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Abstract: Turbulent heat transfer in channel flows is an important area of research due to its simple
geometry and diverse industrial applications. Reynolds-Averaged Navier–Stokes (RANS) models are
the most-affordable simulation methodology and are often the only viable choice for investigating
industrial flows. However, accurate modelling of wall-bounded flows is challenging in RANS, and
the assessment of the performance of RANS models for heated turbulent channel flow has not been
sufficiently investigated for a wide range of Reynolds and Prandtl numbers. In this study, five
RANS models are assessed for their ability to predict heat transfer in channel flows across a wide
range of Reynolds and Prandtl numbers (Pr) by comparing the RANS results with respect to the
corresponding Direct Numerical Simulation data. The models include three Eddy Viscosity Models
(EVMs): standard k − ϵ, low Reynolds number k − ϵ LS, and k − ω SST, as well as two Reynolds
Stress Models (RSMs): Launder–Reece–Rodi and Speziale–Sarkar–Gatski models. The study analyses
the Reynolds number effects on turbulent heat transfer in a channel flow at a Pr of 0.71 for friction
Reynolds number values of 180, 395, 640, and 1020. The results show that all models accurately
predict velocity across all Reynolds numbers, but the accuracy of mean temperature prediction drops
with increasing Reynolds number for all models, except for the k − ω SST model. The study also
analyses the Pr effects on turbulent heat transfer in a channel flow with Pr values between 0.025 and
10.0. An error analysis is performed on the results obtained from different turbulence models, and it
is shown that the k − ω SST model has the smallest error for the predictions of the mean temperature
and Nusselt number for high-Prandtl-number flows, while the low Reynolds number k − ϵ LS model
shows the smallest errors for low-Prandtl-number flows at different Reynolds numbers. An analytical
solution is utilised to identify Pr effects on forced convection in a channel flow into three different
regimes: analytical region, transitional region, and turbulent diffusion-dominated region. These
regimes are helpful to discuss the validity of the models in relation to the Pr. The findings of this
paper provide insights into the performance of different RANS models for heat transfer predictions
in a channel flow.

Keywords: heat transfer in turbulent channel flow; passive scalar transport; turbulence modelling;
wall-bounded turbulence

1. Introduction

Heat transfer in turbulent channel flow is widely used for the fundamental under-
standing and modelling of forced convection within ducts due to its simple geometry [1].
Under the condition where the fluid properties remain constant, the energy equation in this
configuration becomes decoupled from the momentum equations, and the temperature
can be considered as a passive scalar carried by the background fluid motion. The study of
scalar transport and its modelling have gained considerable attention in recent decades
due to the importance of turbulent transport of passive scalars (not only the temperature,
but also humidity, pollutants, or other chemical species) in many industrial applications [2].
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However, accurate experimental measurements of near-wall statistics are relatively scarce
due to the difficulty of making precise measurements in the presence of large temperature
gradients [3]. Numerical simulation provides an alternative means of obtaining useful
information on these flows. There are three types of simulations depending on the level
of the resolved scales of turbulence: Direct Numerical Simulation (DNS), Large Eddy
Simulation (LES), and Reynolds-Averaged Navier–Stokes (RANS) simulations.

DNS resolves the full range of spatial and temporal scales of turbulence by numerically
solving the Navier–Stokes equations without any turbulence model. However, the grid
resolution of the discretised domain must be of the order of the Kolmogorov length scale
η = (ν3/ϵ)1/4, where ϵ is the dissipation rate and ν is the kinematic viscosity. The LES
approach is a compromise between accuracy and computational cost compared to the
DNS and RANS methodologies. In LES, the grid resolution only captures the energy-
containing large eddies, while the small-scale physics is modelled using sub-grid scale
(SGS) models. However, even LES is often computationally expensive for many industrial
and environmental flows with very high Reynolds numbers. By contrast, the RANS
methodology models all scales of motion and is the most-computationally affordable
technique. However, RANS models often exhibit limited accuracy for some flows, especially
those involving heat transfer, where turbulence is anisotropic close to solid boundaries.
Additionally, RANS models may not capture large-scale unsteady and coherent turbulent
structures that significantly affect heat transfer in some cases. The following is a summary
of three different simulation methods used to study turbulent heat transfer in channel flow.

The first DNS of a thermal flow was conducted by Kim and Moin [4] at a friction
Reynolds number, Reτ = uτh/ν (where h is the channel half-height), of 180 and for Prandtl
numbers Pr of 0.1, 0.71, and 2.0. The friction Reynolds number Reτ is a measure of the
turbulent behaviour of the flow, and Pr is the ratio of the momentum diffusivity to the
thermal diffusivity. In the simulations performed by Kim and Moin [4], Dirichlet boundary
condition was specified at the channel walls. Kasagi and Ohtsubo [5,6] carried out DNS
for Pr = 0.71 and 0.025 at a Reynolds number of Reτ = 150. They used constant heat flux
boundary conditions for both the top and bottom walls instead of a Dirichlet boundary
condition. Kawamura et al. [7] extended DNS to a wide range of Prandtl numbers from
Pr = 0.025 to 5.0 at Reτ = 180. They examined the Prandtl number dependence of a fully
developed turbulent channel flow and reported that the turbulent Prandtl number, Prt,
is independent of Pr except for Pr < 0.1. Kawamura et al. [1] also studied the Reynolds
number dependence by carrying out fully developed turbulent channel flow simulations
at Reτ = 180 and 395 for Pr = 0.025, 0.2, and 0.71. Statistical quantities such as the
temperature variance, turbulent heat flux, and turbulent Prandtl number were obtained,
and the effects of the Reynolds and Prandtl numbers were analysed. Abe et al. [8] carried
out the turbulent channel flow simulations at Reynolds number values of Reτ = 1020 with
the Pr = 0.025 and 0.71 by Kawamura et al. [1].

LES has recently contributed significantly to turbulent heat transfer in channel flows
due to the advancement in sub-grid scale (SGS) modelling, such as the dynamic eddy
viscosity model proposed by Germano et al. [9]. Moin et al. [10] conducted the first LES
with a dynamic SGS model for compressible turbulent flow with scalar transport in a
channel flow configuration at Reτ = 165, considering three different Prandtl numbers
(Pr = 0.1, 0.71, and 2.0). Later, Wang and Pfletcher [11] used the dynamic SGS model to
simulate turbulent channel flows with heat transfer for Reτ = 162 and 187. However, they
used isothermal walls with a large temperature difference between the bottom and top
walls, instead of the constant heat flux boundary conditions. Wang et al. [12] conducted
heat transfer analysis in turbulent channel flows using the dynamic SGS model with both
isothermal walls and constant heat flux boundary conditions for Prandtl numbers ranging
from 1 to 100 at Reτ = 180. Subsequently, an LES-based lattice Boltzmann framework was
utilized to analyse heat transfer characteristics in turbulent channel flows at Reτ = 180 for
Prandtl numbers of 0.025 and 0.71 [13]. Currently, heat transfer in turbulent channel flow is
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a benchmark case for the assessment of model performances and the development of new
SGS models.

While LES is a promising method for analysing turbulent heat transfer in ducts, it
may not always be affordablein industrial calculations due to its high computational cost.
In contrast, RANS is a more-computationally affordable option for such applications, but
the accuracy of the modelling of wall-bounded flows poses a significant challenge for RANS
models. Therefore, it is important to thoroughly assess the capabilities of RANS models
and identify their limitations in terms of the prediction of heat transfer characteristics in
turbulent channel flows.

To the best of the authors’ knowledge, there has been little research into the assessment
of RANS models for heat transfer predictions in turbulent channel flows across various
Prandtl number regimes. An algebraic closure for Reynolds-Averaged turbulent scalar-flux
was proposed by Abe and Suga [14] for heat transfer in turbulent channel flows, but the
model was only assessed at Reτ = 180 while using different wall boundary conditions.
Later, Pozorski et al. [15,16] used heated turbulent channel flow as a wall-bounded test
case for velocity scalar probability density function at Reτ = 180. A detailed investigation
of the variation of the Nusselt number with the Reynolds and Prandtl numbers was
performed by Wei [17], and the predictions of the correlations proposed in the literature
have been compared with the DNS results. Recently, Mathur et al. [18] evaluated the
performance of different scalar flux models in the case of low-Prandtl-number flows along
with the influence of varying the turbulent Prandtl number on the accuracy of the model
predictions. Mollik et al. [19] assessed several RANS modelling methodologies at various
Reynolds numbers (Reτ = 180, 395, 640, and 1020). However, these studies did not
systematically analyse the model performance with respect to variations in the Reynolds
and Prandtl numbers.

This paper aims to assess the performance of turbulence models in terms of the
predictions of the heat transfer characteristics in turbulent channel flow configurations
for incompressible fluids with walls subjected to constant heat fluxes for a wide range of
Reτ and Pr. The information obtained from this exercise is utilised to identify the relative
merits and demerits of different RANS turbulence models. In Section 2, the governing
equations and flow setup for a channel flow with constant heat flux on the bottom and top
walls are presented. This is accompanied by the summary of the parameters (Reτ , Pr) of
the DNS database, which is utilised to assess the performance of the models. In Section 3,
the formulations of the Reynolds-Averaged closures for two classes of RANS models, Eddy
Viscosity Models (EVMs) and Reynolds Stress Models (RSMs), are presented, as are the
wall functions for the velocity and temperature fields. Section 4 presents the predictions
of different turbulence models in terms of the first and second moments of the relevant
quantities for different values of Reτ and Pr, and these predictions are compared with
respect to the corresponding quantities extracted from explicitly Reynolds-Averaged DNS
data. Finally, conclusions are drawn from the findings of the above analysis in Section 5.

2. Governing Equations and Flow Setup

This study considers fully developed channel flow for incompressible fluids, where
the bottom and top walls are uniformly heated by a constant heat flux qw, as illustrated
in Figure 1. The sides along the z-axis are taken to be periodic, and the flow direction
is aligned with the x-axis; a periodic boundary condition is also imposed in the x direc-
tion. The governing equations are non-dimensionalised by the channel half-width h (i.e.,
x∗i = xi/h), the friction velocity uτ =

√
|τw|/ρ, the kinematic viscosity ν, and the friction

temperature Tτ = qw/ρcpuτ . The non-dimensionalised governing equations are shown as
follows (where t∗ = h/uτ).

Continuity Equation:

∂u+
i

∂x∗i
= 0, (1)
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Momentum Equation:

∂u+
i

∂t∗
+ u+

j
∂u+

i
∂x∗j

= −∂p+

∂x∗i
+

1
Reτ

∂2u+
i

∂x∗2
j

+
∂(−u+′

i u+′
j )

∂x∗j
. (2)

In this case, periodic boundary conditions are applied in the x-direction, which can
result in energy accumulation in the enclosed heated channel flow system. The bulk mean
temperature increases linearly with respect to x for the constant heat flux boundary condi-
tion, which contrasts with the periodic boundary condition in the x-direction. To address
this issue, a temperature transformation is used, where the energy equation is established
based on the local temperature with the removal of temperature at the wall, defined as
Θ = T − Tw. After this transformation, the sink term −u+

1 /⟨u+⟩ arises, which balances the
energy input from the bottom and top walls. Here, ⟨u+⟩ represents the average velocity
over the channel section. More details of the energy equation transformation can be found
in [20,21]. With this transformation, the energy equation becomes:

∂Θ+

∂t∗
+ u+

j
∂Θ+

∂x∗j
=

1
Reτ .Pr

∂2Θ+

∂x∗2
j

+
∂(−u+′

j Θ+′)

∂x∗j
−

u+
1

⟨u+⟩
. (3)

The boundary conditions in this case are u+
i = 0 and Θ+

= 0 at y = 0 and y = 2h. In the

momentum equation, the normalized Reynolds stress components −u+′
i u+′

j , while in the

energy equation, the Reynolds heat fluxes −u+′
i Θ+′ are the unclosed terms and, thus, need

modelling. A detailed introduction to the models used for these unclosed terms is provided
in the next section.

Figure 1. The configuration of turbulent heat transfer in heated channel flow.

The DNS database of heated turbulent channel flow was established by Kawamura
et al. [1,7] over a wide range of Pr (from 0.025 to 10.0) and Reτ (from 180 to 1020). The pa-
rameters of the DNS database are listed in Table 1, with the available setups marked by
a check mark. The RANS simulations are performed using an open-source code called
Code Saturne, which is an unstructured finite-volume code designed to compute turbu-
lent flows in industrial applications [22]. This code uses a fractional step method based
on a prediction-correction algorithm for pressure/velocity coupling (SIMPLEC) to solve
the Navier–Stokes equations for Newtonian incompressible flows, with a second-order
central differencing scheme for spatial gradients and an Euler-implicit scheme for time
integration [23].

Table 1. A table of available Reynolds numbers and Prandtl numbers from the DNS database of
heated turbulent channel flow [1,7,8,14].

Pr 0.025 0.5 0.1 0.2 0.4 0.6 0.71 1.0 2.0 5.0 7.0 10.0

Reτ = 180 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Reτ = 395 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Reτ = 640 ✓ ✓

Reτ = 1020 ✓
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3. Model Formulations for Reynolds-Averaged Closures

As discussed in the Introduction, RANS has the advantage of being more-computationally
affordable compared to DNS and LES, and this makes the RANS framework the most-
widely used approach in industrial Computational Fluid Dynamics (CFD). It is often the
only viable choice for parametric investigations of industrial applications over a wide range
of parameters, such as the Reynolds number and Prandtl number. Currently, there are
numerous RANS models available that vary in the way Reynolds stresses are modelled.
The two main categories are Eddy Viscosity Models (EVMs) and Reynolds Stress Models
(RSMs) [24], which are introduced individually in the following subsections.

3.1. Eddy Viscosity Models

Eddy-viscosity-based models, both linear and nonlinear, have become the most-widely
used models in turbulence modelling due to their simplicity and efficiency. Among these
models, the linear eddy viscosity methodologies are the simplest. These models alge-
braically evaluate the Reynolds stress using Boussinesq’s hypothesis, which relates the
Reynolds stress tensor to the mean velocity gradients in a turbulent flow. Boussinesq’s
hypothesis can be expressed as follows:

−u′
iu

′
j = νt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
δijk. (4)

Here, k is the turbulent kinetic energy, νt is the eddy viscosity, which unlike the kinematic
viscosity, is not a fluid property and can only be scaled using appropriate velocity and length
scales uturb and lturb [25]. In general, uturb is expected to scale as k1/2, while lturb can be
approximated as k3/2/ϵ, where ϵ represents the turbulent dissipation rate. As a result, two-
equation models are considered for turbulence modelling. Among these, the k− ϵ and k−ω
models are the most-widely used due to their physical rationale, simplicity, and numerical
robustness. In these models, the eddy kinematic viscosity scales as νt = Cµk2/ϵ and
νt = Cωk/ω, respectively, where ω is the specific turbulence dissipation rate, which is
closely related to ϵ and provides a measure of the local dissipation rate per unit turbulent
kinetic energy.

However, both the k − ϵ and k − ω models have limitations in RANS simulations.
The k− ϵ model is not accurate for complex flows such as swirling flows, recirculating flows,
flows with secondary flow features, and flows in non-circular channels. On the other hand,
the k − ω model predictions are highly sensitive to freestream turbulence, and this model
without any special treatment can produce unrealistic high values of the turbulent kinetic
energy production rate at the stagnation point. To address these limitations, the k − ω
Shear Stress Transport (SST) model was proposed by Menter [26], which combines the
advantages of both the k − ϵ and k − ω models. The use of the k − ω formulation in
the inner parts of the boundary layer makes the model directly usable all the way down
to the wall through the viscous sublayer; hence, the k − ω SST model can be used as a
low-Reynolds-number turbulence model. The k − ω SST formulation replicates the k − ϵ
behaviour in the freestream and, therefore, circumvents the common k − ω problem of
being too sensitive to the freestream turbulence.

In the case of scalars, the turbulent scalar flux can be modelled through the Standard
Gradient Diffusion Hypothesis (SGDH) [14], which is given as:

−u′
iΘ

′ =
νt

Prt

∂Θ
∂xi

. (5)

The SGDH provides an algebraic expression for the turbulent scalar flux as the product of
the turbulent diffusivity and the scalar gradient. In this expression, the turbulent diffusivity
is represented by νt/Prt with Prt being the turbulent Prandtl number. For heated turbulent
channel flow, Prt typically approaches a value of around 1.0 near the wall and varies
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between 0.5 and 1.0 away from the wall, except for very low Prandtl numbers (Pr ≤ 0.1) [7].
In our RANS simulations, we adopted a constant value of Prt = 0.71, which is commonly
used as an empirical estimation. The variation of turbulent Prandtl numbers extracted
from DNS data [7] shows that Prt varies with the wall-normal distance, but remains of
the order of unity and depends on the Prandtl number. Therefore, a single choice of Prt is
not straightforward; hence, Prt = 0.7 is chosen for the RANS simulations conducted here
because this is the default value used in most commercial codes. This compromise is made
because the effects of Prt on the simulation predictions are not the main objective of this
paper. The results can be made to match better with DNS by modifying Prt for a specific
case, but this is hardly helpful for practical applications because the optimum value of Prt
will not be known a priori. To assess the different turbulence models, we combined the
SGDH with various closure techniques for Reynolds stresses. This combination facilitates
the comparison of the different models and allows for a more-accurate evaluation of their
effectiveness in predicting turbulent heat transfer in a channel flow configuration.

3.2. Reynolds Stress Transport Models

This methodology involves solving modelled transport equations for Rij = u′
iu

′
j. As all

components of Reynolds stress are obtained as a part of the solution, RSM models demand
a greater computational effort than the previously discussed EVMs. This methodology,
nevertheless, can replicate the return to isotropy under decaying turbulence and the limiting
behaviour of turbulence under the rapid distortion limit, where turbulence acts as an elastic
medium. This category of models is expected to be valid for complex flows.

The modelled transport equation for Rij takes the following form [25]:

DRij

Dt
= Pij + Dij + Πij + Ωij − ϵij. (6)

The first term on the right-hand side of the above equation represents the production
term, indicating a production rate of Rij. The second term Dij refers to the molecular
diffusion of Rij. These two terms Dij and Pij are exact and given by Dij = ∇ ·

(
µ∇Rij

)
,

Pij = −Rim∂uj/∂xm − Rjm∂ui/∂xm. The remaining three terms are the transport of Rij due
to pressure strain rate interactions (i.e., Πij), the transport of Rij due to vorticity (i.e., Ωij),
and finally, the molecular dissipation of Rij (i.e., −ϵij), respectively. The terms Pij and Dij
are closed and do not require models in the context of second-moment closure. However,
other terms need modelling. Among these, the pressure strain rate interaction term is
usually the biggest challenge in the modelling process, where most models differ.

The pressure strain correlation term Πij is typically divided into a rapid part, ΠR
ij ,

and a slow part, ΠS
ij. The slow part is responsible for the return to isotropy and reduces

the anisotropy of the Reynolds stresses. This part represents self-interaction between
fluctuating fields:

ΠS
ij

ϵ
= f (1)bij + f (2)

(
b2

ij −
1
3

b2
kkδij

)
, (7)

The rapid part captures the interaction of the fluctuating velocity field with the mean
velocity field and is dependent on the mean strain rate and rotation rate. The simplest form
of the rapid part of most pressure rates of strain models can be expressed as [25,27]:

ΠR
ij

ϵ
= f (3)Ŝij + f (4)

(
Ŝikbjk + Ŝjkbik −

2
3

δijbmmŜmm

)
+ f (5)

(
Ω̂ikbjk − Ω̂jkbik

)
. (8)

Here, bij = Rij/2k − δij/3 in Equation (7) represents the anisotropy tensor for Reynolds
stresses, where δij is the Kronecker delta. The quantities Ŝij and Ω̂ij in Equation (8) are the
normalized mean rate of stain and normalised mean rate of rotation, respectively, defined
as Ŝij = kSij/ϵ, Ω̂ij = kΩij/ϵ.
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Several pressure-rate-of-strain models have been proposed for modelling turbulence
in fluid flows. One of the earliest and most-widely used pressure-rate-of-strain models
is the Launder–Reece–Rodi (LRR) model, which was introduced by Launder et al. [28].
Another example of a Reynolds stress model is the Speziale–Sarkar–Gatski (SSG) model [27].
Table 2 lists the coefficients for the LRR and SSG models. The slow part is closed by
using the model proposed by Rotta [29]. The LRR model takes the Rotta coefficient to
be constant, whereas SSG model incorporates a dependence of the coefficient on P/ϵ,
where P = Pii/2. Additionally, the SSG model has a non-zero value of f (2), which leads
to the non-linear return to isotropy. The SSG model also considers one of the anisotropy

invariants η =
√
(bijbji/6) of the Reynolds stress tensor. It is worth noting that both the

LRR and SSG models are derived models of the original model proposed by Hanjalic and
Launder [30].

Table 2. Specifications of the coefficients f (n) for pressure rate of strain models: LRR and SSG.

f (1) f (2) f (3) f (4) f (5) Values of Constants

LRR −2CR 0 4C2/3 2C2 2C2 CR = 1.8, C2 = 0.6

SSG −C1 − C∗
1 P/ϵ C2 C3 −

√
6C∗

3 η C4 C5

C1 = 3.4, C∗
1 = 1.8,

C2 = 4.2,
C3 = 0.8, C∗

3 = 1.3,
C4 = 1.25, C5 = 0.4

3.3. Near-Wall Treatment

The standard k − ϵ model is a high-Reynolds-number model that is not solved up to
the wall. Instead, wall functions are adopted, and the first grid point in the wall-normal
direction is typically located in the log-law region. Thus, it can avoid the computational
expense of resolving the viscous sublayer. The demarcation point between the buffer
layer and the log-law layer is around y+ ≈ 30 [25]. Moreover, the turning point for the
thermal boundary layer between the intermediate layer and the log-law layer is around
24.32. Therefore, the first grid point for the current analysis for the standard k − ϵ model
is chosen at y+ = 25. The mean velocity profile in Figure 2a shows the existence of the
logarithmic region, and the slope of the logarithmic curve is related to the von Karman
constant (κ ≈ 0.4) [31]. Similarly, the mean temperature profile in Figure 2b exhibits a
logarithmic region with the slope of the logarithmic curve of Prt/κ.

Instead of relying on wall functions, a low-Reynolds-number model, such as
k − ϵ LS [32] and k − ω SST [26] models, can be used to more-accurately predict near-
wall turbulence. These models are solved all the way to the wall, and the near-wall grid
resolution needs to be fine enough to resolve the viscous sublayer (y+ < 5.0). In low-
Reynolds-number k − ϵ modelling, damping functions are incorporated into the expression
for the eddy viscosity and the terms of the transport equations for k and ϵ to account for
the near-wall damping. The impact of the choice of the first grid point adjacent to the wall
is also illustrated in Figure 2. The standard k − ϵ model employs wall functions and uses a
first grid point at y+ = 25, while k − ϵ LS model does not use wall functions and is set up
with the first grid point at y+ = 0.3.

For the thermal field, the three-layer thermal wall function proposed by Arpaci and
Larsen [33] is used instead of resolving the near-wall region. The exact expressions for
the three different layers are provided in Table 3. The thermal boundary layer in this heat
transfer problem is divided into three layers, which are separated by two turning points:
y+1 = (1000/Pr)1/3 and y+2 =

√
(1000κ)/Prt. For the current setup with κ = 0.42 and

Prt = 0.71, the value of y+2 is 24.32 and is independent of Pr. The values of the log-law
layer for velocity and temperature suggest that the log-law layers for these quantities are
nearly aligned. This alignment can also be observed in Figure 2.
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Figure 2. An illustration of the law of the wall for the variation of mean streamwise velocity (a) and
mean temperature (b) with different y+ values chosen for turbulence models for low-Reynolds-
number models and high-Reynolds-number models at Reτ = 180 and Pr = 0.71.

Table 3. Three-layer thermal wall function.

Diffusion sublayer Θ+ = 1/Pry+ (y+ < y+1 )

Intermediate layer Θ+ = a2 − Prt/(2a1(y+)2) (y+1 ≤ y+ ≤ y+2 )

Log-law layer Θ+ = a3 + Prt /κy+ (y+2 < y+)

To conclude, for the heat transfer analysis, a three-layer wall function is used, as the
region of the diffusion sublayer is influenced by the Prandtl number. Since a wide range of
Pr was considered in this analysis, a mesh that can resolve the diffusion sublayer may not
resolve the viscous sublayer and vice versa. The standard k − ϵ, LRR, and SSG Reynolds
stress closures do not integrate up to the wall by design and rely on wall functions by
ensuring y+ = 25 for the wall-adjacent grid points, whereas k − ϵ LS and k − ω SST are
low-Reynolds-number models, which integrate up to the wall by ensuring y+ < 1 adjacent
to the wall and, thus, do not need wall functions.

3.4. A Summary of Selected Turbulence Models

Five different turbulence models, categorised by their type (EVM or RSM) and their
requirements in terms of near-wall treatment, are considered here, and these models are
summarised in Table 4. The standard k − ϵ, k − ϵ LS, and k − ω SST models are all EVMs,
while LRR and SSG are RSM models. The k− ϵ LS and k−ω SST models are low-Reynolds-
number models that do not need wall functions, while the standard k − ϵ, LRR, and SSG
models are high-Reynolds-number models that do require the use of a wall function. All of
the turbulence models used in this work employ a thermal wall function. Since it covers the
entire thermal boundary layer, it allows for flexibility in the location of the first grid point.

The values of y∗ = y/h for the grid points in the wall-normal direction Ny up to the
channel half-height for models with a velocity wall function (e.g., standard k − ϵ, LRR,
and SSG models) and without a velocity wall function (e.g., k− ϵ LS and k−ω SST models)
are shown in Figure 3 for different values of Reτ , which shows that the computational
requirement (i.e., number of grid points in the wall-normal direction) is greater for models
without wall functions than those with wall functions. Moreover, the computational cost
increases with increasing Reτ .

Table 4. An overall summary of the Reynolds-Averaged closure models that were selected
for assessment.

Models Reference Model Type Wall Function Thermal Wall Function

standard k − ϵ [32] EVM ✓ ✓
k − ϵ LS [34] EVM ✓

LRR [28] RSM ✓ ✓
SSG [27] RSM ✓ ✓

k − ω SST [26] EVM ✓



Fluids 2024, 9, 42 9 of 21

Figure 3. Variations of the normalised wall-normal coordinate of grid points (i.e., y∗ = y/h) with the
number of the grid points in the wall-normal direction Ny up to the channel half-height for turbulence
models with and without the velocity wall function for different values of Reτ . Note that each symbol
on the plots represents the cell centre location of the grid point.

Table 5 provides a summary of the computational cost associated with various tur-
bulence models. To demonstrate the differences in the time costs between these models
using one core of the CPU (Intel(R) Xeon (R) Silver 4208 CPU @ 2.10 GHz), an example is
provided in Table 5 at Reτ = 1020 and Pr = 0.71. Compared to the k − ϵ LS and k − ω SST
models, the standard k − ϵ, LRR, and SSG models require less computational cost in the
near-wall region due to their adoption of the wall function. The standard k − ϵ model
is the least expensive, requiring 0.76 h for the simulation to converge, while k − ω SST
is the most-computationally expensive, requiring 21 h. The mesh requirement is widely
different between the standard k − ϵ and k − ω SST models. The wall-adjacent grid spacing
for the standard k − ϵ model is taken to satisfy y+ = 25, whereas the wall-adjacent grid
spacing needs to satisfy y+ < 1.0 for the k − ω SST model, and therefore, a mesh that
provides y+ = 0.3 for the wall-adjacent grid points is used. This means the grid points
in the wall-normal direction for the k − ω SST model are 12.5-times those used in the
standard k − ϵ model for the grids used in this analysis. Moreover, the k − ω SST model
represents a stiffer system of differential equations than that in the case of the standard
k − ϵ model. Therefore, the k − ω SST model takes longer to reach the steady state than
the standard k − ϵ model. The combination of the longer simulation time and the finer
grid is responsible for the higher computational cost of the k − ω SST model simulation in
comparison to that using the standard k − ϵ model. Although the k −ω SST model is more-
computationally demanding than the other models, it still offers a significant reduction in
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computational cost compared to DNS. For example, the number of grid points required
for DNS at Reτ = 1020 and Pr = 0.71 is 150,000-times larger than that needed for RANS
without wall functions and 17.6 million-times larger than that required for RANS models
with wall functions. While the computational time of DNS is not available, comparing
the number of grid points needed makes it clear that DNS demands significantly more
computational resources than RANS.

The boundary conditions for the selected turbulence models are applied as follows.
The turbulent kinetic energy is identically zero at the wall due to the no-slip boundary
condition. In the case of high-Reynolds-number models that require wall functions and the
first grid point to be in the log-layer (e.g., standard k − ϵ, LRR, and SSG Reynolds stress
closures), the cell-averaged value is specified for ϵ as u3

k/κyw, where uk = C1/4
µ k1/2 and yw

is the wall-normal distance of the first grid point adjacent to the wall. For the k − ωSST
model, the wall value of ω is taken to be 10 × 6ν/[β1(yw)2], where β1 = 0.075 is a model
parameter [26]. For the low-Reynolds-number k − ϵ model, the wall value of ϵ is specified
as 2ν(∇

√
k)2.

Table 5. A comparison of the different turbulence models in terms of their computational time at
Reτ = 1020 and Pr = 0.71.

Models k − ϵ LS k − ω SST Standard k − ϵ LRR SSG

Time cost (wall clock time) 8.3 h 21.0 h 0.76 h 1.1 h 1.5 h

4. Results and Discussion
4.1. Heat Transfer Rate in Turbulent Channel Flow for Different Values of Reynolds Number

To investigate the influence of the Reynolds number on the performance of different
turbulence models, four different friction Reynolds numbers of 180, 395, 640, and 1020 are
considered, each having a Prandtl number of Pr = 0.71. The obtained mean velocity and
mean temperature profiles are compared with the corresponding profiles obtained from
the DNS [8,14]. Furthermore, the Reynolds stress distributions are analysed and compared
with the corresponding quantities extracted from DNS data to gain a deeper understanding
of the performance of the models considered here.

4.1.1. Mean Streamwise Velocity and Temperature Profiles

The velocity statistics in this configuration are expected to exhibit self-similarity, which
is independent of the Reynolds number. It has indeed been found that the mean behaviour
of the streamwise velocity and temperature remains unchanged despite variations in
Reτ . This can be substantiated by Figure 4, where self-similarity is demonstrated by the
variations of the mean profiles of the streamwise velocity and temperature obtained from
both DNS and turbulence model predictions.

Turbulence models encounter difficulties in precisely predicting intricate fluid dy-
namics spanning a broad spectrum of Reynolds numbers, especially in the context of
low-Reynolds-number flows undergoing transitional states. Nevertheless, these models
perform well across a wide range of Reτ values. To evaluate the qualitative performance of
different turbulence models and their trends with increasing Reτ , the Root-Mean-Squared
(RMS) deviation is utilised to measure the differences between the values obtained from
DNS and the values predicted by the five models. Thus, the RMS of the relative deviation
of the mean velocity between the DNS and RANS predictions based on the turbulence
model Error(u+) and the RMS of the relative deviation of the mean temperature between
the DNS and RANS results based on the turbulence model Error(Θ+

) are given as follows:

Error(u+) = RMS

(
u+

DNS − u+
RANS

u+
DNS

)
, (9)
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Error(Θ+
) = RMS

(
Θ+

DNS − Θ+
RANS

Θ+
DNS

)
. (10)

In the above equations, u+
DNS represents the mean non-dimensional streamwise velocity

obtained from DNS and u+
RANS represents the mean non-dimensional streamwise velocity

obtained from RANS. Similarly, Θ+
DNS and Θ+

RANS represent the mean non-dimensional
temperatures obtained from DNS and RANS, respectively. Since the data points are
available only across the log-law layer in the high-Reynolds-number turbulence models
and the major discrepancy also occurs in this region, all five models are evaluated in this
region. To achieve this, the DNS and low-Reynolds-number models are sampled in the
region where the high-Reynolds-number turbulence models remain valid.

Figure 4. The velocity and temperature profiles at Pr = 0.71 with different Reτ .

Figure 5 provides quantitative insight into how the performance of the five turbu-
lence models varies with Reτ . All of the models performed well in predicting the mean
streamwise velocity at different Reτ , with all five models having Error(u+) below 10% at
all Reynolds numbers. Among these models, the standard k − ϵ model performs well in
predicting the mean streamwise velocity distribution, while the k − ω SST model performs
best in predicting the mean temperature distribution. However, except for k − ω SST,
significant errors are obtained in the prediction of the mean temperature, with Error(Θ+

)
becoming larger than 10% for the k − ϵ LS, standard k − ϵ, and LRR models, with the
error of the SSG model being larger than 20%. The discrepancy between the temperature
profiles predicted by the turbulence models and those obtained from DNS can also be seen
in Figure 4, where a visible gap exists between DNS and the different turbulence models,
except for the k − ω SST model prediction.
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Figure 5. Error estimation of mean velocity (a) and temperature (b) of different turbulence models at
Pr = 0.71 with different Reτ .

4.1.2. Reynolds Stress Prediction

The normalised Reynolds stresses also exhibited self-similar behaviour for the range
of Reτ considered here. As shown in Figure 6, the Reynolds shear stress away from the
wall collapses with different Reτ . As Reτ increases, the peak value shifts toward the wall,
while the magnitudes of the peak Reynolds shear stress remains almost the same. A similar
observation can be made for the turbulent kinetic energy in Figure 6. All five models show
excellent performance in predicting the Reynolds shear stress and turbulent kinetic energy,
as they all align with the DNS data.

However, differences can be observed in the prediction of the Reynolds normal stresses
in Figure 6. The RSM closures outperform the EVM closures in this regard. The EVM
models assume an isotropic distribution of eddy viscosity. In contrast, the RSM closures
explicitly solve for the anisotropic Reynolds stress tensor, yielding more-accurate results in
certain scenarios, such as flows with complex geometries and strong pressure gradients.
Both the LRR and SSG modelling framework include pressure-rate-of-strain effects, but the
modelling approach for the pressure–strain correlation term Πij is different. The SSG model
takes into account Reynolds stress anisotropy and non-equilibrium effects, while LRR does
not account for these effects. Consequently, the SSG model yields a Reynolds normal
stress prediction that is slightly closer to DNS compared to the LRR model. However,
in the current study, no major improvement in the prediction of the mean velocity and
mean temperature is observed with the use of the RSM models, which is likely due to the
canonical nature of the flow being studied.
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Figure 6. The profiles of the Reynolds shear stress, turbulent kinetic energy, Reynolds normal stress
in the direction parallel to the wall, and normal stress in the wall-normal direction at Pr = 0.71 with
different Reτ .

4.2. Heat Transfer Rate in Turbulent Channel Flow for Different Values of Prandtl Number
4.2.1. Mean Temperature Profiles

The DNS data for different values of Prandtl number are available only for Reτ = 180
and Reτ = 395, and thus, the RANS predictions of the mean temperature with different
turbulence models are compared to the corresponding results obtained from DNS for
these Reτ values at all the Prandtl numbers available in the DNS database [1]. In Figure 7,
the RANS model predictions of mean non-dimensional temperature Θ+

= T/Tτ are
compared to the corresponding results extracted from the DNS data for Reτ = 180 over
different values of Pr. Both k − ϵ LS and k − ω SST models exhibited a similar trend as the
DNS data, but k − ω SST model shows better performance, especially when the Prandtl
numbers are high. However, the turbulence models with wall functions (i.e., standard
k − ϵ, LRR, and SSG) exhibits some unexpected results in the very-low-Prandtl-number
region (Pr = 0.025, 0.05), where the models significantly over-predicts Θ+. For Pr ≥ 0.1,
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all the models relying on wall functions provide comparable satisfactory predictions. The
temperature field exhibits distinctive characteristics across three regimes with respect
to the values of the Prandtl number, which is discussed later in detail in Section 4.2.2.
In the analytical regime, denoted by Pr = 0.025 and Pr = 0.05 for the thermal field,
molecular diffusivity solely influences the thermal behaviour, which is distinctly different
from the higher values of Pr, where both the fluid flow and temperature fields are affected
by turbulent diffusion. The application of turbulence models with standard thermal
wall functions is rendered ineffective in this context, as they were derived based on the
assumption of eddy thermal diffusivity dominating over the molecular thermal diffusivity.

Figure 7. A comparison of mean non-dimensional temperature profiles obtained from RANS models
with DNS data at Reτ = 180 for different Prandtl numbers.

The RMS of the relative error of the mean non-dimensional temperature between
DNS and turbulence model predictions for different values of Pr at Reτ = 180 and 395
are shown in Figure 8. The temperature profiles predicted by the standard k − ϵ, LRR,
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and SSG models have significant errors when the Prandtl number is below 0.1, which can
also be seen in Figure 7 for Reτ = 180 and Reτ = 395. For Prandtl numbers greater than
or equal to 0.1, the Error(Θ+

) profiles of the standard k − ϵ, LRR, and SSG models do
not exhibit monotonicity with increasing Prandtl number. The Error(Θ+

) remains around
10% for both the standard k − ϵ and LRR models. The error of the SSG model is slightly
higher than that of these two models, assuming around 20%, and its error variation with
the Prandtl number is very similar to that of the LRR model.

Figure 8. Error estimation of the mean temperature of different turbulence models with different Pr
at Reτ = (a) 180 and (b) 395.

For models without a wall function, both the k − ϵ LS and k − ω SST models provides
satisfactory predictions for small values of Pr. The Error(Θ+

) of the k − ϵ LS model
for Pr ≤ 0.1 is smaller than 10% at both Reτ = 180 and Reτ = 395. As Pr increases,
the Error(Θ+

) of the k − ϵ LS model gradually increases and becomes larger than 20% for
Pr ≥ 5. Therefore, the k − ϵ LS model is more accurate when the thermal field is dominated
by molecular diffusivity and becomes less accurate when the thermal field is dominated by
turbulent diffusivity at both Reτ = 180 and Reτ = 395. On the other hand, the k − ω SST
model shows the opposite trend. It is more accurate when the thermal field is dominated
by turbulent diffusivity and becomes less accurate when the thermal field is dominated
by molecular diffusivity. The Error(Θ+

) of the k − ω SST model is the smallest among all
the models considered, with an error lower than 10%, except for very small values of Pr.
Further analysis regarding the model performance variation with Pr is provided in the
following part.

The variations of Nu = H · h/k = (Reτ Pr)/(Θ+
w −Θ+

b ) with Pr for Reτ = 180 and 395
are shown in Figure 9a,b, respectively, where H is the heat transfer coefficient, Θ+

w is the non-
dimensional temperature at the wall, and Θ+

b =
∫ 2h

0 u(y)T(y)dy/[Tτ

∫ 2h
0 u(y)dy] is the non-

dimensional bulk temperature. The Nusselt numbers obtained from different turbulence
models are also compared to the Nu values obtained from DNS data in Figure 9a,b. It
can be seen from Figure 9a,b that all the models that rely on velocity wall functions (e.g.,
standard k − ϵ, LRR, and SSG models) significantly underpredict the Nusselt number for
Pr < 0.1, but all the turbulence models provide comparable predictions of Nu, which
are of the correct order of magnitude in comparison to the DNS results. The percentage
deviations of the Nu predictions of the RANS models with respect to the DNS results
(i.e., (NuRANS − NuDNS)/NuDNS × 100%) are shown in Figure 9c,d for Reτ = 180 and
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395, respectively. It can be seen from Figure 9c,d that the k − ϵ LS and k − ω SST models
overpredict Nu for Pr = 0.025, 0.05, and 0.1, whereas all other models considered here
significantly underpredict Nu for these Prandtl numbers. For Pr > 0.1, the extent of
the underpredictions of Nu by the standard k − ϵ, LRR, and SSG models do not exhibit a
monotonic trend with increasing Pr. The k− ϵ LS model shows significant underpredictions
of Nu for Pr > 0.1, and this tendency strengthens with the increasing Prandtl number.
The Nusselt number prediction by the k − ω SST model remains within ±5% of the DNS
results for Pr > 0.1, which is consistent with the fact that the k − ω SST model provides
satisfactory predictions of the mean streamwise velocity and temperature distributions (see
Figures 5 and 8).

Figure 9. Variation of Nu with Pr for Reτ = (a) 180 and (b) 395. The percentage deviations of Nu
predictions of RANS models with respect to DNS results (i.e., (NuRANS − NuDNS)/NuDNS × 100%)
for different values of Pr for Reτ = (a) 180 and (b) 395.

4.2.2. Different Regimes Based on the Ratio of Eddy Thermal Diffusivity to Molecular
Thermal Diffusivity

The thermal field in a fully developed channel flow experiences a transition from
molecular diffusivity dominance to turbulent diffusivity dominance as the Prandtl number
increases from 0.025 to 10.0. Different types of thermal boundary layers are obtained during
this transition, which can impact the temperature distribution and heat transfer rate within
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the channel. Consequently, the performance of models used to describe these flows is also
influenced by these characteristics.

In a fully developed thermal flow field in a channel flow configuration, there are three
layers: the diffusion sublayer, intermediate layer, and log-law layer. The existence of the
intermediate layer depends on the values of the Prandtl number, with y+1 being influenced
by Pr, and y+2 depends only on Prt and κ, as defined in Section 3.3. With the decrease in
the Prandtl number, the thermal flow field is gradually dominated by molecular diffusion
effects. For extremely small values of the Prandtl numbers, the thermal field may only
display molecular diffusion effects, and turbulence models with wall functions depending
on the log-law may become invalid, which leads to significant errors in the prediction of
the temperature fields. To validate this idea, an analytical solution is proposed. Assuming
the thermal field is only influenced by molecular diffusivity, the passive scalar transport
equation in a one-dimensional channel flow can be reduced as follows:

1
Reτ Pr

d2Θ+

dy∗2 = −u+(y∗)
⟨u+⟩

. (11)

By integrating the Ordinary Differential Equation given above (i.e., Equation (11)),
an analytical solution can be obtained. The bulk velocity, denoted by ⟨u+⟩, is equal to
15.736 at Reτ = 180. While there is no analytical solution for u+(y∗) in fully turbulent
channel flow, approximate solutions can be obtained using polynomial fitting. This method
suits different Reτ , but the velocity profiles have different polynomial expressions at
different Reτ . An eighth-order spline is used to fit the mean velocity profile, resulting
in the expression u+(y∗) = −94.7y∗8 + 757.2y∗7 − 2520.5y∗6 + 4521.7y∗5 − 4733.1y∗4 +
2922.6y∗3 − 1029.4y∗2 + 194.3y∗ for Reτ = 180. The Pearson correlation coefficient between
the velocity profile obtained from DNS and the velocity profile obtained from curve fitting
is greater than 0.995, and the RMS of the relative error between them is less than 0.5%.
Using the polynomial approximation of u+ in Equation (11) yields the following analytical
expression for Θ+ for Reτ = 180:

Θ+
(y∗) = 180Pr(−1.05y∗10 + 10.5y∗9 − 45y∗8 + 107.7y∗7 − 157.8y∗6 (12)

+146.1y∗5 − 85.8y∗4 + 32.4y∗3 − 15.8y∗).

The analytical solution can be used to divide the thermal field into distinct regions based
on the value of Pr. These regions include the analytical solution region (henceforth also
called the low Pr region), transitional region, and turbulent diffusivity-dominant region.
Within the turbulent diffusivity-dominant region, there are two sub-regions: the Pr ≈ 1.0
region and the high-Pr (i.e., Pr >> 1) region. The reason why these two sub-regions
are defined is that the high-Pr region can account for variations in the thickness of the
velocity and temperature boundary layers. Table 6 provides an overview of these three
regions and their corresponding Pr values in the current configuration. Details along with
the characteristics are discussed in Figure 10 for Reτ = 180, but the same practice can be
followed for other values of Reτ ; however, the polynomials will be different.

Table 6. Three different regimes and the corresponding Pr.

Analytical Regime Transitional Regime Turbulent Diffusivity-Dominant Regime

Pr ≈ 1.0 region high Pr region

Pr = 0.025, 0.05 Pr = 0.1, 0.2 Pr = 0.4, 0.6, 0.71, 1.0, 2.0 Pr = 5.0, 7.0, 10.0
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Figure 10. Three different regions in the thermal field concerning Pr. (a,b) are located in the analytical
region; (c,d) are located in the transitional region; (e,f) are located in the turbulent diffusivity-
dominant region.

In Figure 10a, the DNS result is in perfect agreement with the analytical solution,
which means the thermal field is only influenced by molecular diffusivity at Pr = 0.025.
At Pr = 0.05 in Figure 10b, the DNS result shows a slight deviation from the analytical
solution, indicating that turbulent diffusivity starts to play an influential role. In this regime,
the thermal field is dominated by molecular diffusivity, rendering turbulence models with
wall functions depending on the log-law invalid. This low-Pr regime can also be verified by
using a three-layer thermal wall function and setting y+1 = y+2 . In this case, the turbulent
Prandtl number is approximately equal to 0.71, and κ = 0.42. As a result, the critical Prandtl
number is approximately 0.07, and there is no existence of an intermediate layer or log-law
layer when the Prandtl number is less than 0.07.

The transitional regime can be observed at Pr = 0.1 and 0.2 in Figure 10c,d, respec-
tively, where a diffusion sublayer and an intermediate layer exist. The DNS results aligned
well with the analytical solution only in the diffusion sublayer, while deviations are seen
in the intermediate layer, indicating that turbulent diffusivity effects became important.
There is no log-law layer observed because the slope of the DNS data and the standard
k − ϵ model deviate from the log-law layer auxiliary line (Θ+

= 2.5ln(y+) + CΘ). However,
as Pr increases, the mean temperature profiles of DNS and the standard k − ϵ in the log-law
layer gradually approached the log-law layer’s auxiliary line.

At Pr = 0.4 and 0.6 in Figure 10e,f, respectively, three layers can be observed in the
temperature profiles: a diffusion sublayer, an intermediate layer, and a log-law layer. This
behaviour is characteristic of the regime where turbulent diffusivity plays a dominant
role, and the effects of turbulent diffusivity strengthen with increasing Pr. Additionally,
the intermediate layer becomes larger as Pr increases because the endpoint of the diffusion
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sublayer, y+1 , decreases as Pr increases, while the starting point of the log-law layer is
independent of Pr.

5. Conclusions

In this study, five different RANS modelling strategies are assessed for their ability
to predict the heat transfer rate in a fully developed channel flow across a wide range
of Reτ and Pr. Specifically, these modelling strategies include the standard k − ϵ, k −
ϵ LS, and k − ω SST models, which are all categorised as Eddy Viscosity Models (EVMs),
as well as Launder–Reece–Rodi (LRR) and Speziale–Sarkar–Gatski (SSG) models, which
are classified as Reynolds Stress Models (RSMs).

Firstly, the predictions of the mean velocity and thermal fields obtained from these
turbulence models are compared with the corresponding quantities extracted from the DNS
data. Four setups with varying friction Reynolds numbers Reτ of 180, 395, 640, and 1020
at Pr = 0.71 are considered to analyse the Reynolds number dependence of the model
performance. The mean velocity and temperature profiles obtained from both DNS and
RANS for different turbulence models are found to exhibit self-similar behaviour. The Root-
Mean-Squared (RMS) deviation from the DNS data is used to quantify the difference
between the turbulence model predictions and the corresponding DNS data. All models
perform well in the prediction of the mean streamwise velocity, with the RMS of the relative
error of the velocity Error(u+) less than 10% at all values of Reτ considered in this work.
However, the performance of these models is less satisfactory for the prediction of the
mean temperature, with the RMS of relative error of mean temperature Error(Θ+

) being
larger than 10% for all models, except for the k − ω SST model. Additionally, the model
predictions of the second moments are also compared with the corresponding quantities
obtained from the DNS data. All models perform well in the prediction of the Reynolds
shear stress and turbulent kinetic energy, but the RSM closures perform better than the
EVM closures in terms of the predictions of normal Reynolds stresses. Among the RSM
models, the SSG model outperforms the LRR model due to an improved representation of
the pressure strain correlation term.

Secondly, the influence of the Prandtl number on the prediction of the thermal field
by different turbulence models in fully developed channel flow is considered. Nineteen
setups with Prandtl numbers varying from 0.025 to 10.0 at Reτ = 180 and 395 are consid-
ered. The turbulence models with the wall function are found not to predict the mean
temperature and Nusselt number adequately for small values of Pr. However, except for
the very-low-Pr regime, these models performed comparably well for different choices
of Pr. The performances of the k − ϵ LS and k − ω SST models show opposite trends in
the prediction of the mean temperature and Nusselt number, with k − ϵ LS model being
more accurate in the molecular diffusivity-dominated regime (i.e., small values of Pr) and
k − ω SST model performing better in the turbulent diffusivity dominated regime (i.e.,
high values of Pr). Finally, an analytical solution is introduced to distinguish the Prandtl
number dependence on thermal field predictions by the RANS models into three different
regimes: the analytical regime, also called the low-Prandtl-number regime, the transitional
regime, and the turbulent diffusivity-dominant regime. There are two sub-regions in the
turbulent diffusivity regime: the Pr ≈ 1.0 regime and the large-Pr regime. These regimes
can help understand the performance variation of a model with the variation in Pr.
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