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Abstract: Vascular disease is the leading cause of morbidity and mortality and a major cause of
disability for Americans, and arterial stenosis is its most common form in systemic arteries. Hemo-
dynamic characterization in a stenosed arterial system plays a crucial role in the diagnosis of its
lesion severity and the decision-making process for revascularization, but it is not readily available in
the current clinical measurements. The newly emerged image-based computational hemodynamics
(ICHD) technique provides great potential to characterize the hemodynamics with fine temporospatial
resolutions in realistic human vessels, but medical data is rather limited for validation requirements.
We present an image-based experimental hemodynamics (IEHD) technique through a mock circula-
tion loop (MCL) to bridge this critical gap. The MCL mimics blood circulation in human stenosed
systemic arterial systems that can be either 3D-printed silicone, artificial, or cadaver arteries and thus
enables in vitro measurement of hemodynamics. In this work, we focus on the development and
validation of the MCL for the in vitro measurement of blood pressure in stenosed silicone arteries
anatomically extracted from medical imaging data. Five renal and six iliac patient cases are studied.
The pressure data from IEHD were compared with those from ICHD and medical measurement. The
good agreements demonstrate the reliability of IEHD. We also conducted two parametric studies
to demonstrate the medical applicability of IEHD. One was the cardiovascular response to MCL
parameters. We found that blood pressure has a linear correlation with stroke volume and heart
rate. Another was the effect of arterial stenosis, characterized by the volumetric reduction (VR) of the
arterial lumen, on the trans-stenotic pressure gradient (TSPG). We parametrically varied the stenosis
degree and measured the corresponding TSPG. The TSPG-VR curve provides a critical VR that can
be used to assess the true hemodynamic severity of the stenosis. Meanwhile, the TSPG at VR = 0 can
predict the potential pressure improvement after revascularization. Unlike the majority of existing
MCLs that are mainly used to test medical devices involving heart function, this MCL is unique in its
specific focus on pressure measurement in stenosed human systemic arteries. Meanwhile, rigorous
hemodynamic characterization through concurrent IEHD and ICHD will significantly enhance our
current understanding of the pathophysiology of stenosis and contribute to advancements in the
medical treatment of arterial stenosis.

Keywords: image-based experimental hemodynamics; image-based computational hemodynamics;
mock circulation loop; trans-stenotic pressure gradient; arterial stenosis; volumetric reduction
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1. Introduction

Vascular disease, including coronary, extracranial, and peripheral arterial beds, is the
leading cause of morbidity and mortality and a major cause of disability for Americans.
Arterial stenosis is one of the most common vascular diseases that can lead to life- and
limb-threatening consequences, including myocardial ischemia, ischemic stroke, and limb
amputation. It is a condition that involves blockage of blood flow mainly due to an
atherosclerotic narrowing of the arterial lumen, which commonly occurs in systemic arteries.
While stenosis can be observed by imaging modalities such as computed tomography
angiogram (CTA), magnetic resonance imaging (MRI), and Doppler ultrasound sonography
(DUS), direct and effective noninvasive means to evaluate the true hemodynamic severity
of stenosis are lacking in current clinical practice. For coronary stenosis, fractional flow
reserve (FFR) [1], defined as the ratio between the distal pressure pd and the proximal
pressure pa to the stenosis; namely, pd/pa, is used to determine the hemodynamic severity
of myocardial ischemia [2–4]. However, trans-stenotic pressure gradient (TSPG), defined as
the difference between pa and pd, has been popularly used for assessing the hemodynamic
severity of non-coronary stenoses. Evidence, including ours, has shown that TSPG is an
indicator to determine the amount of blood flow blockage caused by renal [5–7], iliac
and femoral [8–10], and carotid [11] stenoses and can help guide the proper decision-
making of interventional treatment. Nevertheless, the clinical application of either FFR or
TSPG is rather limited [12], as they rely on the invasive pressure measurement of the local
pressure values, i.e., pd and pa, which may expose patients to surgical complications and
medical costs.

Newly emerging image-based computational hemodynamics (ICHD) [13–17] has great
potential to address this unmet medical need, as seen in a recent review [16] and the refer-
ences therein. Based on medical imaging data, ICHD enables noninvasive characterization
of hemodynamics, including velocity, pressure, and stress, in the diseased human arterial
system with a fine spatiotemporal resolution, resulting in important hemodynamic indica-
tors, such as FFR and TSPG, for arterial stenosis. For example, image-based FFR has been a
well-established clinical application of ICHD by HeartFlow Inc. (Redwood City, CA, USA).
Obtained from a purely anatomical, noninvasive dataset of coronary CTA images [18] by
utilizing ICHD, the FFR determines the hemodynamic severity of the coronary stenosis and
then guides the decision-making of the interventional treatment for it. We have recently
developed a proprietary ICHD technique [19] for a new noninvasive and patient-specific
hemodynamic index that can assess the hemodynamic severity of non-coronary arterial
stenosis and applied it to renal stenosis [6,7]. In addition to the application of ICHD for
arterial stenosis, many studies have demonstrated the feasibility and validity of ICHD
for vascular diseases caused by aneurysms [20–22]. Despite its great potential for medical
applications, ICHD needs significant resources for model development and sophisticated
verification and validation (V&V) before it can be translated into medical applications.
First, most ICHD studies assume incompressible and Newtonian flow in rigid arterial
walls [7,17,19], whereas vascular circulation is much more complicated. The anatomical
flow domain is arbitrarily curved with moving walls. Blood consists of plasma, blood cells,
and platelets. When severe arterial stenosis exists, the blood flow may become turbulent.
Each of them needs to be modeled in ICHD. In general, more model inclusion in ICHD
means higher computational costs. Models for insignificant effects will indeed introduce
inaccuracies. Thus, it is crucially important to determine which and how models should be
introduced in ICHD through V&V. Second, since only a segment of the blood circulation
system is involved in ICHD, boundary conditions are required at the inlet(s) and outlet(s)
of the vessel segment to represent the remaining vascular network. The choices of the
outflow boundary condition in ICHD vary among zero pressure or zero traction conditions,
resistance or impedance conditions, reduced-order models, which can be an open or closed
loop, and reduced-order one-dimensional wave propagation equations [23–26]. To capture
the interaction between the local 3-dimensional (3D) vessel segment and the 1-dimensional
(1D) global circulation, the ICHD must be coupled to a reduced-order lumped-parameter
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network model. Among them, the 3-element WindKessel model [27–31] (WK3) has been
commonly used to construct such a network, in which a Windkessel circuit is adopted
to model the distal vasculature with one capacitor, modeling vessel compliance, and two
resistors, modeling proximal and distal flow resistances, respectively. Evidence has shown
that the WK3 can reproduce physiological pressure waves [32–34] in large vessels. In
the state-of-the-art ICHD, the required proximal resistance, compliance of the distal vas-
culature, and distal resistance in the WK3 model are empirical [6], as no medical data
are available.

Image-based experimental hemodynamics (IEHD) can provide a suitable test platform
to address the aforementioned two needs of ICHD. A mock circulation loop (MCL) can
simulate the pathophysiological environment of blood flow and measure the velocity and
pressure waveforms as an alternative resource to medical measurements for the V&V of
ICHD. Since its introduction by Westerhof [35] in 1971 as a simple artificial arterial system
for pumping hearts in experimental labs, numerous studies have highlighted the potential
of mock loop systems to create finely controlled and maintained simulated physiological
conditions. Replicating these conditions in animal models or clinical settings is challenging,
making MCLs advantageous for the design and testing of total artificial hearts [36–38] or
ventricular assist devices [39–45]. The reliable real-time control and feedback capabilities
of MCLs have demonstrated their applicability in studying human cardiovascular circu-
lations [46,47], early stages of congestive heart failure [48,49], pediatric cardiopulmonary
diseases [50–52], surgical procedures [53], and drug tests [54]. By offering safe and effective
methods, MCLs allow for the investigation and analysis of the complex hemodynamics
of human cardiocirculatory systems. To explore and characterize hemodynamic abnor-
malities in diseased human arterial circulations, researchers have worked on developing
MCLs integrated with 3D-printed patient-specific models of the pulmonary artery [55,56],
aorta [57,58], and coronary artery [59,60]. These patient-specific models, created through
3D printing, provide anatomically accurate features for MCLs, enabling precise simulations
of the physiological hemodynamics of complex systems. In this study, we present a new
MCL specifically for the characterization of in vitro hemodynamics in realistic human
systemic arteries with stenosis, focusing on the reliable measurement of TSPG. We validate
the accuracy of our pressure measurements using available medical and ICHD data. Sub-
sequently, we conduct parametric studies to investigate the factors that influence blood
pressure in these stenosed renal and iliac arterial systems.

The remainder of this paper is organized as follows: Section 2 includes the materials,
including the medical cases and the corresponding 3D-printed silicone arterial systems,
and the establishment of the MCL together with its instrumentations. Our application
studies and experimental results are presented in Section 3. Finally, Section 4 concludes the
paper with a summary and discussion.

2. Materials and Methods
2.1. Medical Data

We studied five renal and six iliac medical cases as listed in Table 1. The cases were
from IU Health Methodist Hospital in Indianapolis, IN, USA (Renal cases I–II and Iliac
cases I–V) with IRB (Institutional Review Board) approvals, #1405073181 and #1812589521,
respectively, and Hangzhou First People’s Hospital in Zhejiang, China (Renal cases III–V
and iliac case VI) with a study approval (#116-01) by the Ethics Committee of the hospi-
tal. Each patient case contains diagnostic imaging data, including CTA DICOM (Digital
Imaging and Communications in Medicine) slices and DUS M(motion)-mode velocity
waveforms, together with blood pressure waveforms at specified locations invasively mea-
sured during digital subtraction angiography (DSA) for interventional treatments. The
pressure waveforms are used to validate the corresponding computed ones [6,7,61] from
our previous ICHD studies and the experimentally measured ones in this work.
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Table 1. 11 patient cases, obtained from IU Health Methodist Hospital in Indianapolis, IN,
USA (R: IV–V and I: I–V) and Hangzhou First People’s Hospital in Hangzhou, Zhejiang, China
(R: I–III and I:VI).

Artery Case Age Gender Stenosis Stenting

Renal (R)

I 64 Male Yes No
II 87 Male Yes Yes
III 83 Male Yes No
IV 74 Male No No
V 75 Male No No

Iliac (I)

I 63 Male Yes Yes
II 61 Female Yes Yes
III 64 Female Yes Yes
IV 53 Male Yes Yes
V 76 Female Yes Yes
VI 69 Male Yes Yes

2.2. D-Printed Silicone Arterial Systems

We used MIMICS Materialise (Materialise NV, Leuven, Belgium) to anatomically
extract the aortoiliac and aortorenal arterial systems, shown in Figure 1a,b, respectively.
The CTA resolution is approximately 0.752 × 2.0 mm3 (IU Health Methodist Hospital cases)
and 0.652 × 0.6 mm3 (Hangzhou First People’s Hospital cases). The CTA images are in
sliced DICOM format. The 3D morphological geometry of each arterial system was output
using Standard Tessellation Language (STL), a file format commonly used for 3D printing.
We then use our in-house Form 3 Stereolithography 3D printer (Formlabs, Somerville, MA,
USA) to fabricate each of the 3D silicone arterial systems. Three printing materials, Clear
Resin, Flexible 80A Resin, and Elastic 50A Resin, as shown in Figure 1c, are available to
print rigid, flexible, and elastic silicone arterial systems, respectively, for different study
purposes. In this study, we use Elastic 50A Resin to print the silicone arterial systems,
unless otherwise indicated.
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(c) A 3D printed aortoiliac arterial system using (i) Clear, (ii) Flexible 80A, and (iii) Elastic 50A Resin.
The arterial wall is more flexible from left to right.

2.3. A Mock Circulation Loop for Human Systemic Arterial Systems

The MCL is designed to mimic the blood flow in stenosed human systemic arterial
systems, enabling in vitro measurement of pressure waveforms proximal or distal to the
stenosis. We intend not to include coronary stenosis, so no heart model is included.
An arterial system can be either 3D-printed silicone, clinically used artificial arteries, or
cadaver arteries. In this work, we focus on silicone arteries. The schematic diagram and
the corresponding benchtop setup of the MCL are shown in Figure 2a,b, respectively, for a



Fluids 2023, 8, 198 5 of 15

stenosed arterial system. The MCL consists of a reservoir (5.5-L), a pulsatile blood pump
(Figure 3a, HARVARD APPARATUS, Model 1434), a test section holding the silicone arterial
system, Windkessel chambers, and resistance valves. The pulsatile blood pump mimics the
ventricular ejection from the heart in large animals by pumping the fluid via an oscillation
mechanism, as schematized in Figure 3b. It is equipped with controls to continuously
vary heart rate (HR), stroke volume (SV), and output phase ratio (systole to diastole in
one stroke) in the ranges of 0–100 beats per min (bpm), 15–100 mm (mL), and 25/75 to
50/50, respectively. The pump is placed at the same elevation level as the test section to
imitate the bedrest condition, avoiding pressure drops caused by gravity. The Windkessel
effect [28] in the MCL is modeled by the Windkessel chambers (fractionally filled chambers
with trapped-air compliance elements). The Windkessel chamber is a cylindrical glass
bottle measuring 10 cm in diameter and 20 cm in height. It is equipped with 0.5-inch
inlet and outlet ports. The water column height within the chamber is adjusted between
10 cm and 20 cm, allowing for varying compliance to accommodate different scenarios. It
imitates the compliance of large vessels. One Windkessle chamber is mounted upstream
of the inlet of the test section, mimicking upper-body systemic compliance. At each of
the arterial outlets, one Windkessel chamber and two resistance valves are adopted to
model the vessel compliance and the proximal and distal flow resistances, respectively.
This setting is consistent with the WK3 model used in our ICHD [6]. All the components
are connected by flexible silicone tubing (with an inner diameter of 0.5 inches).
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2.4. Instrumentations

The measuring instruments of the MCL include a Doppler ultrasound machine, a DAQ
system, pressure transducers, and flowmeters, as shown in Figure 2. Each medical-grade
pressure transducer (Deltran®, model 6069) is connected to the flow at a measuring location
in a silicone aortorenal (Figure 4a) and aortoiliac (Figure 4b) arterial systems through a
21 g needle (NAD21T21WP, Qosina, Ronkonkoma, NY, USA). A voltage change detected
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by the deformable membrane in the pressure transducer reflects the pressure pulsation.
The pressure waveform is read through a data acquisition (DAQ) system equipped with
amplification by a Wheatstone bridge module (DV-10, Honeywell, Columbus, OH, USA)
and digitization by an analog-to-digital converter (NI-9201, National Instruments, Austin,
TX, USA). This MCL can acquire up to 8 pressure signals simultaneously. Each pressure
transducer is individually calibrated using a hydrostatic water column. A magnetic induc-
tive flowmeter (SM6004, IFM Efector Inc., Malvern, PA, USA) acquires a flowrate waveform.
The range of the output current signal is from 4 to 20 × 103 amps(mA). The readings of the
flowmeters are collected by another analog-to-digital converter (NI-9203, National Instru-
ments) in the DAQ. The DAQ system is connected to a desktop computer (3.6 GHz CPU,
RAM 8.0 GB) through an in-house program based on Labview software. The digital signals
are collected at a sampling rate of 1000 Hz. The portable ultrasound machine (CX50 w/C5-1
PureWave curved transducer and L12-3 broadband linear transducer, Philips Electronics)
can be used to measure the velocity waveforms of the blood flow.
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3. Application Studies and Experimental Results

We study five aortorenal and six aortoiliac arterial systems, listed in Table 1, using the
MCL. The corresponding 3D aortoiliac and aortorenal silicone arterial systems anatomically
extracted from patients’ CTA images are shown in Figure 1a,b, respectively. Each of them
has invasively measured and noninvasively computed pressure waveforms at specified
locations. The numerical simulations were performed using our in-house ICHD solver. In
the past 10 years or so, this solver has been continuously developed and refined [17,62–66].
Recently, it has been applied to quantify the TSPG of renal artery stenosis [6,7] and iliac
artery stenosis [67]. The corresponding experimental pressure waveform was averaged
over three cardiac cycles. First, we compare the pressure waveforms among the noninvasive
in vitro measurements and computations and the invasive measurements to demonstrate
the reliability of IEHD by reproducing the ICHD-computed pressure waveforms. The
methodology of ICHD and related physical variables and boundary conditions are referred
to in the references [6,17,67]. Then, we conduct two application studies to demonstrate the
applicability of IEHD for medical applications. In what follows, we use the representative
iliac case (Figure 1a(VI)) and renal case (Figure 1b(IV)) with HR = 78 bpm and SV = 15 mL
to present the results unless otherwise indicated. We first test the effect of the fluid on the
pressure measurement in the iliac case using water (viscosity of 1 cP) and glycerol aqueous
solution (45 vol. % glycerol with a viscosity of 3.5 cP). As shown in Figure 5, the measured
pressure waveforms do not show a noticeable difference when choosing glycerol aqueous
solution or water as the working fluid (blood surrogate). Thereafter, we use water as the
running fluid in this study.
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Figure 5. Pressure waveforms measured in (a) RCIA and (b) REIA of the iliac case using glycerol
solution (blue) and water (red).

3.1. Reliability of In Vitro Pressure Measurement Using MCL

We first evaluate the pressure measurement using a representative iliac case,
Figure 1a(VI). The arterial system includes the right common iliac artery (RCIA), the right
external iliac artery (REIA), and the right internal iliac artery (RIIA), as seen in Figure 6a.
The medical pressure measurement data are available at the three locations. We compare the
systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure
(MAP) that are calculated from (SBP + 2DBP)/3), in millimeters of mercury (mmHg),
among the medical measurement (M), computation (C), and experimental measurement
(E) in Figure 6b.
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Figure 6. A comparison among medical measurement (M), computation (C), and experimental mea-
surement (E) using iliac case VI at three locations in panel (a), including SBP, DBP, and MAP in panel
(b), and pressure waveforms in a full cardiac cycle at RCIA and REIA in panels (c,d), respectively.

The relative errors of experimental measurement and computation on the medical data
vary from 0 to 6.6% with a mean of 2.21% for ICHD and from 0 to 1.64% with a mean of
0.16% for IEHD. The pressure waveform comparisons among medical measurement (solid
line), numerical computation (dotted line), and experimental measurement (dashed line) in
RCIA and REIA are shown in Figure 6c,d, respectively. The experimental measurements
agree well with the medical and computational data. Correlation scatter plots using the
6 iliac cases with 12 measurement samples and the 5 renal cases with 13 measurement
samples are shown in Figure 7 for (a) iliac SBP, (b) iliac DBP, (c) renal SBP, and (d) renal
DBP. In each plot, rE,M is the Pearson correlation coefficient between experimental (E)
and medical (M) measurements is shown, and the line is diagonal, representing the equal
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pressure measurement between E and M. rE,M is calculated from the ratio of the covariance
of E and M vs. the product of the standard deviation of E and the standard deviation of M.
The rE,Ms for iliac SBP, iliac DBP, renal SBP, and renal DBP are 0.99 with p < 0.05, 0.96 with
p < 0.05, 0.96 with p < 0.05, and 0.93 with p < 0.05. These results indicate good correlations
between E and M measurements of blood pressure. Overall, the experimental pressure
measurement through the MCL is reliable.
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3.2. Parametric Studies and Experimental Results

In this section, we perform two parametric studies and present the corresponding results.

3.2.1. Cardiovascular Responses to MCL Parameters

Cardiac output, defined as the product of HR and SV, can be adjusted by the pulsatile
heart pump in the MCL. The SV, in milliliters (mL), is the volume of blood pumped out
of the pulsatile pump per cardiac cycle, and the HR, in beats per minute (bpm), is the
number of heartbeats per minute. The MAP, in mmHg, is an important pathophysiological
indicator of cardiovascular diseases. We use a renal case, i.e., Figure 1b(IV), to study how
SV and HR affect the MAP measurement when keeping the compliance and resistances
the same. Figure 8 shows the effects of HR (triangles) and SV (squares) on the MAP in the
aortic artery of the aortorenal arterial system. The error bars for MAP in Figure 8 exhibit
a typical range of 0.5 to 0.8 mmHg, which is too small to be visually distinguished when
compared to the size of the data symbols. Consequently, they were not included in the
plot. We keep constant SV (55 mL) when varying HR and constant HR (77 bpm) when
varying SV. The MAP shows strong linear correlations to HR and SV, with R2 of 0.97 and
0.99, respectively. The general understanding of the result is as follows: When either HR or
SV increases, the cardiac output into the MCL increases, leading to an increment in blood
pressure [68,69]. Systolic pressure and diastolic pressure would both increase when either
SV [69] or HR [70–72] increased. Therefore, MAP increases.
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3.2.2. Effects of Stenosis Degree on TSPG

As indicated in Section 1, TSPG has been popularly used for assessing the hemody-
namic severity of non-coronary arterial stenosis. We have recently developed a noninvasive
functional assessment technique via ICHD [6,7,19] to assess the true hemodynamic severity,
mild or severe, of arterial stenosis, together with a recommendation of yes (if severe) or
no (if mild) for interventional treatment. In cases of severe stenosis, we can predict the
potential outcomes of revascularization. Such a new non-invasive hemodynamic assess-
ment will especially benefit the patient group with moderate arterial stenosis, avoiding
under- and over-interventional treatment to promote public health. In ICHD, we have
found [7] that the volume reduction (VR) of the arterial lumen is closer to TSPG than the
diameter reduction of the cross-section. To demonstrate the applicability of the MCL for
translational medical research, we studied how the degree of stenosis affects TSPG. As
shown in Figure 9a, we parameterize the degree of stenosis using a real iliac stenosis case
(Figure 1a(VI)) from the current (real) 50% of VR to 45%, 33%, and 0%. It is noted that 0%
of VR corresponds to the removal of stenosis through a stenting treatment. We cropped a
stenosed segment between the two pressure measurement locations for pa and pd to the
stenosis. The VR is defined as the volume ratio of the reduced lumen volume due to a
stenosis vs. the normal lumen volume without a stenosis. We experimentally measured pa
and pd for each of the four stenosis cases, from which the TSPG (= pa − pd) is calculated.
We plotted the relation between the TSPG of SBP (squares) and MAP (dots) and VR in
Figure 9b. It is seen that TSPG increases when the stenosis progresses. The TSPG~VR
curve is flat when VR is relatively small (<45%) but steep when VR is relatively high (45%).
On the flat side, increasing VR from 0% to 45% results in TSPG increases of 9 mmHg and
2 mmHg for SBP and MAP, respectively. On the steep side, increasing VR from 45% to
50% results in TSPG increases from 10 to 37 mmHg for SBP and 3 to 14 mmHg for MAP.
From the slope of the TSPG~VR curve, one can identify a threshold of VR, denoted as
VRms, which separates mild (VR < VRms) and severe (VR > VRms) stenosis conditions. For
the case studied, VRms = 45%. On the mild side (VR < VRms), a one percent increase in
VR causes a 0.2 mmHg and 0.047 mmHg increase of TSPG for SBP and MAP, respectively.
Whereas on the severe side (VR > VRms), a one percent increase in VR causes 5.4 mmHg
and 2.2 mmHg increases in TSPG for SBP and MAP, respectively. Using VRms (=45%),
one can assess that the existing stenosis of the case being studied, VR = 50%, is severe.
The recommendation for stenting therapy is then made. Our recommendation based on
the noninvasive assessment agrees with the clinical treatment for this case. In our recent
study of ICHD, we applied the same technique to assess renal stenoses and achieved good
agreement with clinical treatments [7,19]. Meanwhile, TSPG = 1 mmHg for both SBP and
MAP at VR = 0 means that if the stenosis is interventionally stented, the TSPG will be back
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to a normal condition, implying that stenting therapy will benefit the patient. Similarly to
Figure 8, the error bars for TSPG in Figure 9 span the ranges of 0.12 to 0.21 mmHg for MAP
and 0.33 to 0.38 mmHg for SBP, respectively. Their small magnitudes make them visually
indistinguishable when compared to the size of the data symbols. Therefore, we have also
omitted them from the plot.
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Figure 9. (a) A real (iliac case VI in Figure 1a) stenosis and its parameterization, characterized by VR.
Distal (pd) and proximal (pa) pressure are measured at the indicated location. (b) TSPG~VR curves
for SBP (squares) and MAP (dots). The cross-section area where the stenosis is located is shown
in blue.

4. Summary and Discussion

We have developed and validated a new MCL that mimics the blood circulation in
stenosed human systemic arterial systems and enables in vitro measurement of velocity
and pressure waveforms in 3D-printed silicone arterial systems anatomically extracted
from patient CTA imaging data. The MCL mainly consists of a human blood pump, a
test section, a reservoir, Windkessel chambers, and resistance valves. Its measurement
instruments include a DAQ system, a Doppler ultrasound machine, pressure transducers,
and flowmeters. In this work, we focus on the in vitro measurement of blood pressure in
the aortoiliac and aortorenal arterial systems. The objectives include reliably reproducing
the computed blood pressures from ICHD using the same arterial system and the same
flow conditions and revealing the pathophysiological properties that are essential to the
ICHD modeling but are not readily available from current standard clinical measurements.
Through this, we systematically studied five renal and six iliac cases to demonstrate the
reliability of IEHD measurement and the applicability of IEHD for medical applications.
The comparisons of the pressure data among the IEHD measurement, ICHD computation,
and medical measurement indicate that both IEHD and ICHD are reliable for the nonin-
vasive quantification of blood pressure in diseased human arteries. The IEHD-measured
pressure waveforms agree well with those invasively measured and numerically simulated.
A statistical analysis using all the iliac cases with 12 measurement samples and the renal
cases with 13 measurement samples resulted in good correlations of SBP and DBP between
experimental and medical measurements. The experimental measurement of SBP is more
accurate than that of DBP. The reason might be that the signals the pressure transducers
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capture are stronger in systole than in diastole. We have also conducted two parametric
studies using one renal and one iliac case. One is the cardiovascular response to MCL
parameters. We found that the MAP in the aorta of an aortorenal arterial system has
strong linear correlations with SV and HR, which are well understood. Another is the
effect of VR of the arterial lumen on the TSPG of stenosis. Parametric variation of VR
from real iliac stenosis and corresponding pressure measurements proximal and distal to
the stenosis resulted in a TSPG~VR curve, which reveals a threshold of VR to assess the
hemodynamic severity of the iliac stenosis. As the iliac stenosis was assessed as severe,
we recommended interventional treatment for the stenosis, which agreed with the clinical
treatment. Meanwhile, the TSPG at VR = 0 can predict the baseline pressure improvement
after a potential revascularization, e.g., stenting, of the stenosis.

In addition to the in vitro pressure measurements, the MCL is being continuously
developed for more research capabilities to support ICHD. We are interested in addressing
the following open questions in the near future. First, how necessary is it to model
the interaction between pulsatile blood flow and vessel deformation? Real arteries are
deformable, but atherosclerosis (a common vascular disease in seniors) can significantly
affect the elasticity of vessel walls during the cardiac cycle. Many ICHD computations
use no-slip boundary conditions on arterial walls to avoid the complexity of modeling
fluid-structure interaction and its demanding computation costs. IEHD can easily measure
hemodynamics in deformable silicone arteries, but the deformation is affected by the 3D
printing materials. The level of elasticity of a diseased artery segment is hard to determine
due to a lack of available medical data. We plan to use three silicone vascular replicas (rigid,
flexible, and elastic), medical artificial arteries, and cadaver arteries to study how the wall
elasticity will affect the flow and pressure measurements. This study would be an important
first-hand resource to guide the appropriate modeling of fluid-structure interactions in
ICHD. Second, how can the patient-specific coefficients of vessel compliance and proximal
and distal flow resistances in WK3 be determined? In current ICHD, these three coefficients
are empirical, which significantly weakens the medical applications of ICHD. We are doing
a systematic study for patient-specific vessel compliance and proximal and distal flow
resistances, integrating engineering modeling in IEHD and ICHD by utilizing the available
medical data. The study outcomes would advance the Windkessel model in ICHD for
patient-specific applications.

The long-term goal of this research is twofold: (1) to establish a dependable resource
that aids in the modeling of ICHD and validates the computational outcomes; and (2) to
enable the comprehensive hemodynamic characterization of pathophysiological quantities,
such as the coefficients in the WK3 model, for realistic blood flows in diseased human
vessels. By leveraging the capabilities of the MCL, we can develop enhanced diagnostic
tools, therapeutic strategies, and preventive measures using our powerful ICHD technique.
These advancements play a critical role in improving patient care, alleviating the burden of
arterial stenosis, and ultimately enhancing cardiovascular health outcomes.
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Nomenclatures

CO Cardiac output
CTA Computed Tomography angiogram
DAQ Data acquisition system
DBP Diastolic blood pressure
DICOM Digital Imaging and Communications in Medicine
DUS Doppler ultrasound sonography
FFR Fractional flow reserve
HR Heart Rate
ICHD Image-based computational hemodynamics
IEHD Image-based experimental hemodynamics
IRB Institutional Review Board
MAP Mean arterial pressure
MCL Mock circulation loop
SBP Systolic blood pressure
STL Standard Tessellation Language
SV Stroke volume
TSPG Trans-stenotic pressure gradient
V&V Verification and validation
WK3 3-element Windkessel model
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