ui nj dx, (20)

Equation (20) in discrete form reads

∂ui
∂xj

|I ≈ ∂h
j uI

i ≡
1

VI

 ∑
J∈ΛI

CI J
j

2

(
uI

i + uJ
j

)
+ ∑

J∈ΛB
I

DI J
j uI

i

, (21)

where VI is the volume of the control volume, ΛI denotes the set of nodes connected to
node I by an edge, and ΛB

I stands for the set of nodes connected to node I by an edge on the
computational boundary. Coefficients CI J

j and DI J
j represent the contribution to integrals

from internal and boundary edges. Equations (20) and (21) are expressed for the velocity
but can be applied to any flow parameter. The second-order diffusion term is calculated
using the compact stencil of equation according to eq. (3.38) in [31], where the gradients
along the edges are evaluated by means of the compact finite difference scheme.

5. Initial and Boundary Conditions

In all cases, the unsteady solution was started from the steady one. Furthermore,
the initial conditions for the first stage (steady solution) were free-stream conditions. The
boundary conditions for the flow parameters (i.e., velocity, density, and total energy) were
already discussed in [24]. In this section, focus is given to the corresponding boundary
conditions of the turbulence variables. Furthermore, the boundary conditions employed in
this investigation are classified as solid wall, inflow, outflow, and symmetry.

5.1. Solid Wall Boundary

In the Menter SST model, the turbulent kinetic energy, k, is assigned a zero value at
the wall. The specific dissipation rate, ω, does not possess a natural boundary condition at
the wall. However, based on the asymptotic solution given by Wilcox [32], the following
value for ω is prescribed according to the implemented normalization:

ωo =
6νw

βy2
wRe∞

, (22)

where νw is the laminar kinematic viscosity at the wall, β is a constant (= 3/40), yw is the
local first off-wall point, and Re∞ is the Reynolds number.

5.2. Inflow and Outflow Boundaries

Based on recommendations by [34], the following values for k∞ and ω∞ are adopted
in the two-equation turbulence models at these boundaries: 1 × 10−6 and 5, respectively.

5.3. Symmetry Boundary

A symmetry condition is defined as a boundary where the velocity component normal
to the surface is set to zero and the gradient of any flow parameter in the surface normal
direction is set to zero as well. Furthermore, a symmetry condition can also be compared
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to an inviscid wall (streamline). Hence, the turbulent eddy viscosity is set to zero at this
location in the turbulence models. If the configuration of the problem possesses a symmetry
plane, this represents a very convenient way to significantly reduce the computational
resources required.

6. Results and Discussion

The Menter SST-SAS turbulence model was implemented in the FLITE3D flow solver [24].
The results of the classical M219 acoustic cavity are presented in this section, together with a
discussion concerning the application of the models.

M219 Acoustic Cavity

Numerical simulations of flow over a fully 3D subsonic/supersonic rectangular cavity
are presented and discussed in this section. The vortex system and flow patterns inside a
rectangular three-dimensional acoustic cavity consist of intricate fluid dynamics structures,
highly dictated by the incoming flow regime and geometry dimensions. For the purpose of
testing the Menter SST-SAS turbulence model, the cavity configuration is selected as the
M219 experimental test case of Henshaw [15] for a deep cavity (4 inches) at two different
free-stream Mach numbers (M∞ = 0.85 and 1.35). An adapted schematic of the experimental
model used in [15] is shown in Figure 1. In [15], ceiling static pressure was measured at
the rig centerline (y = 0) for the deep cavity and off-centerline (i.e., at the cavity centerline,
y = 1′′) for the shallow cavity via Kulite transducers. Note that the cavity centerline is
displaced by 1′′ with respect to the rig centerline. In the present study, only the measured
root mean square (RMS) value of the ceiling static pressure at the rig centerline (y = 0) was
employed for numerical validation of the deep cavity (K20 to K29 transducers). Figure 2
depicts the RMS static pressure distribution over the ceiling of the deep empty cavity. It is
observed that incoming high-subsonic-Mach-number flow induces a slightly increasing
RMS distribution, with a growing factor of approximately four between the last (K29) and
first (K20) Kulite transducers. However, the RMS distribution at Mach 1.35 exhibits a wavy
trend, with local minima at x/L ≈ 0.25 and 0.75, respectively.

The geometry dimensions of the M219 cavity in terms of the depth are L × W × D =
5 × 1 × 1 (length, width, and depth), with a depth, D, of 4 inches. Since the width and
depth of the cavity are the same, this configuration create a fully three-dimensional flow
pattern. The Reynolds number spans 9.5 × 106 to 21 × 106, based on the cavity depth. The
incoming flat-plate boundary layer is turbulent, with the ratio of the upstream boundary
layer thickness to the cavity depth, i.e., δ/D, approximately ranging from 0.1 to 0.25 for
Mach numbers of 0.85 and 1.35, respectively. The unstructured hybrid mesh (hereafter fine
mesh) is composed of approximately 3.37 million tetrahedral elements, 4472 prisms, and
459 pyramids. This element distribution was determined to be deemed appropriate for the
goals of this study and cavity representation based on the initial grid-independent study
performed. An initial coarse hybrid mesh was designed and created according to our past
experience with steady RANS [2], having approximately 30 to 40% fewer elements than the
fine mesh. It is important to mention that when dealing with unsteady simulations or LES-
like approaches (scale-resolving simulations) such as the SST-SAS model, it is clear that the
outcomes are determined by the numerical approach and grid point distribution utilized.
However, performing successive “grid refinements” to achieve absolute grid-independent
results would lead to DNS outcomes, which is not consistent with the purpose of assessing
turbulence model resilience.
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Figure 1. Experiment schematic and dimensions adapted from [15]: (a) right-side view, (b) top view,
and (c) front view (flow from left to right in (a,b)).

Figure 2. RMS of pressure fluctuations at the deep cavity ceiling and rig centerline (y = 0); from [15].

Some views of the computational domain, boundary conditions, and grid system are
displayed in Figure 3. A right-side view (flow from left to right) is shown in Figure 3a with
the corresponding dimensions in terms of the cavity depth and boundary conditions, which
are further described later in the paper. Note that the coordinates y and z represent the
vertical and spanwise directions, respectively, in the present study, whereas the opposite
was assumed in [15]. Also, note that the origin coordinate system is prescribed at the cavity
centerline (z = 0) in this manuscript. An isometric view of the full computational domain
and mesh schematic at the half-plane of the cavity is shown in Figure 3b. Also, an interior
cavity view is depicted in Figure 3c. The mesh has 20 viscous layers for efficient boundary
layer capturing, with the first off-wall point located at y/D = 2.5 × 10−6. The layers, based
on prisms to capture the viscous shear layer, are stretched in the wall-normal direction
but with the same heights in the streamwise direction of the no-slip surfaces around and
inside the cavity. This ensures that the first off-wall point locations are within 0.2 to 0.4 wall
or plus units inside the viscous linear layer. Furthermore, the viscous layers (structured



Fluids 2024, 9, 92 10 of 22

mesh) are prescribed in no-slip condition surfaces. It was decided to cluster tetrahedral
elements (unstructured mesh) inside the cavity (away from solid surfaces) and above it,
based on a high-quality and high-resolution tetrahedral mesh. The total dimensions of the
computational domain are as follows: 25.5D × 18D × 3D along the streamwise, vertical,
and spanwise directions, respectively, and in terms of the cavity depth, D. Therefore, the
computational domain is tall enough and wide enough to eliminate any influence from the
boundary faces on the flow statistics over the cavity. Moreover, the spanwise side walls
are treated as symmetry (periodic) planes, the top boundary is a far-field boundary, and
all bottom solid surfaces (including the cavity) are considered as adiabatic non-slip walls.
Upstream of the cavity edge, a flat-plate with no-slip condition is prescribed (about 7D
in length). While a zone with slip condition (and inlet free-stream flow parameters) is
set-up upstream of the flat plate (∼3.5D in length). A zero flux condition is prescribed at
the outflow plane, where flow parameters are extrapolated from within the domain (see
Figure 3a).

(a)

(b)

Figure 3. Cont.
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(c)

Figure 3. Several schematics of the computational box and hybrid mesh: (a) lateral view with
dimensions and boundary conditions (flow from left to right), (b) isometric view and half-plane of
the cavity (flow from left to right), and (c) interior view (from upstream of the cavity).

The selected normalized time step is ∆t∗ = ∆t/(D/U∞) = 0.05, approximately
1.74 × 10−5 s at M∞ = 0.85 or 1.3 × 10−5 s at M∞ = 1.35. According to Rajkumar et al. [23],
the SAS model enables a larger time step size than DES approaches due to its RANS nature.
Their physical time steps were about 1.8 to 2.5 smaller than in the present study for a similar
cavity configuration via SAS predictions. The time variation of the total drag over the
cavity at M∞ = 0.85, normalized by the reference surface and free-stream dynamic pressure,
can be observed in Figure 4. Furthermore, the transient stage took approximately 15 non-
dimensional time units from the steady solution, as seen in Figure 4. This transient part
was discharged for flow statistics computation. The results were sampled, and statistics
were computed after the transient stage. All flow parameters and the RMS of pressure were
computed via assembled time-averaging, except in the flow visualization analysis where
instantaneous flow fields were considered. The numerical data were collected during the
last 81 non-dimensional time units, about 1000 flow fields were saved for post-processing
analysis. According to [15], the experimental pressure data were sampled at 6000 Hz with a
block size of 1024 units. Therefore, the sampling collection for statistical analysis is deemed
adequate for the objectives of this study.

Figure 5 shows the numerical results via the SST-SAS model for the fine and coarse
mesh. Overall, predictions from both meshes are very similar, with some discrepancies,
particularly for the supersonic case (M∞ = 1.35). However, those differences in numerical
values between both meshes were computed as 2% at most, which demonstrates grid-
independent outcomes for the fine mesh. Henceforth, numerical results from the SST-SAS
model are from the fine mesh. Figure 6 depicts the root mean square (RMS) of pressure
fluctuations on the cavity ceiling at z/D = −0.25 (rig centerline) and both free-stream
Mach numbers. Note that in Figure 6 the values of Prms were normalized by the value
at the first transducer (i.e., K20), located 1 inch downstream of the front of the cavity, in
experiments by Henshaw [15]. The comparison of the present SST-SAS results at M∞ = 0.85
with the experimental data from [15] is fairly good. The SAS model is able to capture
the increasing slope of Prms by the cavity end. On the other hand, the performance of
the SAS model in the supersonic regime (M∞ = 1.35) is not as good as in the subsonic
case. While the first inflexion point (around x/L = 0.35) is well captured, the second
inflexion point in experimental Prms is improperly outlined by the SST-SAS model. This
may be attributed to the presence of some important compressibility effect on the cavity
flow, which is not taken into account in the SAS approach. The corresponding average
discrepancies between the SST-SAS results and the experiments were computed to be
approximately 0.13(Prms/Prms K20) and 0.26(Prms/Prms K20) units at Mach numbers of 0.85
and 1.35, respectively. According to reference [15], the basic accuracy of the system in
measuring experimental values of pressure was shown to be ±0.5%. The original SAS
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model was designed and mostly tested in incompressible and low-Mach-number wall-
bounded flow applications [7,8]. Previous work on turbulent coherent structures by [35,36]
via two-point correlations (TPCs) and the Lagrangian coherent structure (LCS) approach
has revealed a moderate compressibility effect (but not negligible) on the coherent structure
dimensions. Specifically, Lagares and Araya [36] stated “coherent structures grow more
isotropic proportional to the Mach number, and their inclination angle varies along the
streamwise direction”. Therefore, it can be inferred that the SAS turbulence model would
be greatly enhanced by the addition of a Mach number dependency of the length scale
computation of the flow, which is beyond the scope of the present manuscript.

Figure 4. Time variation of the total drag in the acoustic cavity at M∞ = 0.85.

Figure 5. Root mean square of pressure fluctuations in the acoustic cavity ceiling at M∞ = 0.85 and
1.35: coarse and fine mesh results.
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Figure 6. Root mean square of pressure fluctuations in the acoustic cavity ceiling: comparison with
experimental values at M∞ = 0.85 and 1.35.

Results from the SAS model when switched on and off are shown in Figures 7 and 8 at
M∞ = 0.85 and 1.35, respectively. The agreement of the present URANS results exhibit a
moderately better agreement with the experiments from [15] when the SAS model is active
by the end of the cavity ceiling. It is hypothesized that the better performance of the SAS
model at capturing experimental Prms in that rear cavity corner might be due to the presence
of high turbulent kinetic energy, k, and consequently large values of the turbulence length
scale, L, according to Equation (17) (as will be visualized later on). The extra term QSAS
(see Equation (16)) in the specific dissipation rate equation, ω, is the sole adjustment to
the SST model in Equation (11) to account for the von Karman length scale, LνK, allowing
the simulations to dynamically accommodate to resolve the large-scale motions (LSMs).
Note that the term QSAS is directly proportional to the square of the ratio L/LνK. However,
by taking into account zones away from the cavity rear corner, both options (off/on SAS)
show similar performance.

Figure 7. Root mean square of pressure fluctuations in the acoustic cavity at M∞ = 0.85.
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Figure 8. Root mean square of pressure fluctuations in the acoustic cavity at M∞ = 1.35.

Furthermore, the corresponding iso-contours of instantaneous turbulence length scales,
L, are shown in Figure 9a. The turbulence length scale is proportional to the square root of
the turbulent kinetic energy, k, and inversely proportional to the specific dissipation rate,
ω. As seen in the centerline longitudinal plane of the cavity (Figure 9a), the maximum
incoming length scale, L, is of the order of 0.01 m or 0.1D, reaching values of L ≈ 0.012 m in
the back bottom corner. These local large values of L at the rear corner cause (i) meaningful
values for the QSAS, and (ii) changes in the spatial distribution of ω to better resolve LSMs,
which could be the physical explanation of better capturing wall pressure fluctuations in
Figure 7. Nevertheless, a deeper analysis should be carried out to shed light on this aspect,
which is outside the present manuscript’s scope. The formation of the front vortex is also
clearly seen, characterized by a flow recirculation zone (with low values of momentum
and turbulent kinetic energy) bounded by large values of L (and turbulent kinetic energy,
as well). A rear vortex system (highly energetic) is located at the end of the cavity at the
bottom corner and characterized by significant turbulence length scale values. Figure 9b
exhibits four cross-sectional planes separated by a distance of approximately 1.5D with
iso-contours of instantaneous turbulence length scales, L. The spatial sequence of the major
horseshoe vortex formation can be observed.

(a)

Figure 9. Cont.
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(b)

Figure 9. Contours of the turbulence length scale over and inside the cavity: (a) longitudinal plane
and (b) cross-sectional planes at M∞ = 0.85.

In order to describe the different vortical structures observed in the cavity, we should
mention the following categories, as described in [37], open-type cavity flow and closed-
type cavity flow, which are determined according to the ratio L/D. At subsonic flow
regimes, an open-type cavity (L/D < 7) is represented by a shear layer that spans the
entire cavity opening, and by a large recirculation zone inside the cavity itself [37]. On
the other hand, closed-type cavities (L/D > 8) are generally pictured by a shear layer
generated at the front of the cavity that reattaches on the bottom of the cavity, without the
presence of a large recirculation vortex in the center of the cavity. A transitional regime
for rectangular cavities takes place in between. This seems to be the most appropriate
category in which to class the present cavity at L/D = 5. The reasons are supplied
hereafter. Also, it is worth highlighting that the cavity is narrow because of L/W = 5; thus,
a completely three-dimensional geometry generates a different set of vortices. Figure 10
shows contours of instantaneous spanwise vorticity. Positive isolines (inward vorticity
vector or clockwise spin) are represented by solid curves; whereas, negatives isolines
(outward vorticity vector or counter-clockwise spin) are represented by dashed curves.
It can be seen in Figure 10 that the incoming turbulent boundary penetrates further into
the cavity towards the ceiling. That incoming shear layer reattaches on the bottom of
cavity, which is confirmed by Figure 11 (contours of instantaneous streamwise velocity
normalized by the free-stream velocity). Two small recirculation zones with clockwise spins
are observed in the front side (12 < x/D < 13) and in the back side (14 < x/D < 15) of the
cavity in Figure 10. Particularly, the rear vortex transports fluid from the impinging shear
layer on the cavity top downwards and towards the cavity bottom and viceversa, which is
consistent with the findings of [37]. These phenomena induce two “curved” and elongated
counter-clockwise vortices (or “banana-like” vortices) that contribute to the vertical mixing
of turbulence inside the cavity. In particular, the vortex duplet located at the end of the
cavity in the bottom corner is mainly responsible for turbulent kinetic energy generation,
which in turns induces large local values of L, as previously explained. The Q − criterion
from [38] is implemented in this study to extract and visualize vortex cores via positive
values, which describe regions of the flow where rotation dominates over strain. On the
other hand, negative iso-values of the Q− criterion represent highly deformed flow regions.
Iso-surfaces of the Q − criterion (positive values in red and negative values in blue) are
exhibited in Figure 12 at M∞ = 0.85. Focusing exclusively on the positive (red) iso-surfaces
or vortex cores, the most energetic turbulent coherent structures emerge in three clearcut
regions: (i) near the front region of the cavity, (ii) along the side cavity edges (see the
presence of side vortices), and (iii) in the rear side of the cavity and downstream (vortex
shedding). Highly energetic vortical coherent structures can also be observed in the cavity
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inside. These phenomena related to coherent structure dynamics are consistent with the
findings and observations of [39]. The streamwise counter-rotating vortex pair described in
Figure 9b is accurately captured by positive iso-surfaces of the Q − criterion. Interestingly,
downstream of the cavity, where flow separates, the vortex adopts a horseshoe or hairpin
shape (or omega-shaped vortices), as described by [40], with the typical leg, neck, and head.
These coherent structures are commonly found in turbulent boundary layers, particularly
in the log-region, which is mainly responsible for the generation of Reynolds shear stresses
and turbulence production [40]. The vortex shedding downstream of the cavity resembles
the jet in a cross-flow situation [41], where horseshoe vortices are continuously created
by the interaction of the incoming shear layer with the vertical jet. It is hypothesized that
the streamwise counter-rotating vortex pair at the end of the cavity lifts up low-speed
fluid, interacting with the incoming shear layer over the cavity and mimicking the cross-
flow jet problem. Highly strained flow (blue iso-surfaces) can be seen near vortex cores,
predominantly in the cavity lateral sides and at the rear edge.

Figure 10. Iso-contours of instantaneous spanwise vorticity in 1/s (flow from left to right) at z/D = 0
and M∞ = 0.85.

Figure 11. Iso-contours of instantaneous streamwise velocity normalized by the free-stream velocity
(flow from left to right) at z/D = 0 and M∞ = 0.85.
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Figure 12. Iso-surfaces of Q − criterion, positive values in red (vortex cores), negative values in blue
(highly deformed flow regions), at M∞ = 0.85.

Turning to the Mach 1.35 case, it is important to emphasize the acoustic wave system
generated when the incoming turbulent flow is supersonic. Figure 13 illustrates idealized
time-averaged situations of the incoming supersonic boundary layer facing a rectangular
cavity, adapted from [42]. According to Aradag and Knight [42], and similarly defined
by [37] for incoming subsonic flow in rectangular cavities, one can define two major cavity
types based on the L/D ratio: open and closed cavity configurations. In the open or “deep”
cavity system (i.e., at low values of L/D), the turbulent free shear layer reattaches on the
rear part of the cavity (see top image in Figure 13); therefore, creating a sole recirculation
region in the mean flow. On the other hand, in the closed or “shallow” cavity (i.e., at
large values of L/D), the shear layer reattaches on the cavity floor and the vortex system
resembles a combination of a backward- and forward-facing step. While the flow physics in
terms of open and closed cavities is somehow similar for incoming subsonic and supersonic
flow; there is no general consensus about the critical L/D values. For L/D ratios greater
than 13, it indicates closed cavity flow. While L/D factors smaller than 10 indicate open
cavity flow [42]. Furthermore, in Crook et al. [37] 8 and 7 are reported as these extreme
L/D values for incompressible flows. Clearly, one has to visualize the internal vortex
system and the flow recirculation zone for better ascertaining whether one is dealing
with open or closed cavity flows. Furthermore, the most important aspect to highlight
in supersonic cavities is the presence of compression and expansion waves according to
the cavity type [42], as depicted in Figure 13. Figure 14 depicts iso-surfaces of positive
(vortex cores) and negative (highly deformed or strained flow) values of the Q − criterion
from [38] for the supersonic incoming flow, i.e., at M∞ = 1.35. The formation of horseshoe,
hairpin-shaped, or omega-shaped vortices downstream of the cavity is evidently seen,
as in the subsonic case in Figure 12. However, the distribution of volumes with either
highly rotational (in red) or strained (in blue) flow is clearly different at M∞ = 0.85 and 1.35,
respectively, which indicates that the vortex systems are rather distinctive in the supersonic
case: most of the front side of the cavity is populated by vortex cores (rotational flow),
whereas, by the rear cavity side and downstream, various zones coexist, either with a high
level of rotation or deformation in a “twisted” fashion not observed in the subsonic case.
The presence of highly strained flow downstream of the rear cavity could be linked to the
significant unsteady expansion, which will be further discussed in this manuscript. In
Figure 15, iso-contours of instantaneous spanwise vorticity are shown at M∞ = 1.35 and
at the centerline plane yx of the cavity (i.e., at z/D = 0). As previously described, inward
vorticity vectors or clockwise spin are represented by positive solid isolines, while outward
vorticity vectors or counter-clockwise spin zones are represented by negative dashed curves.
At this instant, two large vortical structures with opposite signs or a spanwise counter-
rotating vortex pair (clockwise and counter-clockwise, respectively) are observed in the
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cavity center (12 < x/D < 14.5). The incoming turbulent shear layer penetrates further,
almost to the cavity bottom, and this clockwise spanwise vortex induces the nearby counter-
clockwise vortex (by viscous effects and angular momentum conservation). At this point,
the previously described instantaneous spanwise vortex pair leads to the generation of high
levels of turbulent kinetic energy, wall-normal mixing, and strong pressure gradients (with
minimum pressure at vortex centers) inside the cavity. Additionally, the instantaneous
vortex pair promotes the vortex formation (with opposite sign) in the vicinity of the
cavity via viscous effects. It is worth highlighting that for this narrow cavity (L/W = 5)
the turbulent flow generates highly unsteady three-dimensional vortical structures that
significantly influence the cavity response. Figure 16 exhibits iso-contours of instantaneous
spanwise vorticity at M∞ = 1.35 and at an off-centerline plane yx (i.e., at z/D = 0.25). The
strong differences in instantaneous spanwise vorticity distribution at z/D = 0.25 with
respect to the cavity centerline plane (z/D = 0) evidences the non-two-dimensional nature
of this cavity configuration. In Figure 17, contours of instantaneous streamwise velocity
normalized by the free-stream velocity are shown for the supersonic incoming flow case.
The incoming turbulent shear layer develops from the front cavity edge, bends down into
the first half (10.4 < x/D < 13.4) due to pressure gradients, and impinges on the bottom. A
clear backflow region is observed (blue) with negative values of the streamwise velocity.
The red region just above the cavity edge indicates the presence of moderate instantaneous
supersonic expansion or a favorable pressure gradient (FPG). In a similar manner, the flow
strongly accelerates by the rear edge of the cavity. That strong supersonic expansion or
FPG in the outer region and free-stream might be the reason for the presence of extremely
strained flow at the trailing edge, represented by iso-surfaces of the Q − criterion (in blue)
in Figure 14. In addition, the very strong adverse pressure gradient (APG) generated by the
rear cavity edge in the near-wall region is responsible for the downstream flow separation
bubble. Outside of the rectangular cavity the flow is supersonic, whereas subsonic flow
recirculating volumes take place inside [42]. Also, acoustic waves created due to the
impingement of the turbulent shear layer at the rear wall of the cavity are able to propagate
upstream through the subsonic region of the flow.

Figure 13. Cont.
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Figure 13. Types of supersonic cavity flows.

Figure 14. Iso-surfaces of Q − criterion, positive values in red (vortex cores), negative values in blue
(highly deformed flow regions), at M∞ = 1.35.

Figure 15. Iso-contours of instantaneous spanwise vorticity in 1/s (flow from left to right) at z/D = 0
and M∞ = 1.35.
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Figure 16. Iso-contours of instantaneous spanwise vorticity in 1/s (flow from left to right) at
z/D = 0.25 and M∞ = 1.35.

Figure 17. Iso-contours of instantaneous streamwise velocity normalized by the free-stream velocity
(flow from left to right) at z/D = 0 and M∞ = 1.35.

7. Conclusions

An evaluation of the Menter SST-SAS turbulence model in URANS of turbulent
compressible flows and unstructured mesh is performed for a 3D acoustic cavity. The SAS
approach is based on the use of the second derivative of the velocity that is highly active
only on short scales. Therefore, this corresponds to an improvement over the original DES
(detached-eddy simulation), which strongly depends on the grid spacing. Consequently,
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the SAS model exhibits simplicity, robustness, and moderate mesh dependency, which
make it a good candidate for unstructured meshes in complex geometries. The scale-
adaptive simulation model predicted fairly well the pressure fluctuation distribution over
the subsonic cavity (M219), particularly at the rear part of the cavity where large values
of L/LνK and QSAS can be found in the near-wall region. Its performance was not as
good for the supersonic case (free-stream Mach number of 1.35), which may be attributed
to the presence of more complex high-speed flow (compression/expansion waves). The
corresponding average discrepancies between the SAS numerical results and experiments
by [15] were calculated to be approximately 0.13(Prms/Prms K20) and 0.26(Prms/Prms K20)
units at Mach numbers of 0.85 and 1.35, respectively. However, a definite superiority could
not be defined when the model was in “on" mode with respect to “off" mode, at least,
based on the present acoustic cavity analysis. The selected problem configuration showed
significant numerical challenges: highly 3D flow (deep cavity), sharp corners that induce
strong adverse pressure gradients and boundary layer detachment, compressibility effects
(presence of compression and expansion waves for the supersonic case), and an intricate
vortex system. Furthermore, the SST-SAS model exhibits an adequate representation of the
flow physics.
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