
Citation: Hoffmann, J.; Weiss, D.A.

Compressible and Viscous Effects in

Transonic Planar Flow around a

Circular Cylinder—A Numerical

Analysis Based on a Commercially

Available CFD Tool. Fluids 2023, 8,

182. https://doi.org/10.3390/

fluids8060182

Academic Editors: Vasily

Novozhilov, Cunlu Zhao and D.

Andrew S. Rees

Received: 27 April 2023

Revised: 6 June 2023

Accepted: 9 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Compressible and Viscous Effects in Transonic Planar Flow
around a Circular Cylinder—A Numerical Analysis Based on
a Commercially Available CFD Tool
Jana Hoffmann * and Daniel A. Weiss

Institute of Thermal and Fluid Engineering, University of Applied Sciences and Arts Northwestern Switzerland,
Klosterzelgstrasse 2, 5210 Windisch, Switzerland; daniel.weiss@fhnw.ch
* Correspondence: jana.hoffmann@fhnw.ch

Abstract: Transonic planar flows around a circular cylinder are investigated numerically for laminar
and turbulent flow conditions with Reynolds numbers of 50 ≤ ReD ≤ 300 and 8890 ≤ ReD ≤ 80,000
and free stream Mach numbers in the range of 0.2 ≤ Ma∞ ≤ 2. A commercially available CFD tool is
used and validated for this purpose. The results show that the flow phenomena occurring can be
grouped into eight regimes. Compared to the incompressible flow regimes, several new phenomena
can be found. In contrast, at higher Ma∞ of 0.6 ≤ Ma∞ ≤ 0.8 vortices in the wake of the cylinder are
suppressed for ReD = 50. In some cases, Ma∞ = 0.8 and ReD ≥ 300, λ-shocks are formed in the near
cylinder wake. For supersonic Ma∞, two different phenomena are observed. Beside the well-known
oblique and detached shocks, for 50 ≤ ReD ≤ 300 a wake with instabilities is formed downstream of
the cylinder. Furthermore, the temporal mean drag coefficient CD, the Strouhal number Str, as well
as the critical Mach number Macrit are calculated from the simulation results and are interpreted.

Keywords: transonic flow; circular cylinder; Kármán vortex street; Computational Fluid Dynamics
(CFD); shock waves; tangential discontinuity; Laval nozzle

1. Introduction

The flow around a circular cylinder is encountered in many engineering applications
as well as in nature and in fundamental research. Some examples are the air flow around a
cooling tower, as well as missiles and aircrafts in the transonic regime. In transonic flows
and fluid dynamical situations in general, a variety of typical phenomena, such as shock
waves, vortices, boundary layers, flow separation and shear layers, arise. Studying the
interaction of those phenomena is of large interest in fluid–structure interactions, because
resonance frequencies can be excited by flow instabilities. The question arises as to what
frequency is triggered by the flow around a cylinder, which could provoke an oscillation. In
dimensionless terms, this means that the Strouhal number Str becomes a function not only
of the Reynolds number ReD, but also of the Mach number Ma∞. In practical situations
embedded in a larger project context, where questions like the mentioned one arise, one
often does not have the time nor the resources to develop one’s own numerical tool for
simulation and calculation. Rather, one has to refer to methods and tools available on the
market; that is why the investigation described here is based on a commercially available
CFD tool. It is clear, though, that such a tool has to be checked appropriately before the
corresponding findings can be used.

There are various studies describing the flow phenomena occurring in incompressible
flow. For small Reynolds numbers in the range of 80 ≤ ReD ≤ 300, a Kármán vortex street
is formed in the wake of the cylinder described by Schlichting and Gersten [1]. Although
the flow around a circular cylinder has received a lot of attention in recent decades, very few
experimental and numerical studies are available about the compressible and in particular
transonic flow around a circular cylinder. One of the reasons might be the difficulties
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in performing experiments of simple flow situations such as the planar flow around a
circular cylinder. However, planar aerodynamical investigations are also of interest, as
they allow one, for example, to estimate in a simplified manner the force on a body in a
surrounding transonic flow. The most important experimental studies and their findings are
summarised below.

Macha [2] performed wind tunnel tests in order to determine the drag coefficient
CD for a Reynolds number range of 5 × 104 ≤ ReD ≤ 8.7 × 106 and a Mach number
range of 0.2 ≤ Ma∞ ≤ 1.4. One of the most important findings is the reduction in CD
from Ma∞ = 0.7 to 0.8, caused by the formation of shock waves. In addition, Murthy
and Rose [3] performed a series of wind tunnel tests with 0.25 ≤ Ma∞ ≤ 1.2 and
3× 104 ≤ ReD ≤ 5× 105. The increase in CD, as Ma∞ reaches sonic conditions and agrees
with the findings of Macha [2]. Furthermore, it was found that the detectable vortex shed-
ding ceases at Ma∞ ≥ 0.9. The ranges 0.4 ≤ Ma∞ ≤ 0.85 and 1.7× 105 ≤ ReD ≤ 3.4× 105

were investigated by Rodriguez [4] using a wind tunnel. It was found that the coupling
between the near wake and the vortex street increases with increasing Ma∞. As soon as
local regions of the flow reach sonic conditions and λ shocks occur, the coupling between
the vortex street and the near wake is cut off. The upstream flow field is now independent
of the vortex street. In addition, the Strouhal number Str is approximately 0.2, except
for a rise when the quasi-steady regime is reached. In addition, the drag and lift coeffi-
cients, CD and CL, were calculated from the pressure measurements. Ackerman et al. [5]
experimentally investigated time-resolved pressure distributions at 0.1 ≤ Ma∞ ≤ 0.9 and
ReD = 6.83× 105. From these measurements, the surface pressure fluctuations, CD, Str
and the occurring flow regimes were evaluated. For Ma∞ = 0.4, local regions of flow
around the cylinder reach sonic conditions, but only on one side of the cylinder at a time.
The flow enters the intermittent shock wave regime. As Ma∞ increases beyond 0.4, CD in-
creases. The region downstream of the cylinder, in which the vortices are formed, shortens.
Beyond around Ma∞ = 0.65, the flow enters the permanent shock wave regime and CD
decreases. Once the flow enters the wake shock wave regime below Ma∞ = 0.8, the vortex
formation region becomes elongated. A normal shock grows at the point of vortex roll
up and CD increases. Nagata et al. [6] used a low-density wind tunnel with time-resolved
Schlieren visualisations, pressure and force measurements, in order to characterise the flow
for 1000 ≤ ReD ≤ 5000 and 0.1 ≤ Ma∞ ≤ 0.5. The trend of the Ma∞ effect on the flow field,
Str and the maximum width of the recirculation change at approximately ReD = 3000.
Str increases as ReD increases and the increment becomes larger as Ma∞ increases. For
Ma∞ < 0.3, Str is independent of Ma∞. For ReD ≤ 3000 and ReD ≥ 4000 at Ma∞ > 0.3, Str
decreases and increases, respectively. Furthermore, it is observed that CD increases as Ma∞
or ReD increase. Gowen and Perkins [7] measured the pressure distribution around a circu-
lar cylinder in subsonic and supersonic flows and calculated CD for 5× 104 ≤ ReD ≤ 106

and 0.3 ≤ Ma∞ ≤ 2.9. It is shown that CD is not influenced by ReD under the supersonic
conditions investigated.

In addition to the experimental investigations, numerical simulations of the compress-
ible flow around a circular cylinder have been increasingly carried out over the last few
decades. Some examples of numerical investigations are described below. Botta [8] inte-
grated the Euler equations numerically to investigate the inviscid flow for 0.38 ≤ Ma∞ ≤ 0.98,
that means for a Reynolds number ReD → ∞. The time-dependent CD and CL are evaluated
in order to determine Str. Furthermore, the distributions of the vorticity, the entropy devia-
tion, pressure coefficient, as well as the velocity fields are provided. Two transitions over
the investigated Ma∞ range were observed, the transition to a chaotic turbulent regime
and from this to a quasi-steady flow. In the range 0.5 ≤ Ma∞ ≤ 0.6, the solution shows a
periodic behaviour. Bobenrieth Miserda and Leal [9] performed numerical Detached Eddy
Simulations of the unsteady transonic flow at Ma∞ = 0.8 and ReD = 500,000, where several
complex viscous shock interactions were observed. The frequency of CL corresponds to
the vortex-shedding frequency, whereas the frequency of the CD characterises the viscous
shock interaction. In addition, Xu et al. [10] performed Detached Eddy Simulations for
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ReD = 2 × 105 and various Mach numbers 0.85 ≤ Ma∞ ≤ 0.98. Two flow states are
found, an unsteady one for Ma∞ < 0.9 and a quasi-steady flow state for Ma∞ > 0.9.
The unsteady flow state is characterised by the interaction of moving shock waves, the
turbulent boundary layer on the cylinder wall and the vortex shedding in the cylinders
near the wake. In the quasi-steady flow state, strong oblique shock waves are formed and
the vortex shedding is suppressed. Furthermore, the local supersonic zone, the separation
angle and CD are evaluated and analysed. Hong et al. [11] studied 0.1 ≤ Ma∞ ≤ 0.95
and ReD = 2× 105 using constrained Large Eddy Simulations. The effects of Ma∞ on
the flow patterns and state variables such as the pressure, the skin friction, CD and the
cylinder surface temperature are studied. Non-monotonic behaviour of the pressure and
skin friction distributions are observed with increasing Ma∞. The minimum mean separa-
tion angle occurs at 0.3 ≤ Ma∞ ≤ 0.5. Canuto and Taira [12] performed Direct Numerical
Simulations of 20 ≤ ReD ≤ 100 and 0 ≤ Ma∞ ≤ 0.5. The wake is characterised using
different lengths and CD, and Str and some examples of the pressure distribution are
provided. Furthermore, a stability analysis is performed. It is shown that CD increases and
Str decreases with increasing Ma∞ for constant ReD. Xia et al. [13] performed constrained
Large Eddy Simulations for ReD = 4× 104 and ReD = 106 and various Mach numbers
of 0.5 ≤ Ma∞ ≤ 0.95. The separation angle, CD, the pressure distribution and the skin
friction coefficient were evaluated and analysed. Furthermore, the density gradient |∇ρ|
was used to identify four different flow regimes. Shirani [14] simulated 0.1 ≤ Ma∞ ≤ 0.9
and 103 ≤ ReD ≤ 8.4× 106 solving the two-dimensional time averaged Navier–Stokes
equations numerically. The behaviour of the time averages of CD and CL and their fluctu-
ation frequencies were evaluated. Matar et al. [15] investigated the real gas flow around
a circular cylinder at high Reynolds numbers ReD and Mach numbers Ma∞ between 0.7
and 0.9 using wall-resolved implicit Large Eddy Simulations (iLESs). For experimental
validation at Ma∞ = 0.7, Background Oriented Schlieren (BOS) visualisations are used.
The flow phenomena of a Kármán vortex street, acoustic waves and compression waves are
observed. In addition, the Strouhal number Str, the wall pressure and the mean pressure
drag coefficients are provided and are compared with literature and URANS simulation
results. In addition, Linn and Awruch [16] performed Large Eddy Simulations (LESs) of
the two- and three-dimensional flow around a circular cylinder at ReD = 500,000 and
Ma∞ = 0.8 using various tetrahedron-adapted meshes. The density gradient |∇ρ|, the
streamlines and Q-criterion isosurfaces are used to visualise the flow behaviour. Moreover,
the drag and the lift coefficients CD and CL, the Strouhal number StrL, the mean surface
pressure coefficient and the angle of the boundary layer separation point are provided.

The present study describes the transonic planar flow around a circular cylinder at con-
ditions Ma∞ and ReD where only a few investigations have been carried out
(Figure 1). The investigation of the planar situation enables one to analyse the phenomena
uncoupled from the influence of potential three-dimensional effects. This investigation
gives an overview of the flow phenomena occurring in a wide range of Mach numbers
of Ma∞ = 0.2 to 2 and Reynolds numbers of ReD = 50 to 80,000. Within the first few
chapters, the fundamentals and the numerical implementation are briefly introduced. The
simulations of the compressible flow around a circular cylinder are verified by applying
the code used to the flow in a Laval nozzle. For validation, the results obtained for the
flow around a cylinder are compared to the results from other authors. Different regimes
with phenomena such as shock waves, sound waves, flow separation, vortex shedding,
shear layers and tangential discontinuities are identified and some of them are analysed in
more detail. To capture the different flow phenomena, different regions of interest are used
for the numerical procedure. This investigation focuses on the behaviour in the wake of
the cylinder. In addition, the critical Mach number Macrit is evaluated and the averaged
drag coefficient CD and the Strouhal number Str are provided. Finally, polar diagrams are
presented, that means the time-resolved drag and lift coefficients, CD and CL, are plotted as
a function of time in a CD-CL-diagram, to analyse their phase shift and their frequency ratio.
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Figure 1. Conditions investigated in previous studies and in this study [2–7,9–13].

2. Fundamentals

Within this chapter, the most important fundamentals such as the governing equations
solved in CFD and the dimensionless numbers used within this study are introduced.

2.1. Governing Equations

The three transport equations of mass, momentum and energy are called the Navier–
Stokes equations, where only momentum and energy can be transported via conduction in
all directions x, y and z. The general transport equation is shown in Equation (1) where ϕ
is the transported property. In Table 1, the transport property ϕ, the diffusion coefficient Γϕ

and the source, loss and production term Sϕ are specialised for the mass, momentum and
energy transport equations.

∂ϕ

∂t
= −∇ · (ϕ~u) +∇ ·

(
Γϕ∇ϕ

)
+ Sϕ (1)

The terms of Equation (1) can be described in words as follows.

• ∂ϕ
∂t : Accumulation of ϕ in the control volume.

• ∇ · (ϕ~u): Convective flux of ϕ across the surfaces of the control volume.
• ∇ ·

(
Γϕ∇ϕ

)
: Conductive flux of ϕ across the surfaces of the control volume.

• Sϕ: Production and/or loss of ϕ in the control volume + external supply of ϕ in the
control volume.

The fluid air is assumed to behave as an ideal gas; thus, the corresponding equ-
ation follows

p = ρRT (2)

where R denotes the specific gas constant, expressed in J kg−1 K−1 and T the absolute
temperature. Turbulence effects are described by means of the Shear Stress Transport (SST)
model; see Section 3.1.

Table 1. Specialisation for mass, momentum and energy for the Navier–Stokes equations

Transport Property ϕ Diffusion Coefficient Γϕ in m2 s−1m2 s−1m2 s−1 Source, Loss and Production Sϕ

Mass Density ρ in kg m−3 0 0

Momentum Specific momentum ρui in N s m−3 Kinematic viscosity ν Sρui in N m−3

Energy Specific enthalpy h in J m−3 Thermal diffusivity αth Sh in W m−3
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2.2. Classification of the Flow Regimes

The fluid flow is classified by means of the Reynolds and the Mach numbers ReD and
Ma∞. The Reynolds number ReD defined in Equation (3) describes the ratio of inertial
forces to viscous forces and is used to predict the flow regime of laminar, transitional or
turbulent flow. It is defined using the free stream density ρ∞ of the fluid, the free stream
velocity u∞, the cylinder diameter D and the free stream dynamic viscosity µ∞.

ReD =
ρ∞ · u∞ · D

µ∞
(3)

For the Reynolds numbers above a critical Reynolds number Recrit, which depends on
the flow situation (flow over a flat plate, pipe flow, etc.), the flow becomes turbulent, which
means it behaves in a chaotic way and underlies random fluctuations. Nevertheless, it has
to be said that Recrit is only a guiding value; there is no abrupt transition from laminar to
turbulent at a certain Reynolds number.

The free stream Mach number Ma∞ is the ratio between the free stream velocity u∞
and the speed of sound a∞ in the far field.

Ma∞ =
u∞

a∞
(4)

According to the local Mach number Ma, the flow is called subsonic if Ma < 1,
supersonic if Ma > 1 and hypersonic if Ma > 5. Transonic flows have regions of both
types, subsonic and supersonic.

2.3. Further Dimensionless Numbers

The behaviour of the fluid flow can then further be characterised by additional dimen-
sionless numbers, which are described in this chapter.

The Strouhal number Str in Equation (5) describes periodically oscillating flow phe-
nomena using the frequency of the particular oscillation f , the cylinder diameter D and the
free stream velocity u∞.

Str =
f · D
u∞

(5)

The drag and the lift coefficients CD and CL, respectively, are defined in Equations (6) and (7)
as the ratio of the particular component of the force acting on the cylinder, drag or lift force,
FD or FL, and the product of the dynamic pressure ρ∞

2 · u2
∞ and the cylinder’s front face A.

CD =
FD

ρ∞
2 · u2

∞ · A
(6)

CL =
FL

ρ∞
2 · u2

∞ · A
(7)

3. Numerical Simulation

Simulations in the laminar and turbulent regimes have been performed. Figure 2
shows Ma∞ and ReD of those simulations. Therefore, the simulations are carried out in
groups with constant Reynolds number ReD or constant cylinder diameter D. The ReD
range of the laminar simulations is chosen in accordance with the Kármán vortex street
in order to investigate the influence of the increase in Ma∞ on the vortices. In addition,
two simulations with Ma∞ = 0.2 and 2 at ReD = 100 were performed for validation
with Burbeau and Sagaut [17]. The turbulent regimes are chosen with a constant cylinder
diameter D in view of an upcoming experimental validation in a transonic wind tunnel.
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Figure 2. Simulation points at different Mach and Reynolds numbers, Ma∞ and ReD, for constant
Reynolds number (black) and constant diameter (white).

3.1. Numerical Method and Model

The simulations were performed using the commercial software tool Ansys CFX 19.0.
In Ansys CFX, the Navier–Stokes equations are solved using the Element-Based Finite-
Volume Method. Depending on the Mach number Ma∞ and whether the flow is stationary
or transient, etc., the partial differential equations that are solved are elliptic, parabolic,
hyperbolic or even of mixed-type.

The transport equations are solved in an implicit way. In general, the transient scheme
of “Second Order Backward Euler” and the advection scheme of “High Resolution”, respec-
tively, are chosen. The “High Resolution” advection scheme is based on the boundedness
principles used by Barth and Jesperson [18]. The pressure–velocity coupling proposed by
Rhie and Chow [19] and modified by Majumdar [20] is used.

The heat transfer is chosen to be “Total Energy”, which is necessary for high-speed
flows at flow velocities u near the speed of sound a. Using “Total Energy”, the transport
equation for total enthalpy h0 is solved, which is related to the static enthalpy h according
to Equation (8).

h0 = h +
1
2
~u2 (8)

Turbulence is modelled using the Shear Stress Transport (SST) model. It is a suitable
trade-off between quality and computational time. One of its strengths is the accuracy
of the prediction of the onset and the amount of flow separation under adverse pressure
gradients. In contrast with the Direct Numerical Simulation (DNS), in which the turbulent
structures of all length scales are resolved with a fine computational mesh, all length scales
are modelled in this turbulence model. For this reason, the flow variables are split into
their time-averaged values and their fluctuating components and the Reynolds-Averaged
Navier–Stokes (RANS) equations have to be solved. In order to do so, models for the
computation of the Reynolds stresses and the Reynolds fluxes are provided. The SST
turbulence model was first presented by Menter [21] and combines the advantages of the
k-ω turbulence model near the wall and the k-ε turbulence model in the bulk flow. Based on
the distance of a node to the nearest wall, blending functions are used to ensure a smooth
transition between the two models.

Because the near wall formulation determines the accuracy of the wall shear stress,
“automatic wall functions” are used. Depending on the y+-value, switching occurs between
the low-Reynolds near wall approach and the wall-function approach, which is logarithmic
for higher y+-values. [22]
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3.2. Description of the Computational Domain

Figure 3 shows the computation domain of the cylinder and its surroundings. Different
computational domains with different values of xmin, xmax, ymin and ymax were carried out
for the different simulation conditions depending on ReD and Ma∞. This leads to various
cylinder diameters D.

INLET OUTLET

TOP

BOTTOM

FRONT

BACKCYL

x

y

z

Figure 3. Computational domain with the locations of the boundary conditions in capital letters.

3.3. General Simulation Parameters

The geometries and the meshes were created with Ansys ICEM CFD. The simulations
were performed as transient with a steady-state solution as the initial condition. To speed
up the solving process, the steady-state solution of the laminar regimes was set up with a
rotating cylinder Ω = 2·u∞

D in order to obtain unsteady behaviour in shorter time steps. This
idea follows those proposed by Shirani [14] and Braza et al. [23]. Furthermore, simulations
with coarser meshes were used as initial conditions, the final simulations were carried out
with finer meshes. Three different considerations are made regarding the time step size
∆t. Firstly, an estimation of the time step size based on the vortex shedding frequency f
assuming Str ≈ 0.21 is made with one oscillation period being resolved with 16 time steps.
Secondly, the time step size is calculated from a mean cell dimension of the free stream
according to ∆t ∼ ∆xcell

u∞
. Thirdly, the time step size can be calculated using the acoustic

Courant number. Since the present work involves transonic conditions with velocities
u∞ close to the speed of sound a∞, the time step size ∆t ∼ ∆xcell

a∞
is of the same order of

magnitude as the previously mentioned one. The time step ∆t ∼ ∆xcell
u∞

was the smallest
one in all the simulations; this one was chosen. The time steps ∆t of the final simulations
lie in the range of micro- to nanoseconds.

3.4. Mesh Generation

Some phenomena of compressible flow are more strongly influenced by the selected
flow region or the boundary conditions than others. For this reason, a combined geometry
and mesh study was performed to assess and minimise the influence of the mesh and the
geometry dimensions. It was carried out for different Mach numbers Ma∞ and for the
Reynolds number of ReD = 100, as well as the constant cylinder diameter of D = 0.003 m
in an iterative manner. The mesh was refined step by step and the relative deviations of
Str, CD and Mamax were calculated between two meshes. If the relative deviation in these
quantities of the respective mesh from the next finer mesh is less than 2.5 %, where most of
the deviations are even below 1 %, then the mesh is considered to be sufficiently fine. The
mesh quality of each mesh was determined according to the requirements in Table 2, where
the minimum and maximum values over all the meshes are listed. Most of the criteria are
within the required range, only a few cells exceed the criteria of the mesh expansion factor.
Table 3 shows the result of the mesh study with the corresponding domain sizes and the
number of cells for each simulation.

The general mesh, which is shown in Figure 4, consists of sixteen mesh blocks with
a square O-grid with an overall dimension of 3 · D around the cylinder. A second O-
grid within the first one was created to better resolve the boundary layer around the



Fluids 2023, 8, 182 8 of 28

cylinder surface. It is ensured that the y+-value is y+ < 300 to model the boundary layer
with automatic wall function. The y+-value amounts to 5 < y+ < 35 for the turbulent
simulations. The z-direction is resolved with one cell; the dimension of this cell is scaled
with the smallest cell dimension near the cylinder wall. The cell sizes in the x- and y-
directions increase with increasing distance from the cylinder with a maximum growth rate
of 1.2 to have a trade-off between computational time and accuracy.

Table 2. Mesh quality requirements based on several criteria and min./max. values of all the meshes.

Criteria Requirement Min./Max. Value

Aspect ratio <1000 “double precision” [24] 1.41 to 140.5

Orthogonal quality (numerical accuracy, robustness) >1/3 [24], >0.1 [25] 0.72 to 1

Skewness <0.95 [25] 0 to 0.5

Smoothness 1 to 1.5 [25] 1 to 1.47

Angle 20 to 160 [26] 45 to 134.4

Mesh expansion factor <1.2 1 to 1.5

Table 3. Size of the computational domain (min. and max. values of x and y) and number of mesh
cells for different simulations based on ReD and Ma∞.

ReD Ma∞ Range x Range y Number of Cells

50
0.4 to 1.1

−50 · D ≤ x ≤ 50 · D −50 · D ≤ y ≤ 50 · D
323,304

1.2 1,290,432

100 0.2 to 2.0 −50 · D ≤ x ≤ 50 · D −50 · D ≤ y ≤ 50 · D 1,290,432

300

0.4 to 0.5 −50 · D ≤ x ≤ 50 · D −50 · D ≤ y ≤ 50 · D 1,290,432

0.6 to 0.8 −25 · D ≤ x ≤ 100 · D −25 · D ≤ y ≤ 25 · D 3,547,380

1.2 −50 · D ≤ x ≤ 50 · D −50 · D ≤ y ≤ 50 · D 1,290,432

8890 0.4

−50 · D ≤ x ≤ 50 · D −50 · D ≤ y ≤ 50 · D 1,307,732

11,100 0.5

13,300 0.6

17,800 0.8

26,700 1.2

26,700 0.4 −25 · D ≤ x ≤ 100 · D −25 · D ≤ y ≤ 25 · D 3,547,380

33,400 0.5 −50 · D ≤ x ≤ 50 · D −50 · D ≤ y ≤ 50 · D 1,307,732

40,000 0.6
−25 · D ≤ x ≤ 100 · D −25 · D ≤ y ≤ 25 · D 3,547,380

53,400 0.8

80,000 1.2 −50 · D ≤ x ≤ 50 · D −50 · D ≤ y ≤ 50 · D 1,307,732



Fluids 2023, 8, 182 9 of 28

Figure 4. Domain and general mesh showing the dimensions of the mesh blocks and in capital letters
the locations of the boundary conditions

3.5. Boundary Conditions

The boundary conditions shown in Table 4 are given separately for Ma∞ < 1 and
Ma∞ > 1. The pressures for the subsonic and supersonic simulations were set to p = 0 bar(g)
and p = 8 bar(g), respectively.

Table 4. Boundary conditions for Ma∞ < 1 and Ma∞ > 1; positions of the boundary conditions
according to Figure 3.

Position
Boundary Condition

Ma∞ < 1 Ma∞ > 1

CYL No slip wall

FRONT, BACK Symmetry

INLET u∞, T p, u∞, T

OUTLET p Outlet

TOP, BOTTOM Free slip wall Outlet

4. Verification and Validation

In addition to the mesh and the parametrical study, the numerical procedure was
verified and validated for selected cases of planar transonic flow situations. The Laval
nozzle was used to analyse the flow phenomenon of the straight shock wave more pre-
cisely regarding the numerics. Furthermore, the results were validated with results from
other investigations.

4.1. Laval Nozzle for Verification

The planar Laval nozzle with air assumed as ideal gas shown in Figure 5 was simu-
lated for verification. The boundary conditions defined are either Dirichlet or Neumann
boundary conditions, as shown in Figure 5. Symmetry boundary conditions were chosen
in the direction perpendicular to the drawing plane and on the middle axis of the Laval
nozzle, which are basically zero-gradient conditions. Different boundary conditions were
specified for the wall in two simulations, no slip (u = 0 m s−1) and free slip in order to
analyse the influence of the wall on the flow phenomena. Three different meshes with 3125,
12,500 and 50,000 elements were used to investigate the influence of mesh resolution on the
shock, where a sufficient mesh quality is ensured using the criteria listed in Table 2. The
solver process is started with the advection schemes “Upwind” and “High Resolution”,
respectively, for comparison purposes with a maximum number of 10,000 iterations.
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One result of the Mach number Ma from the CFD simulation of the Laval nozzle
described above is shown in Figure 5. The subsonic flow from the inlet is accelerated to a
Mach number of around 1.8 along the Laval nozzle. Further downstream follows a shock
and a strong reduction of Ma to about 0.6. Downstream, the flow is slightly decelerated
until it finally reaches the outlet.

Figure 5. Planar Laval nozzle (length 0.84 m) coloured by the Mach number Ma including the
boundary conditions for the inlet, the outlet and the wall. The inlet (dimension of 0.14 m) of the Laval
nozzle is on the left-hand side; the outlet (dimension of 0.17 m) is on the right-hand side. Only the
upper half of the Laval nozzle is simulated resolved with 12,500 elements due to the x-axis symmetry.

In a next step, the behaviour of the Mach number Ma along the Laval nozzle is
examined in more detail. In order to do so, Figure 6 shows Ma along the central axis of the
Laval nozzle for different simulation setups with the three different meshes. The result of a
simplified calculation is also shown in black colour for comparison. For this calculation,
the flow is assumed to be one-dimensional, steady-state, compressible and adiabatic with
air as ideal gas and with a shock wave expansion which is infinitesimally small. It is
an iterative calculation, whereby the exact shock position of x = 0.6979 m is calculated.
Figure 6 shows two different curves for each simulation; these are the area-averaged Mach
number over the respective position in blue colour and Ma evaluated on the central axis of
the Laval nozzle in red colour. The reason for this is the better comparability with the one-
dimensional calculation. However, due to the two-dimensional simulation, comparability is
only guaranteed to a limited extent. It is obvious that at Ma on the central axis (red curves)
the shock can be depicted more precisely with a finer mesh resolution. In the simulation
with “High Resolution” and the free-slip wall, the shock occurs further downstream, which
seems plausible. As a result of the higher-order advection scheme, the gradient at the
shock position can be depicted better, resulting in a steeper curve. After the decrease of Ma
as a result of the shock, there is a non-physical undershoot. Compared to a higher-order
scheme, the first-order scheme “Upwind” suffers from numerical diffusion. Therefore, the
higher-order scheme “High Resolution” should be chosen in order to sufficiently resolve
the shocks. In the case of the area-averaged curves, the gradient at the shock position
is almost identical for the different mesh resolutions. The reason for that is, as Figure 5
shows, that the shock is not completely straight, it is curved. However, the shock position
of the different meshes differs only slightly. Detailed analyses of the flow variables, such
as pressure p, temperature T and the Mach number Ma show that there are about eight
to nine elements needed to resolve the shock. In reality, the extent of shock waves in the
stream-wise direction amounts to only a few mean free paths of the molecules, so this must
be taken into account.
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Figure 6. Mach number Ma along the planar Laval nozzle from the one-dimensional calculation and
the two-dimensional simulation results. Full range (left) and zoomed region of interest (right). The
simulation results indicated with * were performed using a free-slip wall instead of a no-slip wall
and an advection scheme of “High Resolution” instead of “Upwind”.

4.2. Validation with Literature

In addition to the verification using the Laval nozzle, some points were also simulated
based on Ma∞ and ReD, for which results from other work [17,27,28] are available. The
compressible and the incompressible flow around a planar circular cylinder at ReD = 100
and Ma∞ = 0.2 and the compressible flow at ReD = 100 and Ma∞ = 2 are investigated.

Figure 7a,b show the velocity component ux of the compressible flow at ReD = 100
and Ma∞ = 0.2, in which the advection schemes “Upwind” and “High Resolution” are
compared with each other. The results show that a higher-order advection scheme is
necessary for the adequate prediction of the periodic vortex shedding, a so-called Kármán
vortex street. In addition, Table 5 shows the time-averaged drag coefficient CD and the
Strouhal number Str for the incompressible and compressible cases, including a comparison
with the literature. A good agreement of CD and Str with the literature can be seen with a
maximum deviation of approximately 2% and 4%, respectively.

(a) (b)

Figure 7. Transient result of velocity in x-direction ux at ReD = 100 and Ma∞ = 0.2 with a time step
size of 10−8 s. (a) Advection scheme “High Resolution”; (b) Advection scheme “Upwind”.

Table 5. Comparison of the Strouhal number Str and the time-averaged drag coefficient CD at
ReD = 100 and Ma∞ = 0.2 with other studies [17,27,28].

Compressibility Str CD

This study incompressible 0.176 1.396
This study compressible 0.162 1.419

Burbeau and Sagaut [17] and Lesaint and Raviart [27] incompressible 0.173 1.411
Burbeau and Sagaut [17] and Oden Tinsley et al. [28] compressible 0.165 1.370

In addition,the supersonic flow at ReD = 100 and Ma∞ = 2 was also considered. For
this purpose, the boundary conditions are chosen according to Table 4 . Figure 8a shows
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the Mach number Ma distribution, in which the detached shock position corresponds very
precisely to that from Burbeau and Sagaut [17] (dashed black line). Figure 8b shows a
simulation result with extended flow area in the positive x- and y-axis directions. The
symmetry is assumed in the simulation with respect to the x-axis, because the flow in
Figure 8b is also symmetric with respect to the x-axis. The flow phenomena at ReD = 100
and Ma∞ = 2 can be clearly seen in Figure 8a,b. A detached shock forms upstream of the
cylinder. This detached shock turns into a Mach cone along the shock front with increasing
distance in the y-direction. The opening angle of α = 32° from Figure 8b agrees well with
the theoretical angle of α = 30° according to Equation (10); for more details, see Section 5.4.

In Figure 8a, a weak reflection of the detached shock at the boundary conditions in the
y-direction downstream from around x/D = 7 can also be seen. In comparison to Figure 8b,
the influence of the boundary condition is clearly visible. For this reason, when simulating
the flow around the planar circular cylinder, it must be ensured that the limitation of the
flow region in the y-direction is chosen sufficiently. In addition to the detached shock,
two oblique shocks form downstream of the cylinder or obliquely away from the cylinder.
Analogously to the detached shock, this is followed by an abrupt change or a discontinuity
of the flow variables. A wake with a very small velocity u ≈ 0 forms downstream of the
cylinder. This wake is separated from the rest of the flow area by a tangential discontinuity;
for more details, see Section 5.1.

oblique
shock

tangential dis-
continuity

detached
shock

straight
shock

(a)

oblique
shock

detached
shock

Mach
cone

(b)

Figure 8. Mach number Ma distribution showing the flow phenomena at ReD = 100 and
Ma∞ = 2 for two geometries. (a) Shock wave position from Burbeau and Sagaut [17] (dashed line);
(b) Extended geometry.

5. Results and Discussion

In the first subsection of this chapter, the way different flow phenomena are identified
is described. The eight flow regimes obtained are then described in a general way and
classified, based on Ma∞ and ReD. The flow structures of the regimes are discussed in
more detail and compared to other authors. After that, the straight and the λ shocks are
evaluated. Finally, the critical Mach number Macrit, the Strouhal number Str, the drag
coefficient CD and the polar diagrams are presented.

5.1. Identification of Flow Phenomena

Inspired by the experimental Schlieren flow visualisation techniques, the modulus of
the dimensionless density gradient D·|∇ρ|

ρ0
∞

is used to visualise all relevant flow phenomena.
Various shock waves can be observed in compressible flows such as detached shocks,

normal shocks, oblique shocks and λ shocks. Shocks are irreversible discontinuities in
the flow variables over a few mean free-path lengths of the molecules. If the plane of the
discontinuity is perpendicular to the flow or the streamlines, it is a straight shock wave.
The streamlines are not deflected and the flow is supersonic upstream of the shock and
subsonic downstream. In the case of an oblique shock, however, the streamlines are kinked
and the normal component of the velocity is supersonic upstream of the shock and subsonic
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downstream. The magnitude of the tangential velocity component is constant across the
shock and the flow downstream of the shock can be either subsonic or supersonic. In
addition to the density gradient, shocks can be identified by a discontinuous change in
other flow variables. An example is the Mach number Ma shown in Figure 9a, which
decreases over the detached shock as well as the oblique shock (Figure 10). Across the
detached shock, the flow regime changes from supersonic to subsonic and over the oblique
shock from supersonic to a lower velocity in the supersonic range. The streamlines in
Figure 9a are kinked across the shock waves away from the x-axis, but not on the symmetry
axis in the y-direction, where the detached shock is normal to the streamlines. Furthermore,
the pressure p increases across both the detached and the oblique shocks, as shown in
Figure 9c. As can be seen in Figure 9d, there is a discontinuous reduction in the total
pressure p0 across the shocks.

(a) (b)

(c) (d)

Figure 9. Shocks and tangential discontinuities at Ma∞ = 1.2 and ReD = 26, 700 visualised by Ma,
ωz, p and p0. ( a) Mach number Ma field with streamlines in black colour; (b) Vorticity component
ωz distribution; (c) Pressure p distribution; (d) Total pressure p0 distribution.

In the wake of the cylinder, a detachment forms at Ma∞ = 1.2 and ReD = 26, 700,
which is characterised by two converging shear layers further downstream of the cylinder.
There is no mass flow across this tangential discontinuity (Figure 10) and because of that
the normal velocity component on both sides of the tangential discontinuity must be zero.
Therefore, the streamlines are parallel in the area of the tangential discontinuity, which
can be seen in Figure 9a. As shown in Figure 9a, there is a discontinuity in the Mach
number Ma and in the tangential velocity component. Due to this change in the tangential
velocity, a theoretically diverging vorticity ω (see Equation (9)) results, which can be used
to identify the tangential discontinuity. Due to the mesh resolution, which is finite, there is
no abrupt discontinuity in the tangential velocity component; however, the value of the
corresponding vorticity component still becomes very large.

~ω = ~∇× ~u (9)

Across such a tangential discontinuity, the pressure p, however, must be continuous
(see Figure 9c). The total pressure p0 (Figure 9d) in turn may be and in general will be
discontinuous, as can be concluded from the momentum balance.
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oblique shock

tangential discontinuity

detached shock

straight shock

Figure 10. Density gradient |∇ρ| at Ma∞ = 1.2 and ReD = 26, 700 showing the different phenomena.

The question arises, how the vortices can be distinguished from other flow phenomena.
The z-component of the vorticity ωz is shown in Figure 11a, whereby the left-turning and
right-turning vortices have a different sign. In contrast to the tangential discontinuity, the
streamlines cross areas of different orders of magnitude of the vorticity. Vortices are rather
smeared out compared to shocks and tangential discontinuities. In addition, vortices are
decently visible in the swirling strength ζ, as shown in Figure 11b (the swirling strength ζ
denotes the imaginary part of the pair of complex-conjugated eigenvalues of the velocity
gradient tensor. Thus, in the case where the velocity gradient tensor is symmetric, the
swirling strength is zero).

(a) (b)

Figure 11. Shedding vortices at Ma∞ = 0.4 and ReD = 50 visualised by ωz and ζ; (a) Vorticity
component ωz; (b) Swirling strength ζ

5.2. Classification of Flow Regimes

The eight flow regimes, denoted by (a) to (h), are shown in Figure 12 and compared
to the incompressible regimes from Schlichting and Gersten [1]; incompressible flow is
assumed as Ma∞ < 0.3. The occurring compressible regimes (a) to (c) at ReD = 50 to
100 and 0.2 ≤ Ma∞ ≤ 0.8 are similar to the incompressible regimes. It is observed that
subsonic Ma∞ of 0.6 ≤ Ma∞ ≤ 0.8 suppress the vortices in the wake of the cylinder for
ReD = 50, whereas the incompressible flow regime at ReD = 50 shows an onset of the
Kármán vortex street. Increasing ReD with subsonic 0.4 ≤ Ma∞ ≤ 0.6 and ReD ≥ 300
leads to regime (d), which is similar to the incompressible subcritical regime. In contrast,
sound wave propagation is shown in compressible flow. The regimes (e) to (h) differ from
the incompressible regimes, because the Ma∞ is far away enough from the incompressible
flow. For Ma∞ = 0.8 and ReD ≥ 300, λ shocks as well as vortices are formed. In the
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supersonic regimes, it is observed that a detached shock upstream of the cylinder and two
oblique shocks downstream of the cylinder are formed. In addition, for 50 ≤ ReD ≤ 300
and 1.1 ≤ Ma∞ ≤ 2, regime (g) occurs and vortices in the wake of the cylinder are formed.
For higher Mach numbers Ma∞, the wake of the cylinder is steady and symmetric; this
corresponds to regime (h).
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Incompressible flow Schlichting and Gersten (2017): Vortex pairs in wake
Incompressible flow Schlichting and Gersten (2017): Onset of Kármán vortex street
Incompressible flow Schlichting and Gersten (2017): Pure Kármán vortex street
Incompressible flow Schlichting and Gersten (2017): Subcritical regime
Incompressible flow Schlichting and Gersten (2017): Critical regime
Compressible flow: Regime (a) - Vortex pairs in wake
Compressible flow: Regime (b) - Onset of Kármán vortex street
Compressible flow: Regime (c) - Pure Kármán vortex street
Compressible flow: Regime (d) - Unstable cylinder wake
Compressible flow: Regime (e) - λ shock formation and unstable wake
Compressible flow: Regime (f) - Normal shock formation and unstable wake
Compressible flow: Regime (g) - Detached shock upstream and unstable wake
Compressible flow: Regime (h) - Detached shock upstream and steady state wake

Figure 12. Flow regimes based on ReD and Ma∞ occurring in the compressible flow compared to
the results of Schlichting and Gersten [1].

5.3. In-Depth Analysis of the Eight Flow Regimes

Basically, the dimensionless density gradient D·|∇ρ|
ρ0

∞
consists of the density gradient

|∇ρ| multiplied with the cylinder diameter D divided by an averaged total free stream
density ρ0

∞. Typical results including only the most interesting areas of the simulation
domain are shown for the different regimes in Figures 13–21.

Regime (a) in Figure 13 belongs to a steady symmetric separation downstream of the
cylinder. The flow detaches symmetrically on the upper and lower sides of the cylinder
surface, whereby a shear layer (tangential discontinuity) forms due to the two different
tangential velocities. This is in good agreement with the findings from Nagata et al. [6],
where the experimental investigation for Ma∞ = 0.2 to 0.5 at ReD = 1000 (slightly larger
ReD compared to Figure 13) shows very similar behaviour. The shear layers that form at
the detachment point are more pronounced at larger Ma∞ due to the increasing density
gradient |∇ρ|. Furthermore, Nagata et al. [6] investigate the dependence on the Reynolds
number ReD in the range from 1000 to 5000 at Ma∞ = 0.5. The flow detaches at the
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poles of the cylinder surface and a backflow area forms immediately downstream of the
cylinder, which becomes more unstable and shorter with increasing ReD, the flow starts to
develop swirl.

steady symmetric separation

Figure 13. Regime (a), example ReD = 50 and Ma∞ = 0.6, distribution of D·|∇ρ|
ρ0

∞
.

Regime (b) is shown in Figure 14, where in comparison to the stable wake in Figure 13,
an unstable wake with periodical vortex shedding forms. The vortex street is not fully
developed; it is an onset of a Kármán vortex street. This flow regime can be validated using
the results of Canuto and Taira [12], whereby the simulation results at Ma∞ = 0, 0.3, and 0.5
and ReD = 50 show less pronounced vortices with increasing Ma∞. In particular, when
looking at Figures 13 and 14, it is noticeable that with a Reynolds number of ReD = 50
and Ma∞ = 0.4, an unstable wake with periodic vortices results, whereas an increase in
the Mach number to Ma∞ = 0.6 results in a symmetrical, stationary cylinder wake. In the
investigations by Canuto and Taira [12], the maximum Mach number is Ma∞ = 0.5, with
weak eddies still occurring, which could also be observed in this study.

unstable wake, onset of Kármán vortex street

Figure 14. Regime (b), example ReD = 50 and Ma∞ = 0.4, distribution of D·|∇ρ|
ρ0

∞
.

Regime (c) in Figure 15 shows a periodical vortex shedding, a so-called Kármán
vortex street, where the oscillation amplitude of the vortices is growing downstream of
the cylinder over approximately the first four pairs of vortices. The Kármán vortex street
can be compared with the results from Van Dyke [29] (Figures 94 to 96) for the Reynolds
numbers ReD = 105, 140, and 200. Despite the incompressible flow, the qualitative pattern
fits with the behaviour shown in Figure 15. Comparing the vortices in Figure 15 with
Figure 14, it can be noticed that an increase in ReD from 50 to 100 at a constant Mach
number of Ma∞ = 0.4 leads to stronger vortices. These vortices turn more and more into a
Kármán vortex street. This influence of the Reynolds number is studied by Canuto and
Taira [12] using Reynolds numbers of ReD = 60, 80, and 100, where the vortices are also
more pronounced with higher ReD and the distance between two consecutive vortices
decreases. The results in Figures 14 and 15 agree very well with the experimental results of
Canuto and Taira [12] in a qualitative manner.
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Kármán vortex street

Figure 15. Regime (c), example ReD = 100 and Ma∞ = 0.4, distribution of D·|∇ρ|
ρ0

∞
.

Regime (d) in Figure 16 is similar to regime (c); vortices are shed periodically. How-
ever, the wake further downstream of the cylinder is unstable and there is a sound
wave propagation. The sound waves are present in the compressible simulations for
the Reynolds numbers 100 ≤ ReD ≤ 80,000 with a subsonic free stream Mach number
0.4 ≤ Ma∞ ≤ 0.8. Müller [30] found that each time a vortex is shed from the cylinder,
a sound wave is emitted. Further numerical investigations on the sound wave propaga-
tion from a circular cylinder in a wide range of Reynolds numbers for ReD = 150 and
Ma∞ = 0.1 and 0.2 [30,31], ReD = 200 and Ma∞ = 0.3 [32], ReD = 1000 and Ma∞ = 0.27
[33], as well as ReD = 1.58× 104 [34] are presented in the literature. The results of Dumbser
[35] at ReD = 150 and Ma∞ = 0.2 show a flow behaviour very similar to Figure 16. Al-
though no sound waves are observed in this study at low Mach numbers, below Ma∞ = 0.4,
the results of Dumbser [35] make regime (d) appear more plausible. The reason that no
sound waves can be observed might be the small density gradient or the too small flow do-
main for the prediction of sound waves. However, since the results from Khalili et al. [31],
Dumbser [35] and Müller [30] are obtained using high-order numerical simulations, it is
questionable whether the advection scheme “High Resolution” can sufficiently predict
the sound waves. Due to this, the phenomena are analysed as in Figure 17, which shows
the example of ReD = 300 and Ma∞ = 0.5. The so-called Doppler effect occurs. Thereby,
the sound source’s location is almost constant and lies near the cylinder. The wave fronts
upstream of the sound source are compressed and those downstream are thinned. The
thinning and compressing increase with increasing Mach numbers Ma∞ until Ma∞ = 1
is reached. Some representative points are chosen for every sound wave and circles with
centre on the x-axis are fitted through the points in Figure 17. Finally, the Mach number
can be calculated from the difference in the circle centres and radii Ma = u

a = ∆x
∆r . Using

the differences of each circle to the first one and calculating the arithmetic mean, a Mach
number of Ma = 0.48 is obtained. This Mach number has a relative deviation of −4%
compared to the free stream Mach number Ma∞ = 0.5.

Regime (e) is shown in Figure 18a and consists of a wake with instabilities downstream
of the cylinder and two λ shocks immediately downstream of the cylinder. Regime (f) in
Figure 19 basically is analogous to regime (e), but the λ shocks turn into a normal shock
wave further away from the cylinder. However, the transition of the λ shocks into normal
shocks might be a result of an intersection with the boundary conditions. Various investiga-
tions from other works at higher Reynolds numbers ReD, such as Linn and Awruch [16] at
ReD = 5× 105, support this conclusion. Therefore, it is assumed that regime (e) occurs in a
wide range of ReD ≥ 300 at Ma∞ = 0.8. Figure 18b shows the contour diagram of the sim-
ulation with ReD = 300 and Ma∞ = 0.8; at this point, several phenomena of interest occur.
Starting from the free stream, the fluid slows down on the symmetry x-axis owing to the
stagnation point. Above and below the x-axis, the fluid is accelerated. Downstream of the
cylinder, two λ shocks occur, which consist of compression waves and a main shock wave.
Compression waves lead to a continuous increase in the Mach number Ma; this is indicated
with the Contour lines, which are parallel to each other. Through the main shock wave, the
Ma is decreased from supersonic to subsonic regime, passing multiple contour lines. The
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λ shocks in Figure 19 interact with the flow separation. Bobenrieth Miserda and Leal [9]
investigated these complex viscous shock interactions using basically a Detached Eddy
Simulation. They observed λ shocks associated with the boundary layer separation point,
quasi-straight shocks that are normal to shear layers and connecting shocks between vor-
tices at Ma∞ = 0.8 and ReD = 500,000 (higher ReD compared to this study). The overall
flow behaviour of Bobenrieth Miserda and Leal [9] is similar to this study with the devel-
opment of the two λ shocks and the vortex street. However, the simulation results of
Bobenrieth Miserda and Leal [9] show the flow phenomena in more detail, because of the
numerical method and the higher mesh resolution. Comparable experimental results can
also be found in the study of Van Dyke [29] (Figure 222) for Ma∞ = 0.8, 0.9, 0.95, and 0.98
and a small Reynolds number ReD. The results of Van Dyke [29] at Ma∞ = 0.8 are identical
to the results shown in Figure 18a and therefore the simulation results seem plausible. The
experimental results found by Rodriguez [4] support the simulation results in Figure 18a as
well, where the two λ shocks and the instabilities downstream of the cylinder were found
at Ma∞ = 0.75 and ReD = 105.

sound waves
wake with instabilities

laminar separation

Figure 16. Regime (d), example ReD = 300 and Ma∞ = 0.6, distribution of D·|∇ρ|
ρ0

∞
.

Figure 17. Sound wave propagation, ReD = 300 and Ma∞ = 0.5, distribution of D·|∇ρ|
ρ0

∞
.
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Figure 18. Regime (e), example ReD = 300 and Ma∞ = 0.8. (a) Distribution of D·|∇ρ|
ρ0

∞
; (b) Contour

plot of the Mach number Ma.

wake with
instabilities

normal shock wave

λ shock

Figure 19. Regime (f), example ReD = 53,400 and Ma∞ = 0.8, distribution of D·|∇ρ|
ρ0

∞
.

Regime (g) in Figure 20 shows a detached shock upstream of the cylinder, two oblique
shocks downstream of the cylinder and a wake with vortices. The only difference between
the flow situation at a higher Reynolds number of ReD = 26,700 in Figure 21 is the cylinder
wake which is unstable with the lower Reynolds number of ReD = 100. Because of the
identical Mach numbers Ma∞ = 1.2, the oblique shock upstream of the cylinder is equal in
both regimes (g) and (h), which seems plausible.

Regime (h) shown in Figure 21 is similar compared to regime (g), but there are no
instabilities in the cylinder’s wake, as it is steady and symmetric. Because of the difference
in the tangential velocities of the cylinder wake and the surrounding fluid, a tangential
discontinuity is formed. This shear layer can be seen in the density gradient above and
below the axis of symmetry in the y-direction downstream of the cylinder; there is no
fluid passing these shear layers. Numerical results similar to regime (h) are obtained by
de Tullio et al. [36], where Ma∞ = 1.7 and ReD = 200,000 is investigated. However, Ma∞
and ReD are higher compared to Figure 21. Despite this, the flow phenomena are very
similar, which leads to the conclusion that this regime extends over a much larger range
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of Mach and Reynolds numbers. The flow phenomena of a detached shock upstream of
the cylinder, the supersonic flow region between the cylinder, the detached shock, the
subsonic recirculation region behind the cylinder and the two symmetrical oblique shocks,
which are formed at the end of the recirculation region, are present in both the study from
de Tullio et al. [36] and Figure 21. Obviously, an increase in the Mach number Ma∞ leads
to a higher curvature of the detached shock. Hinman et al. [37] performed numerical
simulations at an even higher Mach number Ma∞ = 10 and ReD = 5.5× 104, where the
flow structure is somehow similar compared to Figure 21. However, there are noticeable
differences in the flow structure, namely the lid separation shock, which connects the
recirculation region with the oblique shock and there is more curvature in the detached
shock due to the high Mach number.

detached
shock

oblique
shock

wake with
instabilities

Figure 20. Regime (g), example ReD = 100 and Ma∞ = 1.2, distribution of D·|∇ρ|
ρ0

∞
.

detached
shock

oblique
shock

steady
symmetric
wake

Figure 21. Regime (h), example ReD = 26,700 and Ma∞ = 1.2, distribution of D·|∇ρ|
ρ0

∞
.

5.4. Analysis of the Shock Waves

For Mach numbers Ma∞ > 1.0, a detached shock is formed upstream of the cylinder.
This shock consists of three different phenomena. Near the cylinder symmetry x-axis, an
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oblique shock is formed. Further away from the cylinder, a weaker oblique shock turns
into a Mach cone, whose angle α can be calculated with Equation (10).

sin(α) =
1

Ma
(10)

Figure 22a shows this situation for Ma∞ = 1.2 and ReD = 100. However, the shock
angle of 65◦ is larger than the angle of the Mach cone of α = 56.4◦. This is due to the
fact that the geometry is not sufficiently large to depict the transition to the Mach cone.
Different calculations of the normal shock wave on the x-axis have been done. The state
upstream of the shock is indicated as 1 and the state downstream of the shock is indicated
as 2. The simulation quantities were compared to the ones calculated from the theory. The
results are shown in Table 6 and fit well with the calculations, the maximum deviation is
about −4%.

In addition, the λ-shock wave is analysed in a similar way for the simulation with
ReD = 300 and Ma∞ = 0.8. The flow regime as well as the states upstream and down-
stream of the shock are shown in Figure 22b. The calculations in Table 7 show that the
simulation results fit well with the calculations. The maximum deviation is about −7.6%.
The calculation of the different quantities shown in Table 7 is based on the upstream Mach
number Ma∞ = 1.1258 from the simulation results.

1 2

(a)

1 2

(b)

Figure 22. Analysis of shocks, distribution of D·|∇ρ|
ρ0

∞
. The states upstream and downstream of the

shock are indicated as 1 and 2. (a) ReD = 100 and Ma∞ = 1.2, detached shock; (b) ReD = 300 and
Ma∞ = 0.8, λ shock.

The Mach number downstream of the shock Ma2 can be calculated from the Mach
number upstream of the shock Ma1 and the heat capacity ratio κ = 1.4 for air.

Ma2
2 =

Ma2
1 +

2
κ−1

2κ
κ−1 Ma2

1 − 1
(11)

The pressure ratio p2
p1

is calculated from the two Mach numbers Ma1 and Ma2 and the
heat capacity ratio κ as follows.

p2

p1
=

1 + κMa2
1

1 + κMa2
2

(12)
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Table 6. Analysis of the detached shock for ReD = 100 and Ma∞ = 1.2.

Quantity Calculation Simulation

Ma1 1.200 1.1999
Ma2 0.8422 0.8082
p2/p1 1.5133 1.5675
T2/T1 1.1280 1.1392
p0

2/p0
1 0.9928 0.9936

ρ2/ρ1 1.3416 1.3760
u2/u1 0.7454 0.7189
T0

2/T0
1 1.0000 1.0000

Table 7. Analysis of the λ shock for ReD = 300 and Ma∞ = 0.8.

Quantity Calculation Simulation

Ma2 0.8081 0.8102
p2/p1 1.6801 1.5522
T2/T1 1.1645 1.1403
p0

2/p0
1 0.9859 0.9122

ρ2/ρ1 1.4428 1.3613
T0

2/T0
1 1.0000 0.9797

5.5. Critical Mach Number

The critical Mach number of the inflow Macrit shown in Figure 23 was determined.
This corresponds to the lowest Mach number of the inflow Ma∞, at which the flow near the
cylinder reaches the speed of sound a. Polhamus [38] discovered the critical Mach number
for very large Reynolds numbers ReD → ∞ to be Macrit = 0.4. This agrees with the critical
Mach number found in this study at a Reynolds number of ReD = 26,683.
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Figure 23. Critical Mach number Macrit vs. Reynolds number ReD.

5.6. Strouhal Number and Drag Coefficient

Table 8 shows an overview for the Strouhal number Str and the mean drag coefficient
CD of all simulation points; the Strouhal numbers are in the range of 0.1 < Str < 0.25.

Drag forces FD occur in flows around objects and act opposite to the relative mo-
tion of the object with respect to the surrounding fluid. FD basically consists of three
forces: pressure drag, friction drag and wave drag. The friction drag is produced by the
viscous momentum exchange; in addition, the drag force corresponds to the sum of all
forces parallel to the flow. The wave drag is created when the velocity is close to the
speed of sound a, which means the Mach number Ma∞ exceeds the critical Mach num-
ber Macrit. Reaching the critical Mach number Macrit leads to an increase in the mean
drag coefficient CD.
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For the subsonic regimes, the mean drag coefficient lies in the range of 1.3 < CD < 1.61.
For higher Ma∞ in the transonic regimes, which means where the critical Mach number
Macrit is reached, the wave drag increases and the mean drag coefficient is in the range of
1.6 < CD < 2.5. Increasing the free stream Mach number to supersonic leads to very large
CD of 12.5 < CD < 14.5; the reason for this is the compression fronts which lead to higher
wave drag. The wave drag then decreases again in the supersonic range. The values of the
drag coefficient CD and the Strouhal number Str for ReD = 50 to 100 in a Mach number
range 0 ≤ Ma∞ ≤ 0.5 are in good agreement with the values from Canuto and Taira [12].

Table 8. Mean drag coefficient CD and Strouhal number Str.

ReD Ma∞ CD Str

50 0.4 1.471 0.1143
0.5 1.517 0.1080
0.6 1.609 0.1075
0.7 1.760
0.8 2.069
1.1 14.43 0.2128
1.2 13.85 0.2279

100 0.2 1.319 0.1582
0.4 1.410 0.1565
0.6 1.648 0.1559
0.7 1.847 0.1550
0.8 1.877 0.1383
1.1 13.822 0.2378
1.2 13.453 0.2408
2.0 12.970

300 0.4 1.483 0.1983
0.5 1.623 0.2048
0.6 1.781 0.2083
0.8 2.380 0.2238
1.2 13.46 0.2444

8890 0.4 1.603
11,100 0.5 1.726
13,300 0.6 1.834
17,800 0.8 1.860
26,700 1.2 14.145

26,700 0.4 1.614
33,400 0.5 1.717
40,000 0.6 1.873
53,400 0.8 2.171
80,000 1.2 13.808

5.7. Polar Diagrams

So-called polar diagrams, i.e., the lift coefficient CL versus the drag coefficient CD
plotted, were evaluated. In some cases, the polar diagrams correspond to a closed curve,
so-called Lissajous figures. In this case, the oscillations correspond to a single respectively
finite number of frequencies involved. The frequency ratio as well as the phase shift can
be determined analysing these closed curves. For the Kármán vortex street or similar
phenomena, the drag coefficient CD oscillates at double the frequency of the lift coefficient
CL. This confirms the rough idea that the drag is basically a quadratic effect compared
with lift, in agreement with the fact that drag is generally positive, whereas lift can be of
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either sign. For some simulation points, especially when vortex shedding occurs in the
subsonic and supersonic regimes, closed curves are observed; typical results are shown
in Figure 24a–d. Figure 24a corresponds to the subsonic simulation at ReD = 100 and
Ma∞ = 0.4 with the phenomena shown in Figure 15. The Lissajous figure shows that
the lift coefficient CL oscillates at half the frequency of the drag coefficient CD. The phase
shift of the drag coefficient CD is π

4 and 3·π
4 , respectively. Figure 24b shows the supersonic

simulation point ReD = 100 and Ma∞ = 1.2, the corresponding flow phenomena are shown
in Figure 20. The frequency ratio is equal to Figure 24a; the phase shift of the drag coefficient
CD is 5·π

4 and 7·π
4 , respectively. Figure 24c shows the transonic simulation point ReD = 300

and Ma∞ = 0.6, related to the flow regime in Figure 16. The frequency ratio is equal to the
previous Figure 24a,b; the phase shift of the drag coefficient CD is π

2 . Figure 24d shows
the supersonic simulation point ReD = 13,300 and Ma∞ = 0.6 and Figure 25 shows the
corresponding flow phenomena in the distribution of the dimensionless density gradient
D·|∇ρ|

ρ0
∞

. Looking at the density gradient, the phenomena sound waves and vortex shedding
are observed. However, the vortices shed randomly, which does not lead to a closed curve
in the polar diagram. That means that several frequencies are involved in the oscillations.
These random oscillations are observed for all the high Reynolds numbers ReD where the
flow is turbulent.

(a) (b)

(c) (d)
Figure 24. Polar diagrams. (a) ReD = 100 and Ma∞ = 0.4; (b) ReD = 100 and Ma∞ = 1.2;
(c) ReD = 300 and Ma∞ = 0.6; (d) ReD = 13,300 and Ma∞ = 0.6.
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Figure 25. ReD = 13,300 and Ma∞ = 0.6, distribution of D·|∇ρ|
ρ0

∞
.

6. Conclusions

The applicability of the commercially available tool Ansys CFX was verified and
validated. The distribution of the Mach number Ma along a planar Laval nozzle showed
that there are about eight to nine cells necessary to resolve a shock wave in comparison
to the abrupt transition over a few mean free paths of the molecules. For validation,
the Strouhal number Str and the drag coefficient CD at Ma∞ = 0.2 and 2 at ReD = 100
are compared to Burbeau and Sagaut [17] and they are in good agreement with a max-
imum deviation of 4%. In addition, even the detached shock wave position and the
flow phenomena at the conditions investigated agree well with Burbeau and Sagaut
[17]. Moreover, the validation showed that a higher-order advection scheme is neces-
sary for adequate prediction of periodic vortex shedding and shock waves. Eight flow
regimes were found in the planar flow around a circular cylinder for 50 ≤ ReD ≤ 300 and
8890 ≤ ReD ≤ 80,000 and 0.2 ≤ Ma∞ ≤ 2. The modulus of the dimensionless density gra-
dient D·|∇ρ|

ρ0
∞

has proven to be suitable for identifying and distinguishing between different
flow phenomena, such as vortices, shocks, tangential discontinuities and sound waves.
The simulation results at low Ma∞ are found to be in similar flow regimes compared to
the incompressible flow. At higher velocity near the speed of sound a, shocks occur. The
cylinder wake in the turbulent regime behaves in a steady state and symmetrically and
for 50 ≤ ReD ≤ 300 vortices are formed in the cylinder wake. For some conditions in the
transonic regime, for example ReD = 300 and Ma∞ = 0.5, sound wave propagation occurs.
The sound waves were identified by retracing the free-stream Mach number Ma∞ from
circles, which are fitted through the sound waves. Furthermore, the critical Mach number
Macrit, the lowest Ma∞ where the flow around the cylinder reaches the speed of sound,
decreases with increasing Reynolds number ReD and for ReD → ∞ it is Macrit = 0.4 from
Polhamus [38]. The CD-CL-diagram shows a close curve in cases of laminar vortex shed-
ding, but not for turbulent vortex shedding. A close curve corresponds to a given frequency
ratio and a given phase shift of CD and CL.
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Nomenclature

Symbol Unit Description
Dimensionless numbers

CD Drag coefficient
CL Lift coefficient
Ma Mach number
ReD Reynolds number based on the cylinder diameter D
Str Strouhal number (determined from the lift coefficient in

this study) CL
y+ Dimensionless distance from the wall

Latin letters
A m2 Cylinder’s front face
a m s−1 Speed of sound
D m Cylinder diameter
F N Force
f Hz Frequency
h J kg−1 Specific enthalpy
p Pa Pressure
R J kg−1 K−1 Specific gas constant, R = 287 J kg−1 K−1 for air
r m Radius
Sϕ N m−3, W m−3 Source, loss and production of the transport properties

ϕ = ρui and ϕ = h
T K Temperature
t s Time
u m s−1 Velocity
x m Cartesian coordinate
xcell m Cell dimension of the computational mesh
y m Cartesian coordinate
z m Cartesian coordinate

Greek letters
α ° Opening angle of Mach cone
αth m2 s−1 Thermal diffusivity
Γϕ m2 s−1 Diffusion coefficient of the transport properties ϕ = ρui

and ϕ = h
ζ s−1 Swirling strength
κ - Heat capacity ratio
µ Pa s Dynamic viscosity
ν m2 s−1 Kinematic viscosity
ρ kg m−3 Density
ϕ kg m−3, N s m−3, J m−3 Transport property of mass, momentum and energy
Ω rad s−1 Rotational velocity
ω s−1 Vorticity

Subscripts, superscripts, etc.
XD Drag component
XL Lift component
Xcrit Critical property
Xmax Maximum property
Xmin Minimum property
Xi i-component of the corresponding property with

i = x, y, z
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X∞ Free-stream property
X1 Upstream of the shock
X2 Downstream of the shock
X0 Total property
X Averaged property
~X Vectorial property
∆X Difference in property
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