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Abstract: It is well established that spray characteristics from automotive injectors depend on, among
other factors, whether cavitation arises in the injector nozzle. Bulk cavitation, which refers to the
cavitation development distant from walls and thus far from the streamline curvature associated
with salient points on a wall, has not been thoroughly investigated experimentally in injector nozzles.
Consequently, it is not clear what is causing this phenomenon. The research objective of this study
was to visualize cavitation in three different injector models (designated as Type A, Type B, and
Type C) and quantify the liquid flow field in relation to the bulk cavitation phenomenon. In all models,
bulk cavitation was present. We expected this bulk cavitation to be associated with a swirling flow
with its axis parallel to that of the nozzle. However, liquid velocity measurements obtained through
particle image velocimetry (PIV) demonstrated the absence of a swirling flow structure in the mean
flow field just upstream of the nozzle exit, at a plane normal to the hypothetical axis of the injector.
Consequently, we applied proper orthogonal decomposition (POD) to analyze the instantaneous
liquid velocity data records in order to capture the dominant coherent structures potentially related
to cavitation. It was found that the most energetic mode of the liquid flow field corresponded to the
expected instantaneous swirling flow structure when bulk cavitation was present in the flow.

Keywords: cavitation; injector; PIV; POD; visualization

1. Introduction

Cavitation is an important factor for spray formation within diesel or gasoline injectors,
and it appears to affect the properties of the resultant spray [1,2]. In addition, differences
in the spray cone angle and tip penetration have been reported in [3–6] depending on
the type of cavitation observed (with edge flow separation cavitation occurring close to
the walls or bulk cavitation, which occurs within the flow far from the walls). While the
potential role of edge flow separation cavitation on spray formation in nozzles has been
thoroughly investigated, the formation and the effects of bulk cavitation are issues that
need more attention in terms of acquiring quantitative flow field data. The phenomenon
of bulk cavitation (or string cavitation) has been reported in diesel model injectors in
references [7–9], as well as in gasoline injectors in references [10–12]. Recent studies on
the visualization of string cavitation have attempted to explain the interaction of vortices
between adjacent nozzles when bulk cavitation is present in diesel multi-hole injectors [13].
Additionally, these studies have explored the temporal evolution of this type of cavitation
and the cycle-by-cycle variation in its shape [14]. However, neither study has provided
quantitative flow field data for the bulk cavitation area. Only in [15] were some flow field
data derived through a simulation based on the work of [16] provided. These simulations
showed the presence of a vortical flow around the core of bulk cavitation.
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Based on computational pressure field results, it has also been suggested that the
initiation of this type of cavitation is a result of gas-phase components that remain after
previous injection events, with vortices acting as gas-phase carriers. These studies have
provided valuable insight into this phenomenon. However, to our knowledge, computa-
tional fluid mechanic tools for calculating the flow field in relation to bulk cavitation, as
presented in reference [16] and other computational studies ([17–19]), are not (yet) capable
of predicting bulk cavitation. Whether it is vortex-induced cavitation or the elongated
bubble clouds of the remaining gas phase, this phenomenon influences the surrounding
flow field and, more specifically, leads to the redistribution of vorticity, as mentioned in
reference [20]. In addition, it has been reported in reference [21] that vortex properties
determine the dynamics (growth and collapse) and shape of bulk cavitation. This, along
with the fact that bulk cavitation can affect spray properties, motivated our targeted flow
field measurements to correlate with this phenomenon.

Reports on the flow field inside injectors, which could be responsible for the formation
of bulk cavitation, are limited. An early reference providing quantitative PIV measurements
inside diesel fuel injectors was reported in reference [22], followed by the laser Doppler
velocimetry measurements (LDV) presented in reference [23]. PIV measurements on the
internal flow field of fuel injectors are also presented in references [12,24–26]. In the
last reference, the authors observed the presence of bulk cavitation in the same injector
geometries as those examined in this paper. In a recent publication [4], 2D PIV was
applied to a full-size diesel injector in the area just upstream of the nozzle exit, where bulk
cavitation was initiated. However, although some vortical structures seemed to be present,
detailed high-resolution experimental flow field data that could quantify the presence of
vortices in that area were not provided. Finally, the study presented in references [27–29]
experimentally demonstrated in model nozzles that downstream of the flow separation
cavitation occurring at the nozzle entry, instantaneous vortices are initiated in the shear
layer of the liquid flow. These vortices can lead to a low enough local pressure to cause
bulk cavitation, which even extends into the liquid container attached downstream from
the nozzle exit. However, the authors did not quantify the local velocity field associated
with these structures. Therefore, the literature indicates that the local flow field may be able
to induce bulk cavitation.

As a continuation of the work reported in reference [12], bulk cavitation was visual-
ized in three gasoline multi-hole injectors. A two-dimensional micron resolution particle
imaging velocimetry was employed to measure the internal flow field of 10:1 super-scale
transparent models of multi-hole injectors in the vicinity of a region just upstream from the
entrance to the holes of the injector plates, under conditions shortly after the onset of cavi-
tation. This plane of measurement was parallel to the injector plates (which is normal to the
notional axis of symmetry in the injector). In cases where bulk cavitation was present, we
applied proper orthogonal decomposition (POD) to the measured instantaneous velocity
data in order to capture the dominant coherent structures potentially related to cavitation.
Our objective was not only to visualize cavitation but also to correlate the flow field up-
stream of the nozzles with the occurrence of bulk cavitation within the nozzles. In addition,
the probability of bulk cavitation was calculated by applying POD to shadowgraph images
of different nozzles of the same type of injector. Details of the experimental techniques and
methods used are provided in the next section. Subsequently, the results are presented, and
the paper concludes with a summary of the main findings.

2. Experimental Methods and Analysis
2.1. Injector Models, Experimental Setup, and Measurement Conditions

The schematics of the gasoline injector models are shown in Figure 1 for Type A and
B models and in Figure 2 for the Type C model. Details of the significant differences in
geometry between Types A and C are briefly described below; these details can be found
in [12]. The main parts of the injector model are shown, and the planes of measurement
are indicated with the grey area, with one occupied by a refractive index matching liquid.
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These models, which are scaled up by a factor of 10, represent the parts of the prototype
gasoline injectors, which are adjacent to the nozzles. The model was finished to the required
optical surface quality (Kuwana Engineering Plastic Co., Ltd., Kuwana, Japan).

Fluids 2023, 8, x FOR PEER REVIEW 3 of 24 
 

geometry between Types A and C are briefly described below; these details can be found 

in [12]. The main parts of the injector model are shown, and the planes of measurement 

are indicated with the grey area, with one occupied by a refractive index matching liquid. 

These models, which are scaled up by a factor of 10, represent the parts of the prototype 

gasoline injectors, which are adjacent to the nozzles. The model was finished to the re-

quired optical surface quality (Kuwana Engineering Plastic Co. Ltd., Kuwana, Japan). 

                                                                                                                                                                                                                                                                                                                                                                                                                                                  
 

Figure 1. (left) Schematic of Type A and Type B injector model. Grey area indicates fluid flow. Flow 

is from right to left. (right) Section A-A shows the nozzle arrangement. Numbers in green identify 

nozzle numbers 1–4, some of which are referred to in the ‘Results and Discussion’ section. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

 

 

Figure 2. (left) Schematic of Type C injector model. Grey area indicates fluid flow. Flow is from right 

to left. (right) Section A-A shows the nozzle arrangement. Numbers in green identify nozzle num-

bers 1–6, some of which are referred to in the ‘Results and Discussion’ section. 

It should be noted that Types A and B injectors have 8 nozzles, and Type C has 12. 

The locations of the nozzles are indicated in the respective injection plate in Figures 1 and 

2. The differences in the geometry between Types A and B were minor, while for the case 

of Type C, the cylindrical sections were larger in diameter and, in combination with the 

needle valve geometry, led to more abrupt changes in the flow direction compared to the 

case of Type A model. In addition, in the Type C injector, the size of the holes is slightly 

smaller, and also, the distance between neighboring holes is smaller. The main difference 

between Type A and Type B is that, for the latter, the “neck” (see the encircled part in 

Figure 1) is longer. This was expected to induce differences in the hairpin type flow as the 

liquid enters the sections just upstream of the nozzles, which were validated with PIV, 

compared with the measurements shown in [25]. In terms of the needle valve, although 

the geometry is similar between Type A and Type B, the cylinder with the spherical valve 

end is shorter and has a larger diameter in the former. This allows shorter flow paths to 

the sections that include the above-mentioned part of the needle valve. The needle valve 

lift for all cases (Type A, B, and C) was set to 0.8 mm in the model, corresponding to the 

maximum needle valve lift of the prototype. 

In all the model injectors, the flow is from right to left (refer to the grey area in Figures 

1 and 2). The flow is contained in the annular passage between the needle valve and the 

Figure 1. (left) Schematic of Type A and Type B injector model. Grey area indicates fluid flow. Flow
is from right to left. (right) Section A-A shows the nozzle arrangement. Numbers in green identify
nozzle numbers 1–4, some of which are referred to in the ‘Results and Discussion’ section.
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Figure 2. (left) Schematic of Type C injector model. Grey area indicates fluid flow. Flow is from
right to left. (right) Section A-A shows the nozzle arrangement. Numbers in green identify nozzle
numbers 1–6, some of which are referred to in the ‘Results and Discussion’ section.

It should be noted that Types A and B injectors have 8 nozzles, and Type C has 12. The
locations of the nozzles are indicated in the respective injection plate in Figures 1 and 2.
The differences in the geometry between Types A and B were minor, while for the case of
Type C, the cylindrical sections were larger in diameter and, in combination with the needle
valve geometry, led to more abrupt changes in the flow direction compared to the case of
Type A model. In addition, in the Type C injector, the size of the holes is slightly smaller,
and also, the distance between neighboring holes is smaller. The main difference between
Type A and Type B is that, for the latter, the “neck” (see the encircled part in Figure 1) is
longer. This was expected to induce differences in the hairpin type flow as the liquid enters
the sections just upstream of the nozzles, which were validated with PIV, compared with
the measurements shown in [25]. In terms of the needle valve, although the geometry is
similar between Type A and Type B, the cylinder with the spherical valve end is shorter
and has a larger diameter in the former. This allows shorter flow paths to the sections that
include the above-mentioned part of the needle valve. The needle valve lift for all cases
(Type A, B, and C) was set to 0.8 mm in the model, corresponding to the maximum needle
valve lift of the prototype.

In all the model injectors, the flow is from right to left (refer to the grey area in
Figures 1 and 2). The flow is contained in the annular passage between the needle valve
and the needle valve seat until the exit nozzles. The hydraulic circuit used, which contained
a refractive index matching fluid (31.65% v/v of 1,2,3,4–Tetrahydronaphthalene and 68.35%
v/v of turpentine oil), is illustrated in Figure 3. All the tubing was made of stainless steel in
order to withstand the corrosive mixture of the working fluid, which was connected to the
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model with a reinforced plastic tube. There were two pumps that circulated the working
fluid. Pump 1 was of low capacity (1.5 m3/h), and Pump 2 had a maximum flow rate of
8 m3/h. Pump 1 was used for low Reynolds Number conditions and Pump 2 for high
Reynolds Numbers, which were near the conditions of the initiation of cavitation. It should
be noted that the temperature of the liquid was continuously monitored by a thermocouple.
A cooler controlled the temperature of the liquid at 25 ◦C with an accuracy of 0.1 ◦C. This
was performed because the fluid’s refractive index was affected by temperature changes,
and it only showed the desired refractive index (1.49, same as that of the acrylic plastic
material of the model) at a temperature of 25 ◦C. Though not shown here and as explained
in [12], downstream of the exit from the nozzles, the flow proceeded to a large liquid-filled
plenum, from which it is redirected back to the liquid ‘sump’ tank: part of the hydraulic
circuit. The outflow pattern was certainly affected by this setup, but it is not examined in
this work, as only measurements from the internal flow field were acquired. Upstream of
the injector body, the conditions of these measurements were set so that the internal flow
could bear geometrical and dynamic similarity with the prototype injector.
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Figure 3. Hydraulic circuit of the refractive index matching rig (Aleiferis et al. [26]).

A bubble trap was used to capture gas bubbles, which were physically trapped in the
model and could be present in the working fluid, either during the filling of the hydraulic
circuit or when dissolved in the liquid and after cavitation was initiated for some flow
conditions. This was a settling chamber with the inlet at the top and the outlet at the bottom
so that any bubbles could flow to the top part of the chamber. A schematic of the bubble
trap is given in Figure 4. It should also be noted that the flow downstream of the nozzle
exit was liquid, and there was no chance to entrain air from outside the nozzle. Therefore,
the reported observations are only due to local cavitation in the flow. A vacuum pump
acted on the free surface of the liquid downstream of the model in the sealed tank so that
the downstream static pressure of the liquid was controlled in order for the cavitation
number to be matched between the real and large-scale models above the pressure limits
(0.2–0.4 atm depending on the pump in operation). This was allowed by the Net Positive
Suction Head (NPSH) of each pump. If we applied a lower pressure than the NPSH of
the pump, we could induce cavitation upstream of the injector model, which was not
desirable. More details about the operation of the hydraulic circuit can be found in [25,26].
To investigate the temporal development of cavitation in all three different geometries,
we used a high-speed camera, “KODAK HS 4500”, which had a frame rate of 4500 fps at
a maximum resolution (256 pixels × 256 pixels), although velocities were not measured
while acquiring high temporal resolution pictures because the available high resolution
(2048 pixels × 2048 pixels) PIV system had a maximum acquisition frequency of 10 Hz.
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Figure 4. Schematic of the bubble trap (Aleiferis et al. [26]).

The optical configuration for the PIV measurements is shown in Figure 5. The system
consisted of two double pulsed Nd: Yag lasers (New Wave Gemini PIV), a 12-bit CCD PIV
camera (Kodak Megaplus ES 4.0), with an array of 2048 × 2048, and an image acquisition
system (LaVision FlowMaster 2S, excluding the PIV software which was developed in–
house) based on a dual processor computer (2 × Intel Pentium IV 2 GHz processors)
with a programmable timing unit; this synchronized the lasers and the camera to obtain
the PIV images. The fluorescent light emitted by the fluorescent ‘seeding’ particles used
was transmitted through an optical window of the model injector and via a 45◦ mirror
to the long-distance microscope (Davro Optical Systems DOS Model 77) camera system.
Measurements were conducted just upstream of the nozzle at the plane intersected by the
laser sheet, as shown in Figure 5 for the Type C model and for the Type B model. It was
observed that the refractive index matching fluid slowly deteriorated on the surface quality
of the injector models during the measurements. The flow fields of the Type B injector
model were compared to the flow field after changing the needle valve with the Type A
needle valve in [12], and it was found that they were similar.
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normalized to the notional axis of the injector upstream of a nozzle, and flow visualization within the
nozzle (x-z plane). Sample results obtained from both techniques are demonstrated.
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In order to obtain information for cavitation simultaneously with the flow field (after
acquiring the high-speed cavitation images), a second camera (Cavitation visualization
camera) with a long-distance microscope was necessary. This camera had a 12-bit conver-
sion with a spatial resolution of 1378 pixels× 1040 pixels, and the long-distance microscope
was similar to the one used for PIV measurements. Since a laser was used for the PIV flow
velocity measurements, the cavitation images were saturated by the high-power scattered
light and by bubbles crossing the laser sheet. For that reason, BG3 optical filters were used
(which transmitted only blue light) with a white light lamp in order to provide wavelength
separation between the cavitation visualization images and the PIV images, which used the
fluorescent light emitted by the particles, and excited by the green light (532 nm) of the Nd:
Yag laser. Although this arrangement worked satisfactorily, the lamp, which also emitted
light at the fluorescent wavelength, induced some noise into the PIV images. This noise
was minimized using neutral density filters optically and through the image processing
software, where a median and the maximum filter routines were incorporated to de-noise
the images [30]. The use of fluorescent particles was necessary (nominal diameter 1–20 µm,
mean diameter 10 µm), which were covered with Rhodamine B dye, in order to separate
the fluorescent emission and the elastically scattered light from the cavitation bubble at the
laser wavelength, and hence, to distinguish between the gaseous and the liquid phase. The
fluorescent light was transmitted through an optical filter, which was placed between the
PIV camera and the long-distance microscope.

These results are linked to real injectors since appropriate dimensionless parameters
are defined as relating to the flow conditions in the model and to the prototype. This
could be achieved using Reynolds and Cavitation Numbers with, as suggested in [31], the
Cavitation number being relevant as a dynamic similarity parameter only when the flow
cavitated. The Reynolds number is defined as follows:

Re =
ρUdd

µ
(1)

where Re is the Reynolds number, ρ is the density of the working fluid, Ud is the bulk
velocity at a reference section, and d is the characteristic length of the reference section, as
illustrated in Figures 1 and 2 (which is taken as the diameter of the needle valve ‘seat’ at
the reference section, namely 36 mm for Type A and Type B models, and 50 mm for Type C
model) and µ is the dynamic viscosity of the working fluid.

The Cavitation number, formally derived, is as follows:

σv =
Pd − Pv

1
2 ρU2

d

(2)

where σv is the cavitation number, Pd is the static pressure at the reference section, Pv is
the vapor pressure of the working fluid at 25 ◦C (466 Pa), ρ is the density of the working
fluid, and Ud is the bulk velocity at the reference section. Note that other expressions for
the cavitation number exist in the literature (as presented in [9]), which can replace the
dynamic pressure with a pressure drop across the reference point: there are advantages
to both definitions. In the present context, we prefer the formal definition above, which
relates to changes in dynamic pressure. As seen in [12], the magnitudes of the Cavitation
number in our flows were “large” in the sense that, on physical grounds, the Cavitation
number compared the liquid static pressure to the dynamic pressure of the flow, and one
expected the cavitation to arise when the value of σv was of order unity. This apparent
discrepancy arose because of our choice of location for the reference section, which was
remote from that of the location of cavitation, and, thus, the resultant values of σv were of
the order of thousands. This unusual choice of location for the reference point was made
because it was easier to measure the static pressure necessary for the calculation of the
Cavitation number. Note that it was formally permissible to define the reference conditions
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and the location for the cavitation number at any convenient point in the model, provided
that we conducted scaling with reference to the same location in the prototype.

The conditions for the visualization of cavitation with a high frame rate camera are
shown in Table 1.

Table 1. Conditions for high frame rate visualization of the gasoline injector models.

Type A Type B Type C

Reynolds Number 10,700 11,550 9200

Cavitation Number 2700 2300 6400

The conditions of the PIV measurements and the simultaneous (not at high frame rate)
visualization of cavitation were the following: for the Type B model, the Reynolds Number
was 11,450, and the Cavitation Number was 2650. For the Type C model, the Reynolds
Number was 9200, and the Cavitation Number was 6400.

2.2. Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition, or POD, is a powerful method of data analysis.
Based on the Karhunen–Loeve procedure of probability theory [32,33], POD aims at re-
ducing the dimensionality of a dataset while retaining as much as possible the variations
present in it [34,35]. The basic idea behind POD is to describe a given statistical ensemble
with a minimum number of deterministic modes [36,37].

We considered an ensemble of instantaneous data Ω(t, x), with x and t as the spa-
tial and temporal parameters, respectively. In the present work, Ω represents the two-
dimensional velocity data from the PIV measurement of liquid velocity just upstream of the
nozzles or the image intensity distribution in the shadowgraph images of the nozzles (see
Figure 5). The mean velocity or mean intensity is subtracted from the instantaneous values
so that the values of Ω represent fluctuations only. For the M number of flow realizations
and N number of spatially located data points for each realization, POD decomposes Ω(t, x)
into a sum of the product of spatial eigenvectors ϕj(x) and temporal coefficients aij(t);
therefore,

Ω(t, x) =
r

∑
j=1

aij(t)
√

λj ϕj(x) (3)

where i = 1 to M, j = 1 to N, λj represents the eigenvalue corresponding to each eigenvector
ϕj(x), and r is the rank of the matrix [I]MN so that r = min(M, N). Thus, the POD modes
ϕj(x) represent the average spatial features of the whole ensemble, while the corresponding

coefficients (
√

λja1j,
√

λja2j . . . . . . . . .
√

λjarj) signify their “weight” for the time instants
i = 1, 2,. . ., M, respectively.

The eigenvalues λj are obtained by solving the eigenvalue equation, Rϕ = λϕ, Ra = λa,
under the restriction that the norm of ϕj is 1, where R is the spatial cross-correlation matrix
of size N × N. However, when M << N, as in the present case, the calculation time could be
dramatically reduced if the temporal cross-correlation matrix [RT ]MM is evaluated instead
of [R]NN ; therefore:

RT(t, t∗) =
1
N ∑N

k=1 Ω(t, xk)×Ω(t∗, xk) (4)

This numerical procedure, as proposed by Sirovich [38], is popularly known as the
“method of snapshots”. The solution RTa = λa, RTλ = aλ leads to the orthonormal
temporal coefficients aij(t) corresponding to the eigenvalues λj. The symmetry and non-
negative definiteness of RT ensures λj ≥ 0. The eigenvectors are obtained from the

inverse relation ϕj = λj
−0.5

M
∑

i=1
aij Ii. The eigenvalues are ordered as λj > λj+1, and the

corresponding coefficients (aij) and modes (ϕj) are also arranged accordingly. Hence,
the first mode ϕ1 always represents the maximum spatial variations in the liquid velocity
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fluctuations upstream of the nozzle or the intensity fluctuations in the shadowgraph images
of the nozzles. The significant advantage of POD is that due to its fast convergence property,
the number of energetically significant modes is minimum. Hence, original intensity data
can be reconstructed using only a few modes instead of considering all of them; therefore,

Ω(t, x) =
roptimum

∑
j=1

aij(t)
√

λj ϕj(x), roptimum < M (5)

In other words, only a few modes, roptimum (much less than the total number of modes,
M), needed to be considered for the data analysis.

The present work used the method of the snapshot described above to obtain the
POD modes. For the POD analysis of the PIV data, 1000 instantaneous two-dimensional
liquid velocity vector fields (measured upstream of the nozzles) were considered, such
that each sample contained a velocity measured at 42 × 42 grid points. In this case, the
initial POD modes were considered to be synonymous with the dominant liquid flow
structures upstream of the nozzles [39]. For the POD analysis of the shadowgraph images,
1000 instantaneous images were considered. Only certain sections of each shadowgraph
image close to the nozzle inlet were considered for the POD calculation in order to optimize
the computational time since cavitation was not observed too far downstream of the nozzle.
In this case, the initial POD modes depicted the string or edge separation cavitation within
the nozzle. The uncertainty in the amplitude of the spatial POD modes was found to be
about 10%. However, the uncertainty for eigenvalues, which determined the significance
of the modes, was about 1% or even less for all cases.

3. Results
3.1. Visualization of ‘Bulk’ Cavitation

Consecutively acquired cavitation visualization images of the Type A Injector Model
are shown in Figure 6. Three of these images (for the instances to, to + 7/4500 s and
to + 14/4500 s) are shown in [12]; however, here, the whole series acquired is shown in order
for the reader to have a complete understanding of the cavitation evaluation. Note that
the flow is from right to left. Two types of cavitation were identified in the flow. The first,
which is commonly observed in the literature, is known as edge separation cavitation and
is a result of flow separation due to the high associated streamline curvature that occurs
at the edge of the nozzle inlet. The second is named ‘bulk’ cavitation and arises far from
the walls and, thus, far from the streamline curvature, which is associated with salient
points on a wall. The latter could be caused or affected by streamwise vortical structures
that are present inside and just upstream of the injection nozzle; however, so far, there is
no quantitative experimental flow field evidence for this. Both edge separation cavitation
and ‘bulk’ cavitation were present in the flow. Edge separation cavitation is indicated by
white dashed circles, and ‘bulk’ cavitation is indicated by white rectangles for the typical
visualization images of each case. These were added to the images to assist the reader in
identifying the regions that were occupied by ‘bulk’ cavitation or edge separation cavitation
compared to the rest of the images. It can be noted that for the Type A model, there is
a “scratch” at the surface of the material of the transparent model that is present in all
the images of Figure 6, which is indicated by the red rectangle. Figure 6 shows that the
edge separation cavitation was present at the bottom edge from to to to + 3/4500 s. From
to + 4/4500 s to to + 5/4500 s, cavitation was visible only on the top corner of the nozzle inlet.
The “top corner” cavitation could probably be related to the separation region, which is
attached to the top corner of the nozzle, as shown in the PIV measurements of the Type A
model presented in [25], while there is nothing comparable at the bottom edge. Therefore,
the PIV results suggest that cavitation is unexpected at the bottom inlet corner.
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Figure 6. Cavitation visualization images of the Type A (Nozzle 4) model obtained with high speed
camera. Flow is from right to left. White circles indicate edge separation cavitation, and white
rectangles indicate string cavitation for typical images. Red rectangle indicates a “scratch” at the
model’s surface. Three of these images (for the instances to, to + 7/4500 s and to + 14/4500 s) are
shown in [12]. Red dashed lines indicate nozzle boundaries.
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At the instant of to + 6/4500 s, the separation cavitation was weaker in comparison to
the previous images, and a weak bubble string could be observed. From that moment on,
we could see the development and existence of ‘bulk’ cavitation in this nozzle. At time
to + 8/4500 s, two strings of the bulk cavitation were visible, but it is unlikely that the second
could be cavitation in the nozzle right behind the one of interest because of the small depth
of field in the optics. Up to the image at time to + 8/4500 s, the ‘bulk’ cavitation did not seem
to extend inside the nozzle. After that time and until to + 11/4500 s, the ‘bulk’ cavitation
was also present inside the nozzle, and from that moment until time to + 13/4500 s, the edge
separation cavitation and ‘bulk’ cavitation coexisted in the nozzle. In the last image of this
series, the two strings seemed to separate and become very thin, so after a few instants,
‘bulk’ cavitation was not present. The presence of the string at first only upstream of the
nozzle inlet and then inside the nozzle led us to conclude that it started upstream of the
nozzle, which suggested that it was caused by the streamwise vortical structures present at
that region which was also the motivation for the PIV measurements appearing normal to
the notional axis of the injector, as presented in the next section.

The cavitation visualization images of the Type B model (Figure 7) show that both
edge separation and ‘bulk’ cavitation were present again. From the image acquired at time
to until the image at time to + 3/4500 s, only edge separation cavitation could be observed,
which was located both at the top and bottom corners of the nozzle inlet. In the picture, at
time to + 4/4500 s, a weak string appeared, and from that moment on until time to + 8/4500 s,
a clear string was present in the examined nozzle. From time to + 9/4500 s, the image of the
string became very weak, and then only edge separation cavitation was present at both
inlet corners. Therefore, edge separation cavitation was present during the time that ‘bulk’
cavitation occurred.

It is noted that the Type B model had a larger nozzle plenum just upstream of the
nozzle in comparison to the Type A model, as can be concluded by the geometry of the
injector models presented in the earlier text. Although from purely geometrical consid-
erations, rstreamline, where rstreamline is the radius of the curvature for the streamlines that
enter the nozzle, might be different between the two models and it was hard to draw any
conclusions since the static pressure field was related to ρU2/rstreamline. The presence of
‘bulk’ cavitation appeared to affect the existence of edge separation cavitation, at least at
the initial development stages of the string, since at the initial development stages of the
string for the Type A model, edge separation cavitation was not present. When a string
appeared, the liquid that entered the nozzle met an abrupt turn in the flow direction near
the inlet corner of the Type A model, restricted edge separation, and, as a consequence, the
edge separation cavitation was not present. During these stages, it might be that the liquid
flow at the region where edge separation usually happens was settling without forming
a recirculation, which could reduce the local pressure below the boiling point (466 Pa as
explained in [40]) since the flow around that section was occupied by the string. In the
case of the Type B model, the streamline curvature as the liquid entered the nozzle might
be smaller than Type A; therefore, smaller recirculation zones were formed at the inlet
edges, which were not disrupted by the presence of the strings. This could be the reason
why, for the type B model, ‘bulk’ cavitation and edge separation cavitation coexisted at all
times. This might be a useful conclusion for the design of the injector. Although we refer to
gasoline injectors here, this could also be applicable to diesel and other types of injectors.

The cavitation visualization images of the Type C Injector are illustrated in Figure 8.
Again, three of these images (for the instances to, to + 7/4500 s and to + 14/4500 s) are shown
in [12], and for the same reason, as Type A is also presented here. In this case, three main
conclusions can be drawn. First, in all the images, there was a continuous presence of
‘bulk’ cavitation, with the string “precessing”, which at least suggested that the lifetime
of ‘bulk’ cavitation was longer in this case than in the other types. Secondly, the diameter
of the string in these images was significantly larger than for Type A and Type B models;
therefore, it could be said that, in this case, whatever the flow structure that gave rise to
cavitation and was a result of the geometry of the injector, this allowed the longer presence
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of cavitation. Thirdly, bubbles seemed to cover the whole nozzle region since this was all
shadowed, although it was not possible to decide from the images if this was also a result
of edge separation cavitation.
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3.2. Mean Flow Field and Cavitation Visualization

Velocity measurements at the planes just upstream of the nozzles were conducted, and
the results are illustrated for the cases where ‘bulk’ cavitation was present. More specifically,
for the Type B injector model, the results are illustrated for nozzle 1 and nozzle 4 (present
at the edge and the interior locations, respectively, as shown in Figure 1). Simultaneously
with the fluorescent PIV liquid velocity measurements, the cavitation was visualized in
order to see if ‘bulk’ cavitation was present or not. The PIV results were averaged over
1000 images, and the cavitation visualization images were typical shadowgraph images.
For nozzle 1 (Figure 9), only corner-separation cavitation was present, and the average,
at least for the flow field just upstream of the nozzle, had only a weak clockwise swirling
motion. In the case of nozzle 4 (Figure 10), where ‘bulk’ cavitation was present, the mean
flow field just upstream had no mean swirl but was similar to a “potential flow sink with
cross flow” (specifically, the internal flow inside the half body solution).
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Figure 9. Left hand side (LHS): time-averaged liquid velocity measurements in the “plane of mea-
surement”, just upstream of the entrance to nozzle 1 (please refer to Figure 5) for Type B model.
Right-hand side (RHS): visualization of cavitation (image plane is parallel to that of Figure 1). The
dashed circle refers to the nozzle location.

These results are surprising for two reasons. First, we would reasonably expect ‘bulk’
cavitation to be associated with the swirling flow centered on the nozzle; however, this
did not seem to be the case. Secondly, we might reasonably expect the swirling flow to
inhibit edge cavitation; however, this was also not the case. Quite why the initiation of
‘bulk’ cavitation was promoted by this sink-like flow is not clear. One possible explanation
is that the flow measurements were time-averaged values and not representative of the
instantaneous flow, which could give rise to cavitation at specific times in the flow.

Flow velocity measurements were also conducted for the Type C model (see Figure 2).
Referring to the same figure, we considered nozzle 1, nozzle 6 (which are located at the
edge), and nozzle 5 (interior nozzle) to demonstrate different cavitation types. Figures 11–13
presents the mean velocity field and cavitation visualization images for different nozzles of
the Type C injector. It was observed that for nozzle 5 (Figure 12), which showed ‘bulk’ cavi-
tation, an approximately sink-like flow was present. For nozzles 1 and 6 (Figures 11 and 13,
respectively), edge separation cavitation was present, and the flow formed two vortices just
upstream of the nozzle inlet, which was different for the sink-like flow that was observed
just upstream of nozzle 5. It is very important for the designer that, in both injector models,
the flow field just upstream of nozzles shows a ‘bulk’ cavitation that is qualitatively similar
since the designer can induce geometry features that promote or inhibit this kind of flow.
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Figure 10. Left hand side (LHS): time-averaged liquid velocity measurements in the “plane of
measurement”, just upstream of the entrance to nozzle 4 (please refer to Figure 5) for Type B model.
Right-hand side (RHS): visualization of cavitation (image plane is parallel to that of Figure 1). The
dashed circle refers to the nozzle location.
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Figure 11. Left hand side (LHS): time-averaged liquid velocity measurements in the “plane of
measurement”, as defined in Figure 2, just upstream of the entrance to nozzle 1 (please refer to
Figure 5) for Type C model. Right-hand side: visualization of cavitation (image plane is parallel to
that of Figure 2). The dashed circle refers to the nozzle location.

Obtaining PIV measurements simultaneously with cavitation visualization images
at nozzles 1, 5, and 6 (refer to Figure 5 as mentioned above) was conducted because the
remaining nozzles were positioned symmetrically with respect to the examined ones and
were expected to show the same results. This is the reason why the flows in the three
nozzles were examined for the Type C model and in two nozzles for Type B (with Type A
needle valve).
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Figure 12. Left hand side (LHS): time-averaged liquid velocity measurements in the “plane of
measurement”, as defined in Figure 2, just upstream of the entrance to the nozzle 5 (please refer to
Figure 5) for Type C model. Right-hand side: visualization of cavitation (image plane is parallel to
that of Figure 2). The dashed circle refers to the nozzle location.
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Figure 13. Left hand side (LHS): time-averaged liquid velocity measurements in the “plane of
measurement”, as defined in Figure 2, just upstream of the entrance to the nozzle 6 (please refer to
Figure 5) for Type C model. Right-hand side: visualization of cavitation (image plane is parallel to
that of Figure 2). The dashed circle refers to the nozzle location.

3.3. Proper Orthogonal Decomposition (POD) of Liquid Velocity Field in Cavitating
Flow Conditions

POD was applied to the instantaneous liquid velocity fields just upstream of the
nozzles to captivate the flow conditions, as shown in the previous section. The sum
of all the eigenvalues represents the total turbulent kinetic energy of the flow since the
decomposition occurred over the fluctuations of the liquid velocity from the mean value.
The distribution of the eigenvalues for the nozzle Type B injector model with respect to
the mode number is shown in Figure 14. These decreased rapidly after about the first
10 initial modes. Therefore, the eigenvectors corresponding to the first few eigenvalues
were expected to correspond to the dominant turbulent structures of the liquid flow.
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Figure 14. Eigenvalue spectrum for the fluctuating velocity components u and v for the Type B
injector model.

The first two POD modes are presented in Figure 15 and in Figure 16. We can observe
that the very first mode (Figure 15) depicted the presence of a vortical structure. The first
mode had the maximum average correlation with all the instantaneous velocity fields, and
hence, it represents the most common flow structure. Thus, in the present case, it could be
correlated with the presence of ‘bulk’ cavitation since the flow conditions were selected
so that ‘bulk’ cavitation was present. It is worth noting that this vortical structure was
not present in the mean flow field results. The second mode (Figure 16) was qualitatively
different and not obviously related to a flow structure that could promote ‘bulk’ cavitation.
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In order to estimate if the pressure drop in relation to this vortical structure could
lead to ‘bulk’ cavitation, the instantaneous velocity field of Type B was reconstructed by
considering the first mode only. Figure 17 below shows a typical radial profile of absolute
velocity, where point ‘0′ corresponds to the position of the nozzle center. The POD mode
1 signifies the existence of a free vortex or, strictly speaking, a Rankine vortex since the
fluid possesses finite viscosity. Therefore, away from the nozzle axis, the tangential velocity
first increased and then decreased close to the outer wall. At the radius of the order of the
nozzle radius (2 mm), the tangential fluid velocity was about 1 m/s. Since the angular
momentum of the vortical structure had to be conserved, the tangential velocity was
inversely proportional to the radius or v× r = const. Hence, when the vortical structure
entered the nozzle, the fluid velocity increased close to its axis. Therefore, at r = Rnozzle/10
and r = Rnozzle/20, the fluid velocity accelerated to about 10 m/s and 20 m/s, respectively.
Assuming that far away from the axis of the vortex, the pressure was atmospheric, and the
tangential velocity was zero, ∆Pcritical = Patm− Pvap.pressure represent the minimum pressure
drop necessary to initiate cavitation. The actual pressure drop was ∆Pactual = ρv2/2,
and therefore, the ratio ∆Pcritical/∆Pactual was found to be equal to about 2 and 0.5 for
r = Rnozzle/10 and r = Rnozzle/20. This means ‘bulk’ cavitation must occur close to the
nozzle axis. Since both pressure drop and vorticity proportionally increase with the inverse
of the square from the distance from the nozzle, a small initial rotation of the fluid upstream
of the nozzle is sufficient to create a concentrated vortex inside the nozzle, which can
cavitate the liquid. It should be noted that this is the first time that proof has been provided
that the local flow characteristics can cause cavitation. In previous studies, the emphasis
has been on the gas entrained inside the nozzle from the environment outside the nozzle
or by gas phase components that remain in the injector sac volume by previous injection
events. Due to the experimental arrangement of the current study, the previously proposed
mechanisms of explaining cavitation in the literature, according to the previous sentence,
cannot occur. In this way, only specific instantaneous flow structures can induce cavitation.

The eigenvalue spectrum for the corresponding nozzle of the Type C injector model
is shown in Figure 18. The trend of the eigenvalue spectrum for the fluctuating liquid
velocity components was similar to the corresponding nozzle of the Type B model, with a
sharp decrease in the initial eigenvalues. Again, this means that the dominant liquid flow
structures are represented by the first few modes. The first mode for this case is illustrated
in Figure 19, which again shows a vortical structure, which might be responsible for the
formation of ‘bulk’ cavitation. Higher modes are associated with flow structures that have
smaller length scales.
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Figure 17. Typical reconstructed radial profile of the absolute velocity of the Type B injector model
using POD mode 1 at the plane of the measurement just upstream of Nozzle 4 (see Figure 1). Point ‘0′

corresponds to the position of the nozzle axis.
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flected light. Therefore, modes 1 and 2 show a bright spot (blue color in the contour plots 

of Figure 20) near the right edge of the nozzle, which does not correspond to edge sepa-
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plied to the original images after cropping the right side, and the first four POD modes 

are shown in Figure 21. 

Figure 19. POD Mode 1 of the liquid velocity field for the Type C injector model.

3.4. POD of Shadowgraphic Cavitation Images of Type B Injector Model

POD was applied to the intensity of the shadow graphic cavitation images (those
acquired simultaneously with PIV, so 1000 images for each nozzle) for nozzle 1 and nozzle
4 (see Figure 1) of the Type B injector model. This technique was not applied to the
Type C model because the multiple nozzles were densely located, and there was noise
generated on the shadow graphic images by the presence of cavitation in the nozzles
located behind nozzles 1, 5, and 6 (Figure 2) for which PIV data have been acquired and
examined. Figure 20 shows the first two modes of POD’s application to the shadow graphic
cavitation images for the Type B injector model.
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Figure 20. POD modes 1 and 2 for the shadow graphic cavitation images of Nozzle 4 (see Figure 1) of
the Type B injector model. Flow is upwards (different orientation from that of Figure 1). The color of
the contour plots refers to the fluctuations in pixel intensity values for the shadow graphic images.
Nozzle borders are marked with black lines.

It should be noted that the liquid flow in the images of Figure 20 has an upward
direction. The original shadow graphic images were contaminated due to unwanted
reflected light. Therefore, modes 1 and 2 show a bright spot (blue color in the contour
plots of Figure 20) near the right edge of the nozzle, which does not correspond to edge
separation cavitation, but the intensity of reflected light. To avoid these effects, POD was
applied to the original images after cropping the right side, and the first four POD modes
are shown in Figure 21.
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Figure 21. POD modes 1, 2, 3 and 4 of the shadow graphic cavitation images for Nozzle 4 (see
Figure 1) of the Type B injector model after cropping the right-hand side of the original shadow
graphic images. Flow is upwards (different orientation than that of Figure 1). The color of the contour
plots refers to the fluctuations in pixel intensity values for the shadow graphic images. Nozzle borders
are marked with black lines.

The first three modes of Figure 21 clearly depict the presence of ‘bulk’ cavitation. It
should be noted that the right-hand side of Figure 21 corresponds nearly to the axis of the
nozzle flow, as the reader can notice by comparing the coordinates between the images of
Figures 20 and 21. Edge separation cavitation appeared for mode 4. In addition, the first
four POD modes of the shadowgraphs in nozzle 1 (see Figure 1) are the same as the injector
model presented in Figure 22.

Figure 22 shows that edge-separation cavitation was present for all the modes shown.
If we examine the eigenvalue contribution of each mode (Figure 23), we can observe that
for nozzle 4 (see Figure 1), the contribution of the first three modes where ‘bulk’ cavitation
was observed was approximately 45% of the total value, while, for nozzle 1 (see Figure 1),
the contribution of the first four modes, where we only had edge separation cavitation, was
80% of the total value. These percentages represent the probabilities of having a ‘bulk’ or
edge separation cavitation in the flow of the examined nozzles. Therefore, in nozzle 4 (see
Figure 1) of the Type B injector model, the probability of having ‘bulk’ cavitation was
about 45%, while, in nozzle 1 of the same model, the probability of having edge separation
cavitation was about 80%. So, the probability of having ‘bulk’ cavitation in nozzle 1 was
low, which could be verified by observing the shadow graphic cavitation images of nozzle
1, ‘bulk’ cavitation was not present at all.
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of the Type B injector model. Flow is upwards (different orientation than that of Figure 1). The color
of the contour plots refers to the fluctuations in pixel intensity values of the shadow graphic images.
Nozzle borders are marked with black lines.
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images of Nozzles 1 and 4 in Figure 1 of the Type B injector model.

4. Conclusions

In this work, ‘bulk’ cavitation was studied in three gasoline multi-hole injectors. Two-
dimensional micron resolution Particle Imaging Velocimetry was employed to measure the
internal flow field of the 10:1 super-scale transparent models of multi-hole injectors just
upstream of the entrance to the holes of the injector plates in the vicinity of an operating
regime just after the onset of cavitation. Our motivation was to understand the physics
behind the formation of bulk cavitation and its correlation with the injector flow field.
‘Bulk’ cavitation was found to be present in the specific nozzles of three geometrically
different injector models by means of fast camera visualization, where the time evolution of
cavitation was also recorded. For Type A and Type B injector models, ‘bulk’ cavitation was
not always present, while for the case of the Type C injector model, ‘bulk’ cavitation was
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present for all the images of cavitation visualization, which indicated that the residence
time of ‘bulk’ cavitation in this type of injector was longer compared to the other injector
models.

The liquid flow field at the nozzles of the two injector models (Type B and Type C)
was quantified, and it was found that the mean liquid flow velocity just upstream of the
exit holes resembled, as expected, the internal flow inside the half body corresponding
to the classical potential flow solution for a sink with cross flow. We expected, a priori,
‘bulk’ cavitation to be associated with the existence of the swirling flow centered on the
nozzle axis at a given instant. However, we found no such swirling flow structure in the
mean flow field results. We thus applied Proper Orthogonal Decomposition (POD) to the
instantaneous velocity data in order to identify the dominant liquid flow structures, which
could be related to cavitation. It was found that “mode 1” eigenvalues indeed corresponded
to swirling flow structures and were dominant for the cases when ‘bulk’ cavitation was
present for both injector models where the flow was quantified. This might be related to
the origin of ‘bulk’ cavitation. It is the first time that quantitative flow field experimental
evidence has been presented, identifying that the above local flow structures could be
related to local ‘bulk’ cavitation.

Finally, we applied POD to the shadow graphic cavitation images of the Type B injector
model, and the eigenvalue contribution of each mode depicting ‘bulk’ cavitation was found
to be representative of the probability of having this kind of cavitation.

In summary, this paper has demonstrated for the first time in a quantitative way the
importance of instantaneous liquid flow structures on the initiation of different types of
cavitation in injector nozzles. It highlights the importance of describing the instantaneous
flow structures in computations of such flows in order to predict the different types of
cavitation that can occur and the associated probability of their appearance and time-
dependent behavior.
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