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Abstract: Some non-Newtonian fluids have time-dependent rheological properties like a shear stress
that depends on the shear history or a stress overshoot that is a function of the resting time, when
fluid movement is started. The rheological properties of such complex fluids may not stay constant
while they are used in an industrial process, and it is therefore desirable to measure these properties
frequently and with a simple and robust device like a pipe rheometer. This paper investigated how
the time-dependent rheological properties of a thixotropic and viscoelastic shear-thinning fluid can
be extracted from differential pressure measurements obtained at different flowrates along a circular
pipe section. The method consists in modeling the flow of a thixotropic version of a Quemada fluid
and solving the inverse problem in order to find the model parameters using the measurements made
in steady-state conditions. Also, a Maxwell linear viscoelastic model was used to reproduce the stress
overshoot observed when starting circulation after a resting period. The pipe rheometer was designed
to have the proper features necessary to exhibit the thixotropic and viscoelastic effects that were
needed to calibrate the rheological model parameters. The accuracy of rheological measurements
depends on understanding the effects that can influence the observations and on a proper design that
takes advantage of these side effects instead of attempting to eliminate them.

Keywords: non-Newtonian; thixotropy; viscoelasticity; pipe rheometer; Quemada rheological behavior

1. Introduction

Many industrial processes make use of non-Newtonian fluids. It is common that
these non-constant viscosity fluids are also thixotropic and viscoelastic. This is the case for
paints [1], drilling fluids used in well construction [2], some products used when making
food or cosmetics [3] and even fluids in the medical domain, such as blood [4].

Using computer-controlled rheometers, it is possible to obtain flow curves to relate the
shear stress to the shear rate and therefore characterize the steady-state rheological behavior
of fluids [5]. It is also possible to measure the hysteresis obtained when performing a sweep
from high to low shear rates followed by another one from low to high shear rates, in order
to quantify the thixotropic response of fluids [6]. It is also possible to perform oscillatory
measurements to acquire information about the storage and loss moduli of viscoelastic
fluids [7].

However, the fluid rheological properties may change sufficiently fast during an indus-
trial process such that it is not practical to only rely on sporadic laboratory measurements,
and a more continuous method for acquiring the fluid rheological properties is desirable.
Some attempts have been made using the Couette concentric cylindrical geometry as an au-
tomated rheometer with automatic feed of fluid samples and associated automatic cleaning
processes [8]. But the use of oil or other non-miscible liquids in the composition of the fluid
can make the cleaning process very difficult when using water-based standard cleaning
fluids, leading to a rapid deterioration of the measurement accuracy.

An alternative solution consists in using a pipe rheometer [9]. In a pipe viscosimeter,
the pressure drop along a tube is measured at different flowrates, and the rheological
behavior of the fluid is inferred from those measurements (see Figure 1). It is composed of a
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pump, a flowmeter, a measurement pipe section with a constant diameter and a differential
pressure sensor across the measurement pipe section. The inlet of the pump is connected to
a tank which contains the fluid that shall be measured. Typically, the tank has an internal
circulation mechanism to avoid settling or gelling. The ports of the differential pressure
sensor are sufficiently far away from the entrance and exit of the pipe section to ensure that
the flow is fully developed at the measurement points. Here, the internal pipe radius is
denoted by R. The pressure differential, ∆p, is often measured over a long distance, ∆d, to
increase the sensitivity of the measurement.

Fluids 2024, 9, x FOR PEER REVIEW  2  of  16 
 

An alternative solution consists in using a pipe rheometer [9]. In a pipe viscosimeter, 

the pressure drop along a tube is measured at different flowrates, and the rheological be-

havior of the fluid is inferred from those measurements (see Figure 1). It is composed of a 

pump, a flowmeter, a measurement pipe section with a constant diameter and a differen-

tial pressure sensor across the measurement pipe section. The inlet of the pump is con-

nected to a tank which contains the fluid that shall be measured. Typically, the tank has 

an internal circulation mechanism to avoid settling or gelling. The ports of the differential 

pressure sensor are sufficiently far away from the entrance and exit of the pipe section to 

ensure that the flow is fully developed at the measurement points. Here, the internal pipe 

radius is denoted by  𝑅. The pressure differential,  ∆𝑝, is often measured over a long dis-

tance,  ∆𝑑, to increase the sensitivity of the measurement. 

 

Figure 1. Schematic view of a typical pipe rheometer. 

This design is suitable for non-thixotropic fluids. However, if the fluid shear stress 

depends on the shear history, the measured pressure gradient can still be influenced by 

the passage of the fluid into the pump and possible other sources of shear rate variations 

encountered along the hydraulic circuit such as changes in the diameters or bends. Also, 

complex fluids may be viscoelastic. The simple design in Figure 1 is not well adapted to 

measure viscoelastic properties, and often  the pipe viscometer  is supplemented with a 

Couette rheometer to extract information about the viscoelastic behavior of the fluid. This 

is a source of problems when cleaning the concentric cylindrical rheometer, as mentioned 

above. 

The question addressed in this paper was, therefore, how a pipe rheometer should 

look like to measure the viscous properties of a thixotropic fluid and how the viscoelastic 

parameters of the fluid can be calibrated. 

The paper describes, in a stepwise manner, how to arrive at the proposed design of 

a thixo-elastic pipe rheometer. In the Section 2, the known equations and knowledge that 

will be used afterward to design the pipe rheometer are presented. In particular, it is pro-

posed  to use the Quemada rheological behavior [10]  to describe  the fluid, as  there  is a 

natural way to introduce thixotropy in that model. Section 3 explains how to calibrate a 

non-thixotropic Quemada model using a pipe rheometer. In Section 4, thixotropy is ad-

dressed. The original design of the pipe rheometer is modified to allow measuring one 

specific  parameter  of  the  thixotropic Quemada model  in  addition  to  the  steady-state 

Quemada model parameters. Section 5  incorporates viscoelastic modelling and calibra-

tion. The design of the pipe rheometer is again modified to allow measuring the remaining 

thixotropic parameters of the Quemada model as well as the viscoelastic properties of a 

Maxwell linear viscoelastic model. A discussion about the advantages and weaknesses of 

the proposed pipe rheometer design is presented in Section 6. The conclusions are sum-

marized in Section 7. 

   

Figure 1. Schematic view of a typical pipe rheometer.

This design is suitable for non-thixotropic fluids. However, if the fluid shear stress
depends on the shear history, the measured pressure gradient can still be influenced by
the passage of the fluid into the pump and possible other sources of shear rate varia-
tions encountered along the hydraulic circuit such as changes in the diameters or bends.
Also, complex fluids may be viscoelastic. The simple design in Figure 1 is not well
adapted to measure viscoelastic properties, and often the pipe viscometer is supplemented
with a Couette rheometer to extract information about the viscoelastic behavior of the
fluid. This is a source of problems when cleaning the concentric cylindrical rheometer, as
mentioned above.

The question addressed in this paper was, therefore, how a pipe rheometer should
look like to measure the viscous properties of a thixotropic fluid and how the viscoelastic
parameters of the fluid can be calibrated.

The paper describes, in a stepwise manner, how to arrive at the proposed design
of a thixo-elastic pipe rheometer. In the Section 2, the known equations and knowledge
that will be used afterward to design the pipe rheometer are presented. In particular, it is
proposed to use the Quemada rheological behavior [10] to describe the fluid, as there is
a natural way to introduce thixotropy in that model. Section 3 explains how to calibrate
a non-thixotropic Quemada model using a pipe rheometer. In Section 4, thixotropy is
addressed. The original design of the pipe rheometer is modified to allow measuring
one specific parameter of the thixotropic Quemada model in addition to the steady-state
Quemada model parameters. Section 5 incorporates viscoelastic modelling and calibration.
The design of the pipe rheometer is again modified to allow measuring the remaining
thixotropic parameters of the Quemada model as well as the viscoelastic properties of a
Maxwell linear viscoelastic model. A discussion about the advantages and weaknesses
of the proposed pipe rheometer design is presented in Section 6. The conclusions are
summarized in Section 7.
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2. Background

Using the Navier–Stokes equation in steady-state conditions, it can be demonstrated
that the shear stress at the wall in a circular pipe is directly proportional to the pressure
gradient, regardless of the rheological behavior of the fluid [11]:

τw =
R
2

dp
ds

, (1)

where R is the internal pipe radius, τw is the shear stress at the wall, s is the curvilinear
abscissa along the pipe, and dp

ds is the pressure gradient along the pipe.
One early reference to a pipe rheometer [12] utilized the Rabinowitsch–Mooney rela-

tion to determine the shear rate at the wall of the pipe based on the pressure gradient:

.
γw =

3
4

.
γN,w +

1
4

.
γN,w

dln
( .
γN,w

)
dln(τw)

, (2)

where
.
γN,w = 4Q

πR3 is the shear rate at the wall for a Newtonian fluid, and Q is the
volumetric flowrate.

An expression for
dln(

.
γN,w)

dln(τw)
was found for the Herschel–Bulkley rheological

behavior [13], when τ = τγ + K
.
γ

nHB , where τγ is the yield stress, K is a consistency
index, and nHB is a flow behavior index. The expression is:

dln
( .
γN,w

)
dln(τw)

=
dln(Q)

dln(τw)
=

nHB + 1
nHB

τw

τw − τγ
− C1τw + 2C0

C2τ2
w + C1τw + C0

− 1, (3)

where C0 =
(
6nHB − 4n2

HB
)
τ2

γ, C1 = 2nHBτγ(1 + nHB), and C2 = (1 + nHB)(1 + 2nHB).
A pipe rheometer can use a straight pipe or a helical one, as described in [14]. However,

the flow of a fluid in a helical pipe is subject to centrifugal forces that may separate some
of the components of the fluid when they have different mass densities. As a result, the
measured pressure drop may not be necessarily representative of the fluid mix. Therefore,
from now on, only a configuration using a straight pipe will be considered.

Considering that the shear rate at the wall can be found from the volumetric
flowrate and the shear stress at the wall, and that the shear stress at the wall is di-
rectly related to the pressure gradient, it is possible to obtain a flow curve of the fluid,
i.e., τ = f

( .
γ
)
, at as many discrete values as there are volumetric flowrate measurements,{(

Q1, dp1
ds

)
, . . . ,

(
Qn, dpm

ds

)}
→
{( .

γ1, τ1
)
, . . . ,

( .
γm, τm

) }
, where m is the number of indi-

vidual steady-state volumetric flowrates.
Depending on the chosen rheological behavior, the flow curve points can be used to

fit the rheological model parameters. Typically, this is done by solving a minimization
problem of the form [15]:

(a1, . . . , ak) = argmin
(a1,...,ak)

∑m
i=1

(
τi − τ̂

( .
γi
))2, (4)

where τ̂ is the rheological model, and (a1, . . . , ak) are the model parameters.
There are several possible candidates for the rheological model, but amongst them,

the model proposed by Quemada [10] is particularly interesting. This is, first, because it is
derived from physical principles, and second, because it provides a very good fit to many
different shear-thinning fluids such as drilling muds [15] or biological fluids like blood [16].
The Quemada rheological behavior is:

τ =
.
γη∞

( .
γ

nQ
c +

.
γ

nQ

χ
.
γ

nQ
c +

.
γ

nQ

)2

, (5)
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where η∞ is the viscosity when
.
γ tends to ∞,

.
γc is a reference shear rate, nQ is a flow

behavior index, and χ =
√

η∞
η0

, with η0 being the viscosity when
.
γ tends to 0. A third reason

why the Quemada model is interesting is that it is built using thixotropic assumptions. For
shear-thinning fluids, it is very common that η0 is a very large number and, therefore, that
η0 � η∞, meaning that χ ≈ 0. In that case, Equation (5) is reduced to:

τ =
.
γη∞

( .
γ

nQ
c +

.
γ

nQ

.
γ

nQ

)2

, (6)

In this paper, only shear-thinning fluids were considered, and it was assumed that
χ = 0. In that condition, it was possible to derive a time-dependent version of the Quemada
model [17]:

η = ηF

(
(1− (1 + κλt=0)Φ)e

−K1((
.
γ.

γc
)

nQ
+1)t ±

√
ηF
η∞

.
γ

nQ

.
γ

nQ
c +

.
γ

nQ

(
e
−K1((

.
γ.

γc
)

nQ
+1)t − 1

))−2

, (7)

where η is the effective viscosity, t is time, ηF is the Newtonian viscosity of the background
fluid, κ is the compactness factor, K1 is a shear rate entering in the differential equation
governing the structure parameter, and Φ is the normalized particle concentration. In
addition, λt=0 is the value of the structure parameter in the initial conditions.

In [17], it was also established that the structure parameter in a completely unstruc-
tured state, denoted by λ∞, is defined as:

λ∞ =
1
κ

(
1
Φ

(
1±

√
ηF
η∞

)
− 1
)

, (8)

Similarly, the structure parameter in a fully organized state, i.e., when the shear rate
tends to zero, has a value denoted by λ0 that is expressed as follows:

λ0 =
1
κ

(
1
Φ

(
1±

√
ηF
η0

)
− 1
)

, (9)

Also, Quemada explained how viscoelasticity can be modelled using a thixo-elastic
Maxwell model [18]:

τ +
η

E
.
τ = η

.
γ, (10)

where E is an elastic modulus that depends on time. It should be noted that in Equation (10),
η is a function of both

.
γ and time due to thixotropic effects. A similar approach based on the

Kelvin–Voigt viscoelastic model was recently described [19]. The solution of Equation (10) is:

τ(t) = τ(0)e−F(t,0) +
∫ t

0
E
(
t′
)
e−F(t,t′) .

γ
(
t′
)
dt′, (11)

where

F
(
t, t′
)
=
∫ t

t′

E(t′′ )
η(t′′ )

dt′′ , (12)

Considering the start of the fluid movement at time t = 0, Quemada further argued that
the elastic modulus is roughly proportion to the structure parameter:

E = E0λ(t), (13)

where E0 is a constant after the fluid movement has started.
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Note that the structure parameter is expressed as [17]:

λ(t) =

(
λ∞

( .
γ
.
γc

)n
+ λ0

)
( .

γ
.
γc

)n
+ 1

+

λ0 −

(
λ∞

( .
γ
.
γc

)n
+ λ0

)
( .

γ
.
γc

)n
+ 1

e
−K1((

.
γ.

γc
)

n
+1)t

, (14)

Furthermore, it was established that the stress overshoot after gelling is a logarithmic
function of the gel time [20]. Gjerstad formulated this result as follows [19]:

τos

(
tgel

)
= τos

(
tgel1

)
+
(

τos

(
tgel2

)
− τos

(
tgel1

)) ln tgel − ln tgel1

ln tgel2
− ln tgel1

, ∀tgel ≥ tgel0
, (15)

where tgel is the gel duration, τos is the stress overshoot, tgel1
and tgel2

are two gel durations
for which the stress overshoot was measured, and tgel0

is a minimum gel duration for which
this relationship is valid, typically one or two seconds.

Moreover, the pressure drop in steady-state conditions along a circular pipe was
derived for a Quemada fluid using the Weissenberg–Rabinowitsch–Mooney–Schofield
relation of the flowrate as a function of the shear rate and shear stress in a cross section [21]:

Q =
πR3

τ3
w

∫ τw

0

.
γτ2dτ =

πd3
w

8τ3
w

µ3
∞

(
6

∑
i=0

αi
.
γ

4−inQ
w

4− inQ

)
, (16)

where α0 = 1, α1 = 2
.
γ

nQ
c
(
3− nQ

)
, α2 = 5

.
γ

2nQ
c
(
3− 2nQ

)
, α3 = 20

.
γ

3nQ
c
(
1− nQ

)
,

α4 = 5
.
γ

4nQ
c
(
3− 4nQ

)
, α5 = 2

.
γ

5nQ
c
(
3− 5nQ

)
, α6 =

.
γ

6nQ
c
(
1− 2nQ

)
.

In unsteady flow conditions, it was established [17] that the pressure gradient and the
fluid velocity field in a cross section of a circular pipe can be related to the volumetric flow
using a finite difference method that leads to solving the following set of equations at every
time step ∆t:



−1 A1,1 A1,2 0 · · · 0 0 0
−1 A2,1 A2,2 A2,3 · · · 0 0 0

...
...

...
...

. . .
...

...
...

−1 0 0 0 · · · Al−1,l−2 Al−1,l−1 Al−1,l
0 0 0 0 · · · 0 −1 1
0 4r1 2r2 4r3 · · · 2rl−2 4rl−1 rl





dpj
ds

u1,j
u2,j

...
ul−1,j

ul,j


=


B1
...
0

3Qj
2π∆r

, (17)

where j is an index for time, l is the number of radial positions with step ∆r, ri is a radial
position at index i, ui,j is the fluid velocity at radial position i and time step j. For a
Quemada fluid, the values of the matrix coefficients are:

• Ai−1,j = Bε
−2nQ
i,j−1 + 2BnQε

−2nQ−1
i,j−1 ζi,j−1 +Cε

−nQ
i,j−1 + nQCε

−nQ−1
i,j−1 ζi,j−1−

(
1− 2nQ

)
Eε
−2nQ
i,j−1

−
(
1− nQ

)
Fε
−nQ
i,j−1,

• Ai,j = A− 2Bε
−2nQ
i,j−1 − 2Cε

−nQ
i,j−1,

• Ai+1,j = Bε
−2nQ
i,j−1 − 2nQBε

−2nQ−1
i,j−1 ζi,j−1 + Cε

−nQ
i,j−1 − nCε

−nQ−1
i,j−1 ζi,j−1 + D +

(
1− 2nQ

)
Eε
−2nQ
i,j−1 +

(
1− nQ

)
Fε
−nQ
i,j−1,

• Bi,j = Aui,j−1 − 2nQBε
−2nQ
i,j−1 ζi,j−1 − nQCε

−nQ
i,j−1ζi,j−1 − 2nQEε

1−2nQ
i,j−1 − nQFε

1−nQ
i,j−1

and A = ρ
∆t , B = − a

.
γ

2nQ
c

2−2nQ ∆r2−2nQ
, C = − (2a+b)

.
γ

nQ
c

2−nQ ∆r2−nQ
, E = c

.
γ

2nQ
c

21−2nQ ∆r1−2nQ
, F = 2c

.
γ

nQ
c

21−nQ ∆r1−nQ
,

a =
(
1− 2nQ

)
η∞, b = 2nQη∞, c = η∞

r , ζi,j−1 = ui+1,j−1 − 2ui,j−1 + ui−1,j−1,
εi,j−1 = ui+1,j−1 − ui−1,j−1, and ρ is the fluid mass density.

Experimental results and modeling showed that the pressure gradients along a pipe
are a function of the position of the measurement when circulating a thixotropic fluid in a
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flow loop having a change of diameter [21]. As a consequence, measuring the rheological
behavior of a thixotropic fluid necessitates a certain number of precautions in order to be
exact. One solution could be to have a very long tube and make the measurement at a
position at which the thixotropic effects would be negligeable, but that is very inconvenient
in practice, as the pipe would need to be several tens of meters long. Another alternative
is to design a pipe rheometer allowing for measuring the thixotropic properties as well
as the steady-state rheological behavior. In addition, it would be useful to measure the
viscoelastic properties of the fluid.

3. Calibration of a Non-Thixotropic Quemada Model with a Pipe Rheometer

A first preliminary question that can be addressed before looking into the complete
problem of calibrating a thixo-elastic fluid is how to calibrate a non-thixotropic and purely
viscous Quemada model using pipe rheometer measurements.

With Equation (2), it is possible to obtain the shear rate at the wall from the volumetric
flowrate and the pressure gradient, and since in steady-state conditions the shear stress at
the wall is directly related to the pressure gradient (see Equation (1)), it is possible to obtain
a flow curve, and, by utilizing the method described in [15], the steady-state Quemada
model can be calibrated. The difficulty with this method is to estimate dln(Q)

dln(τw)
. It is of course

possible to apply a finite-difference method to two volumetric flowrates:

dln(Q)

dln(τw)
≈ ln(Qi+1)− ln(Qi−1)

ln
(

R
2

dpi+1
ds

)
− ln

(
R
2

dpi−1
ds

) , (18)

where Qi+1 and dpi+1
ds are volumetric flowrate and pressure gradient measured close to

a desired value Qi. Qi−1 and dpi−1
ds are volumetric flowrate and associated pressure gra-

dient on the opposite side of the desired value Qi. The problem with this approach
is that uncertainties on the pressure gradients and volumetric flowrate are additive,

i.e., Q = Q̂ + εQ, and dp
ds = d̂p

ds + ε dp
ds

, where Q̂ and d̂p
ds are, respectively, the true val-

ues for the volumetric flowrate and the pressure gradient, and εQ and ε dp
ds

are, respectively,

the error for the volumetric flowrate and the pressure gradient. Considering the logarithm

of these values, the effect of the error becomes disproportionate when the values of Q̂ or d̂p
ds

are small compared to when they are large.
Even though Equation (3) was established for a Herschel–Bulkley fluid, it is reasonable

to assume that the shape of the function dln(Q)
dln(τw)

remains approximatively a quadradic
rational fraction as long as the rheological model fits relatively well with the fluid. Since
the Quemada rheological behavior fits as well as or better than then the Herschel–Bulkley
model for many fluids measured with a scientific rheometer, this assumption is retained for
the Quemada model:

dln(Q)

dln(τw)
=

nHB + 1
nHB

τw

τw − τγ
− C1τw + 2C0

C2τ2
w + C1τw + C0

− 1 =
D0τ2

w + D1τw + D2

D3τ2
w + D4τw + D5

, (19)

where D0, D1, D2, D3, D4 and D5 are model parameters that depend on the rheological
properties of the fluid.
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It remains to calibrate D0, D1, D2, D3, D4 and D5 using a series of measurements,{(
Q1, dp1

ds

)
, . . . ,

(
Qn, dpm

ds

)}
. Using the following change of variables v = ln(Q) and

u = ln(τw), we have dln(Q)
dln(τw)

= dv
du , and the question is to determine the function v(u):

v(u) =
∫ D0e2u+D1eu+D2

D3e2u+D4eu+D5
du

=
(D0D5−D2D3)ln(D3e2u+D4eu+D5)

2D3D5

−
((D0D4−2D1D3)D5+D2D3D4)tan−1

(
2D3eu+D4√

4D3D5−D2
4

)
D3D5
√

4D3D5−D2
4

+ D2u
D5

,

(20)

when 4D3D5 − D2
4 > 0.

The problem is then to find values of D0, D1, D2, D3, D4, D5 that minimize the sum
of the square differences:

(D0, D1, D2, D3, D4, D5) = arg min
(D0, D1, D2, D3, D4, D5)

∑m
i=1(vi − v(ui))

2, (21)

where vi = ln(Qi), and ui = ln
(

R
2

dpi
ds

)
. This can be achieved using a Levenberg–Marquardt

algorithm, for instance [22].
Yet, it is necessary to start from an initial guess that is not too far away from the

minimum. This initial guess is estimated using the central finite-difference method of
Equation (18) combined with Equation (19) and applied to six pairs of measurements. This
results in a system of six equations of the form:

D0τ2
wi+D1τwi+D2

D3τ2
wi+D4τwi+D5

=
ln(Qi+1)−ln(Qi−1)

ln(τwi+1)−ln(τwi−1)

⇐⇒
(

D0τ2
wi + D1τwi + D2

)
(ln(τwi+1)− ln(τwi−1))

−
(

D3τ2
wi + D4τwi + D5

)
(ln(Qi+1)− ln(Qi−1)) = 0,

(22)

This system of linear equations can easily be solved using a Gauss–Jordan elimina-
tion method. Note that it must be verified that the estimated parameter values respect
4D3D5 − D2

4 > 0, as it was an initial assumption to derive Equation (20).
Having initial values for D0, D1, D2, D3, D4, D5, it is then possible to optimize

the values for the whole set of measurements using Equation (21). Then, the model
of Equation (19) is used to estimate dln(Q)

dln(τw)
for each measurements, and therefore, a se-

ries of shear rate and shear stress values at the wall can be found using, respectively,
Equations (2) and (1). This series of shear rates and stresses are finally used to determine
the Quemada model parameters using the method described in [15].

4. Impact of Thixotropy

It is supposed that a fluid is incompressible within the range of pressures used by the
pipe viscosimeter. Also, the pipes of the hydraulic circuit are supposed to be very rigid and,
therefore, not to introduce any form of indirect compressibility into the system. The mass
conservation equation for an incompressible fluid is:

∇·→u = 0, (23)

where
→
u is the fluid velocity vector. A circular pipe is axisymmetric. It is considered to

have a constant radius from the pump outlet to its exit and to be straight and horizontal. In
laminar flow and for a non-thixotropic fluid, the velocity vector cannot depend on the polar
angle, i.e., uθ = 0, nor there can be a radial component, ur = 0. Therefore, the fluid velocity
vector has only a component in the axial direction, denoted here by us. After applying the
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conservation of mass, indicated in Equation (23), it is found that the velocity vector does
not depend on the axial position along the pipe:

∂us

∂s
= 0⇐⇒ us(s) = Us, (24)

where Us is a constant.
This result is true regardless of the rheological behavior of a non-thixotropic fluid.

However, with a thixotropic fluid, the situation is more complex. If the argument is true, in
a cross section where thixotropy has still an influence, each radial position has a different
shear history than the others, and therefore, the shear stresses at each radial positions
correspond to different values of the structure parameter and shear rates. In steady-state
conditions, Equation (1) holds for any radial positions, and therefore, the pressure gradient
is likely to be different at every radial position, meaning that there is a gradient to move the
fluid in the radial direction, which is in contradiction with the initial assumption that the
fluid velocity field is only oriented axially. So, with a thixotropic fluid, the velocity field is
oriented both axially and radially, if thixotropic effects are noticeable. At the pipe wall, the
fluid velocity is zero according to the no-slip condition at the wall. At a very short distance
from the pipe wall, the fluid velocity must be mostly tangential to the pipe, and therefore,
its radial component must be very close to zero. In virtue of the incompressible hypothesis,
the mostly axially oriented velocity, at a very short distance from the pipe wall, must be
the same at any position along the pipe, including at distances that are very far away from
sources of discrepancies in the shear history of the fluid and for which thixotropic effects
are negligeable.

It is therefore possible to estimate the fluid velocity very close to the pipe wall by
using the non-thixotropic version of the fluid rheological behavior. By utilizing the finite-
difference model of Equation (17) and running it until reaching steady-state conditions,
it is then possible to have an estimate of the fluid velocity very close to the pipe wall in
any cross sections along the pipe. As stated above, the fluid velocity is zero at the wall, i.e.,
u0,∞ = 0, considering that the finite-difference discretization of Equation (17) starts at the
index zero position at the pipe wall. For the index 1 position, i.e., at a distance ∆r from the
pipe wall, where ∆r is the radial step of the finite-difference model, the fluid velocity is u1,∞.
Then, it is possible to determine in which thixotropic state is the fluid at any curvilinear
abscissa s along the pipe at a distance ∆r from the pipe wall, by calculating the thixotropic
time at that position (ts):

ts =
s

u1,∞
, (25)

which can thereafter be used in Equation (7) to obtain the viscosity of the fluid at that
position. Note that the shear rate at the wall is identical everywhere along the pipe since it
is directly related to the gradient of fluid velocity in the radial direction (

.
γ = ∂us

∂r ), and the
fluid velocity close to the wall is the same anywhere along the pipe.

Knowing the viscosity and the shear rate at the wall at any position along the pipe, it
is possible to calculate the pressure gradient at each location using Equation (1). In order
to apply Equation (7), it is necessary to know the value of the structure parameter at the
entrance of the pipe, λt=0. A possible solution is to ensure that the fluid is completely
unstructured when it enters the pipe section. This can be achieved by placing a nozzle
or a valve that creates a sufficient pressure drop to fully shear the fluid. In that case,
λt=0 is equal to λ∞, i.e., the structure parameter is in complete unstructured conditions
(see Figure 2).
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.
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.
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− 1
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φ
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,

(26)

Consequently, by fully shearing the fluid at the entrance of the measuring pipe section,
the thixotropic model will depend on only one parameter: K1.

By placing several differential pressure sensors along the measuring pipe section,
the impact of thixotropy on pressure losses can be estimated. Several flowrates are uti-
lized, and the measured pressure gradients are used to calibrate the thixotropic Que-
mada model parameters η∞,

.
γc, nQ and K1. A series of measurement is denoted by{(

Q1, dp11
ds , . . . , dp1k

ds

)
, . . . ,

(
Qm, dpm1

ds , . . . , dpmk
ds

) }
, where m is the number of flowrates,

and k is the number of differential pressure sensors along the measuring pipe. The parame-
ters of the thixotropic Quemada model are found by solving:

(
η∞,

.
γc, nQ, K1

)
= argmin

η∞ ,
.
γc ,nQ ,ηF ,κ,K1,Φ

m

∑
i=1

k

∑
j=1

(dpij

ds
− f j(Qi)

)2

, (27)

where f j is the function that estimates the pressure gradient at position j along the mea-

suring section of the pipe as a function of the flowrate. This function is simply f j =
2ηj,Qi

.
γ

R ,
where ηj,Qi is calculated using Equation (7) for the position j along the pipe and the
flowrate Qi.

The minimization can be solved using a Levenberg–Marquardt method, for instance.
Yet, it is necessary to find initial values for η∞,

.
γc, nQ and K1 that are not too far from the

correct solution.
The further away the measured pressure gradient is from the shearing element, the

closer the value is to the one that would correspond to a measurement with no impact of
thixotropy. The pressure gradients

{
dp1k

ds , . . . , dpmk
ds

}
are used to estimate η∞,

.
γc, and nQ

using the method described in the previous section.
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It remains to guess the initial values for K1. A flowrate is chosen as well as a pressure
gradient is measured as close as possible to the shearing element. This gives:

η∞

(
±e
−K1((

.
γ.

γc
)

nQ
+1)t ±

.
γ

nQ

.
γ

nQ
c +

.
γ

nQ

(
e
−K1((

.
γ.

γc
)

nQ
+1)t − 1

))−2

=
R
2

.
γ

dp
ds

, (28)

Using the estimated values of η∞,
.
γc, andnQ, the value of t estimated with Equation (25)

and the value of
.
γ at the wall obtained from the fluid velocity calculated using steady-state

conditions, Equation (28) is only a function of K1. The equation is solved numerically using
a Newton–Raphson method.

Equipped with the initial guess, the minimization problem described by Equation (27)
is solved, and the four parameters η∞,

.
γc, nQ, and K1 are estimated.

5. Calibration of the Viscoelastic Properties

To create conditions that are relevant for the estimation of the viscoelastic properties
of a fluid, i.e., its elastic constants, the circulation in the flow loop is stopped, and then new
fluid is slowly pushed into the measuring pipe section to allow estimating the elastic and
viscous response of the fluid.

It should be noted that when the measuring pipe section has a return by gravity to
the tank, even though the pump is stopped, the flow may continue for some time, simply
because the tube tends to empty itself. To stop the flow precisely, it is necessary to have
an activable valve that is closed just after the pump has stopped. Also, to have a slow
movement of the fluid during the period for which both elastic and viscous behaviors are
visible, a different injection system than the one used for full circulation may be used. This
low flowrate injection system bypasses the fluid-shearing valve (see Figure 3).
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Figure 3. For measuring a viscoelastic fluid, an activable valve is added at the end of the measuring
section of the pipe viscometer, and a pump providing a very low flow rate is used to initiate the
fluid movement.

When the fluid movement is reinstated after a resting period, the value of the structure
parameter corresponds to the fully structured value, i.e., λ0. When introducing its value
from Equation (9) into the Quemada thixotropic model in Equation (7), the viscous behavior
of the fluid is described by:
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(29)

and since it was assumed that χ =
√

η∞
η0

can be considered null, the result is:

η = η∞

( .
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nQ

.
γ

nQ
c +

.
γ

nQ

(
1− e
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.
γ.

γc
)

nQ
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))−2

, (30)

Now, the structure parameter is evaluated using the initial condition:
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(31)

And considering that η0 is supposed to tend to infinity,
√

ηF
η0
→ 0 . Equation (31) is

simplified to:
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,

(32)

It should be noted that E0 in Equation (13) is constant when the fluid movement starts.
However, its value changes during the gelation period. From the results showing that the
stress overshoot is a logarithmic function of the gelling time, it seems reasonable to suppose
that E0 also is a logarithmic function of the gel duration:

E0

(
tgel

)
= E0

(
tgel1

)
+
(

E0

(
tgel2

)
− E0

(
tgel1

)) ln tgel − ln tgel1

ln tgel2
− ln tgel1

, ∀tgel ≥ tgel0
, (33)

Then, it is possible to calculate Equation (11) by introducing the expressions of viscosity,
η, from Equation (30), the expression of the structure parameter, λ, from Equation (32) and
the expression of the initial elastic modulus before fluid movement, E0, using Equation (33).
This provides the time evolution of the shear stress as a function of time and shear rate

.
γ.

Even though it was shown that, in non-steady-state conditions, the relationship in
Equation (1) is not true [17], when working with very small flowrates and accelerations,
the influence of inertial terms is negligeable, and Equation (1) is nevertheless an acceptable
approximation of the relationship between shear stress and pressure gradient. Therefore,
it is possible to observe the shear stress at flow initiation of the thixo-elastic fluid by
monitoring the pressure gradient. Note that the measurements at the distributed differential
pressure sensors are identical because the shear history, from the moment the fluid has
stopped, is identical along the pipe because of the fluid incompressibility hypothesis.
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As it is necessary to control precisely the acceleration, the velocity and the volume
injected at very low values and since the total volume that shall be pumped under these
conditions is relatively small, the pump used for thixo-elastic measurements can be replaced
by a motorized syringe (see Figure 4).
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Figure 4. A motorized syringe can be used to provide a precise control of injected volume, speed
and acceleration.

The thixo-elastic testing procedure is the following:

1. The circulation is stopped.
2. The outlet valve is closed.
3. The fluid is left to rest for a given time.
4. The outlet valve is opened.
5. The syringe is activated with a low acceleration to reach a low velocity.

This procedure is repeated two times with different rest durations. The two resulting
pressure gradient time profiles are then used to calibrate the missing parameters κ, Φ, ηF,
E0

(
tgel1

)
and E0

(
tgel2

)
. This leads to the following minimization problem:

(
κ, Φ, ηF, E0

(
tgel1

)
, E0

(
tgel2

))
= argmin

κ,Φ,ηF , E0(tgel1
),E0(tgel2

)

2

∑
i=1

ki

∑
j=1

(
dpij

ds
−

2τ
(
tij
)

R

)2

, (34)

where i denotes the index of the procedure, ki is the number of measurements acquired

during the test procedure i,
dpij
ds is the pressure gradient measured during the procedure

i at the time step j, and τ
(
tij
)

is the shear stress evaluated using Equation (11) at time tij.
Note that the shear rate at the wall is estimated using the transient model described by
Equation (17).

The first time the minimization needs to be solved, it is not easy to guess initial values
that are close to the absolute minimum, which rules out the use of typical steepest descent or
gradient minimization algorithms. Instead, a particle swarm optimization method is used
to find the global minimum [23,24]. However, this method is slow and computer-intensive.
After the first minimization has been performed, the obtained values are used as the initial
guess for a minimization algorithm such as the Levenberg–Marquardt, which is much faster.
Yet, the fluid characteristics may change through time, and it is therefore necessary to check
if another global minimum can be found. This is achieved by running regularly the particle
swarm optimization algorithm instead of the Levenberg–Marquardt algorithm.
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6. Discussion

The impact of thixotropy and visco-elasticity of non-Newtonian fluids was used to
propose a different design for a pipe rheometer. The new design allows making measure-
ments in well-defined conditions. These conditions were chosen to facilitate the calibration
of the various parameters of the model.

As a result of this analysis, the new pipe rheometer is equipped with two different
pressure sensors that measure the pressure drop over a short distance, differently from the
classical pipe rheometers for which the ports of the differential pressure sensor are usually
close to each end of a long tube. This design change is essential because, when circulating
thixotropic fluids, the pressure gradient is different at various positions along the pipe
section. Furthermore, a shearing element was introduced at the start of the measuring pipe
section. This element is also crucial to ensure that the structure parameter of the thixotropic
fluid is known at the entrance of the section. By imposing a structure parameter equal to
the one when the shear rate tends to infinity, several simplifications are possible for the
thixotropic Quemada model, thereby thereby leading to a reduction in the dependence
of the results on a single parameter relating to thixotropy, K1. This in turn facilitates the
calibration of the thixotropic Quemada model, as only four parameters are calibrated at
that stage: η∞,

.
γc, nQ, and K1. By changing the flowrate several times and recording the

pressure gradients at two positions along the measuring section, a method was described
to calibrate efficiently these four parameters.

To address the problem of finding the remaining thixo-elastic properties of the fluid,
the new design includes a valve to close the outlet of the measuring section in order to
ensure that there is no flow during the gelling period. Also, a syringe is used to obtain a
precise control of the flow initiation after gelling. By repeating the procedure two times, it is
then possible to calibrate five additional parameters of the thixo-elastic shear-thinning fluid
model: κ, Φ, ηF, E0

(
tgel1

)
, and E0

(
tgel2

)
. The calibration method is computer-intensive, at

least for the first time or when a new fluid is run into the pipe rheometer. After the initial
calibration has been performed, a lighter minimization algorithm can be used.

The proposed method relies on the fact that the fluid and the system are incompressible.
To ensure that the system does not introduce any compressibility sources, all parts must be
made of stiff materials like steel or glass. Rubber or elastomer hoses shall not be used. It
may be more difficult to ensure that the fluid is incompressible, as sometime the liquid may
contain bubbles. To reduce the impact of bubbles on the measurements, it may be useful to
terminate the measuring section with a controllable valve that provides a back pressure.
With a sufficient back pressure, the bubble size may be reduced to a very small volume,
and therefore, the incompressibility hypothesis may be better respected.

Yet, the described design and method have some possible sources of uncertainties.
The first one is linked to the effect of the shearing element. The flow behind it is not
fully developed at some unknown distance. This can impact the development of the
structure parameter of the fluid in this region and, therefore, influence the accuracy of the
calibration of K1. Second, it is hypothesized that the elastic modulus at zero shear rate,
E0, is a logarithm function of the gelling time. Even though this seems to be a reasonable
hypothesis based on previous observations, this supposition was not verified. Third, it
should be noted that this study only addressed the case of the Quemada shear-thinning
rheological behavior for which the viscosity at zero shear rate tends to a very large value,
i.e., η0 → ∞ . It is possible that the same principles can be applied to shear-thickening
fluids and to fluid with a finite η0, but that was not analyzed.

Despite the above-mentioned limitations, the described design and calibration method
allow obtaining the nine parameters of a thixo-elastic shear-thinning Quemada rheological
behavior. This enables to use such an advanced model for very dynamic conditions within
which transient circulations alternate with resting periods.
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7. Conclusions

Measuring the rheological properties of complex non-Newtonian fluids that exhibit
thixotropic and viscoelastic effects is a difficult task. This paper investigated how a pipe
rheometer can manage that challenge.

Here are the main results:

• Having a large distance between the ports of the differential pressure sensor along the
measuring pipe section implies that the measurements are biased when circulating a
thixotropic fluid.

• Utilizing a short distance between the two ports of the differential pressure sensor and
two differential pressure measurements at a sufficient distance from each other allows
assessing some of the thixotropic properties of the circulated fluid, considering that
the initial shear conditions are imposed at the start of the pipe section. This can be
achieved by using a fluid-shearing element.

• By closing the outlet of the pipe section with a valve during a resting period and
then opening that valve and injecting fluid at low velocity, it is possible to acquire a
characteristic pressure curve that can be used to calibrate the remaining thixotropic
parameters and the elastic properties of the gelled fluid.

The proposed design is rather different from existing pipe rheometer solutions. The
new design is justified by the analysis of the physical phenomena that influence the pressure
gradient when circulating a viscoelastic and thixotropic fluid. It should allow obtaining
more precise estimations of the steady-state properties of non-Newtonian fluids and, at
the same time, provide the opportunity to acquire all the parameters that describe the
thixo-elastic behavior of complex fluids.
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Nomenclature

aj rheological model parameters
D0 parameter [M−2L2T4](1/Pa2)
D1 parameter [M−1LT2](1/Pa)
D2 parameter [dimensionless]
D3 parameter [M−2L2T4](1/Pa2)
D4 parameter [M−1LT2](1/Pa)
D5 parameter [dimensionless]
d̂p
ds true pressure gradient [ML−2T−2](Pa/m)
E0 invariant elastic modulus [ML−1T−2](Pa)
E elastic modulus [ML−1T−2](Pa)
f j function that estimates the pressure gradient at position j [ML−2T−2](Pa/m)
K consistency index [ML−1Tn−2](Pa·sn)
K1 shear rate characterizing the evolution of the structure parameter [T−1](1/s)
nHB flow behavior index for a Herschel–Bulkley fluid [dimensionless]
nQ flow behavior index for a Quemada fluid [dimensionless]
p pressure [ML−1T−2](Pa)
Q volumetric flowrate [L3T−1](m3/s)
Q̂ true volumetric flowrate [L3T−1](m3/s)
R internal pipe radius [L](m)
Us constant fluid velocity in the axial direction [LT−1](m/s)
r radial position in a cross section [L](m)
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ri radial position at index i [L](m)
s curvilinear abscissa [L](m)
t time [T](s)
tgel gel duration [T](s)
→
u fluid velocity vector [LT−1](m/s)
ui,j fluid velocity at radial position i and time step j [LT−1](m/s)
ur component of the fluid velocity vector in the radial direction [LT−1](m/s)
us component of the fluid velocity vector in the axial direction [LT−1](m/s)
uθ component of the fluid velocity vector in the angular direction [T−1](rd/s)
Greek letters:
.
γc reference shear rate [T−1](1/s)
.
γw shear rate at the wall [T−1](1/s)
.
γN,w shear rate at the wall for a Newtonian fluid [T−1](1/s)
∆d distance between the ports of a differential pressure sensor [L](m)
∆p differential pressure measurement [ML−1T−2](Pa)
∆r radial step [L](m)
∆t time step [T](s)
εi,j−1 radial fluid velocity variation at the previous time step [LT−1](m/s)
ε dp

ds
error in the measurement of the pressure gradient [ML−2T−2](Pa/m)

εQ error in the measurement of the volumetric flowrate [L3T−1](m3/s)
ζi,j−1 double radial fluid velocity variation at the previous time step [LT−1](m/s)
η effective viscosity [ML−1T−1](Pa·s)
η0 viscosity when

.
γ→ 0 [ML−1T−1](Pa·s)

η∞ viscosity when
.
γ→ ∞ [ML−1T−1](Pa·s)

ηF Newtonian viscosity of the background fluid [ML−1T−1](Pa·s)
κ compactness factor [dimensionless]
λ0 structure parameter in a fully organized state [dimensionless]
λ∞ structure parameter in a completely unstructured state [dimensionless]
λt=0 structure parameter at the initial condition [dimensionless]
ρ fluid mass density [ML−3](kg/m3)
τ̂ rheological model [ML−1T−2](Pa)
τos stress overshoot [ML−1T−2](Pa)
τrs shear stress at the radial position r [ML−1T−2](Pa)
τγ yield stress [ML−1T−2](Pa)
τw shear stress at the wall [ML−1T−2](Pa)
Φ normalized particle concentration [dimensionless]
χ factor in the Quemada rheological model [dimensionless]
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