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Abstract: We continue our study of the transition of ideal, homogeneous, incompressible, magne-
tohydrodynamic (MHD) turbulence from non-equilibrium initial conditions to equilibrium using
long-time numerical simulations on a 1283 periodic grid. A Fourier spectral transform method is
used to numerically integrate the dynamical equations forward in time. The six runs that previously
went to near equilibrium are here extended into equilibrium. As before, we neglect dissipation as
we are primarily concerned with behavior at the largest scale where this behavior has been shown
to be essentially the same for ideal and real (forced and dissipative) MHD turbulence. These six
runs have various combinations of imposed rotation and mean magnetic field and represent the
five cases of ideal, homogeneous, incompressible, and MHD turbulence: Case I (Run 1), with no
rotation or mean field; Case II (Runs 2a and 2b), where only rotation is imposed; Case III (Run 3),
which has only a mean magnetic field; Case IV (Run 4), where rotation vector and mean magnetic
field direction are aligned; and Case V (Run 5), which has non-aligned rotation vector and mean
field directions. Statistical mechanics predicts that dynamic Fourier coefficients are zero-mean ran-
dom variables, but largest-scale coherent magnetic structures emerge and manifest themselves as
Fourier coefficients with very large, quasi-steady, mean values compared to their standard deviations,
i.e., there is ‘broken ergodicity.’ These magnetic coherent structures appeared in all cases during
transition to near equilibrium. Here, we report that, as the runs were continued, these coherent
structures remained quasi-steady and energetic only in Cases I and II, while Case IV maintained
its coherent structure but at comparatively low energy. The coherent structures that appeared in
transition in Cases III and V were seen to collapse as their associated runs extended into equilibrium.
The creation of largest-scale, coherent magnetic structure appears to be a dynamo process inherent
in ideal MHD turbulence, particularly in Cases I and II, i.e., those cases most pertinent to planets
and stars. Furthermore, the statistical theory of ideal MHD turbulence has proven to apply at the
largest scale, even when dissipation and forcing are included. This, along with the discovery and
explanation of dynamically broken ergodicity, is essentially a solution to the ‘dynamo problem’.

Keywords: coherent structure; dynamo; entropy; magnetohydrodynamics; statistical mechanics;
turbulence

1. Introduction

The ‘dynamo problem’ is the problem of understanding how magnetofluids within
planets and stars produce a quasi-stationary, energetic dipole magnetic field. Over a century
ago, Larmor [1] hypothesized that the solution lay in a ‘self-excited dynamo’ within the
Earth or the Sun. The conjectured dynamo was not mechanical, like Faraday’s dynamo,
but was thought to arise from ‘convective circulation’ and ‘electric currents.’ Four decades
later, Elsässer [2] saw that for ‘the dynamo problem, that is . . . the problem of generating
and maintaining magnetic fields which draw their energy from the mechanical energy of
the fluid, the nonlinear character of the equations is altogether essential’, as it produces
‘turbulence, the most conspicuous of the nonlinear phenomena of fluid dynamics.’ Thus,
he realized that statistically stationary hydromagnetic turbulence was fundamental to the
solution of the dynamo problem, rather than ‘rigorously stationary flow’ (i.e., a kinematic
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dynamo). He added that there were ‘qualitative conditions, three in number, requisite for
the operation of . . . dynamo models’; these conditions were (1) large linear dimensions;
(2) rotation; and (3) convection. The first condition implies that Reynolds numbers are
sufficiently large; the second that rotation axis and magnetic dipole vector appear on
average to be aligned in planets and stars; and the third, that convection is the dynamo’s
source of energy. MHD turbulence, due to conditions (1) and (3), is expected to occur in
planetary liquid cores and stellar interiors when global magnetism is observed, and must
be an integral part of any dynamo model. Condition (2), rotation, appears to cause a close
alignment between the dipole moment vector and the rotation axis; however, despite being
prevalent in planets and stars, is not essential for dynamo action, whereas MHD turbulence
is. Our conclusion, as discussed herein, is that MHD turbulence is the dynamo.

Earth is the primary example we have of a planet with a quasi-steady, mostly dipole
magnetic field; current knowledge about the external geomagnetic field is contained in
the International Geomagnetic Reference Field [3]. Reynolds numbers are predicted to
be very large within the Earth’s outer core, so that convective forcing is able to produce
MHD turbulence, which must be involved in creating and maintaining the geodynamo [4].
The realistic numerical simulations of the geodynamo [5–7], by including dissipation and
forcing, have established that MHD processes within the Earth are capable of creating
a magnetic field similar to the actual geomagnetic field, including the reversals of the
dominant dipole component. There have also been laboratory experiments involving
magnetofluids [8], some of which have shown the growth of a self-generated magnetic
field, i.e., a dynamo effect [9–11]. Thus, the ‘dynamo problem’ falls within the purview
of MHD theory, experiment and computation. However, in spite of successful numerical
simulations and laboratory experiments, the fundamental origin of the geomagnetic dipole
field still appeared to be a theoretical mystery [12]. Here, we present results aimed at
resolving this mystery. Our focus will be on ideal MHD theory and computation as this
allows us to examine large-scale dynamics without the complications of dissipation and
forcing, or the associated artefacts that arise in sub-grid scale modeling.

In that regard, our new results come from extending into equilibrium the numerical
simulations reported in [13], where relevant background and references are given. In
brief, we use a Fourier spectral transform method as a surrogate for a planetary interior
that contains a turbulent magnetofluid, such as the Earth’s outer core. The connection
between the periodic box of a Fourier model and the spherical shell of an Earth-like model
is that they have essentially the same ideal MHD statistical mechanics [14]. However,
no spectral transform methods for studying MHD turbulence in a spherical shell exist
yet, and although non-transform methods [15–17] have been used, they will always have
insufficient resolution. Thus, we use Fourier spectral transform methods in a periodic box
because they are efficient and, again, serve as a surrogate for transform methods more
explicitly designed for spherical shells, until such methods are available.

In our previous computer runs [13], the transition of ideal MHD turbulence from
non-equilibrium initial conditions to near equilibrium was studied and the results showed
that a quasi-steady, energetic, coherent structure (equivalent to a dipole magnetic field)
arose in all the cases defined in Table 1. The appearance of coherent structure is an example
of ‘broken ergodicity’ [18]. As explained in the Appendix to [13], ergodicity is dynamically
broken when some of the largest-scale magnetic Fourier coefficients become very large, as
statistically predicted, and then become essentially constant as they are slightly affected by
the myriad of very small random perturbations due to all the other Fourier modes.

However, these coherent structures were not statistically expected to arise in Cases
III and V of Table 1, which had a mean magnetic field (i.e., constant in space and time)
embedded in the magnetofluid, with no rotation in Case III and with an unaligned rotation
vector in Case V. In order to see whether these persisted, we extended these runs (and
the others) by a sufficient amount so as to fully enter equilibrium. As we will show here,
those unexpected coherent structures were, in fact, transitory, while the coherent structures
seen, as expected, in those cases without a mean magnetic field, i.e., Cases I (non-rotating)
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and II (rotating) of Table 1, remained energetic and quasi-steady. In Case IV, which has a
mean magnetic field aligned with the rotation axis, there was also a quasi-steady coherent
structure, as expected, but with energy which was an order of magnitude less than those in
Cases I and II.

Table 1. Cases and associated runs with different integral invariants for ideal MHD turbulence. When
Ωo = σBo, the ‘parallel helicity’ of Case IV is HP = HC − σHM.

Case Mean Field Rotation Invariants 1283 Runs

I Bo = 0 Ωo = 0 E, HC, HM 1
II Bo = 0 Ωo 6= 0 E, HM 2a,b
III Bo 6= 0 Ωo = 0 E, HC 3
IV Bo 6= 0 Ωo = σBo E, HP 4
V Bo 6= 0 Ωo × Bo 6= 0 E 5

Cases I and II have no mean magnetic field and are thus most analogous to a planetary
interior. In those cases, the statistical mechanics of ideal MHD turbulence, as reviewed
in [13], explains dipole alignment and predicts that ‘dipole energy’ Ed and magnetic helicity
HM are related by

Ed = kmin|HM|. (1)

This was indeed seen to hold in Runs 1, 2a and 2b, and, approximately, in Run 4; it was
also seen to apply in forced, dissipative Fourier method simulations of MHD turbulence on
a 643 grid [19,20]. (regarding (1), in the Fourier case, kmin = 1, while in a spherical shell
model of the Earth’s outer core [14], kmin

∼= 1.8638, both in dimensionless units).
Since the necessary details of the model system and the statistical theory appear in [13],

we avoid repeating this information as much as possible here, in order to focus on our new
computational results and how they verify the statistical theory of ideal MHD turbulence;
again, dissipative and forced simulations have shown that this theory is applicable to
real MHD turbulence [19,20]. In essence, what is presented here is a solution to the
‘dynamo problem’.

2. Global Quantities

There are various important global quantities that can be expressed as averages over
either x space or, equivalently, k space. We define the volume average of a quantity Φ(x, t)
multiplied by a quantity Ψ(x, t) as {ΦΨ}, which is an integral over the periodic box of side
length 2π:

{ΦΨ} ≡ (2π)−3
∫

Φ(x, t)Ψ(x, t)d3x =
1

N3 ∑
k

Φ̃∗(k, t)Ψ̃(k, t). (2)

Φ̃∗(k, t) and Ψ̃(k, t) are Fourier transforms of Φ(x, t) and Ψ(x, t), as discussed in [13].
Using (2), the volume-averaged energy E, enstrophy Ω, mean-squared current J, cross

helicity HC, magnetic helicity HM and mean-squared vector potential A (the last two
defined in terms of the magnetic vector potential a, where ∇× a = b, ∇ · a = 0) are

EK = 1
2

{
u2
}

, EM = 1
2

{
b2
}

, Ω = 1
2

{
ω2
}

, J = 1
2

{
j2
}

, (3)

E = EK + EM, HC = 1
2{u · b}, HM = 1

2{a · b}, A = 1
2

{
a2
}

. (4)

Since all functions are periodic in x space, we can use the (incompressible) MHD
equations, along with integration by parts to derive the following relations [13]:
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dE
dt

= −2(νΩ + η J), (5)

dHC
dt

= Ωo · {b× u} − 1
2 (ν + η){j ·ω}, (6)

dHM
dt

= Bo · {b× u} − η{j · b}. (7)

When ν = η = 0 and Ωo = 0, the quantities E, HC and HM are the traditional ideal integral
invariants of MHD turbulence [2,21,22]. If Ωo 6= 0, then (6) indicates that HC is no longer
an ideal invariant. If an external mean magnetic field Bo is imposed, then HM would also
no longer be an ideal invariant [23].

The helicity HP arises when Ωo = σBo; if (6) is added to −σ times (7), we obtain

dHP
dt

= − 1
2 (ν + η){j ·ω}+ ση{j · b}, HP = HC − σHM. (8)

HP has been called the ‘parallel helicity’ [23] and is an invariant when Ωo = σBo and
ν = η = 0. Ref. [24] calls HP the ‘hybrid’ helicity and tries to apply this case to the
geodynamo, where Bo is identified with the Earth’s dipole field. However, the geomagnetic
dipole field is dynamic and not external and the application of the results of [24] seems
more appropriate to a tokamak [25].

Although the kinetic helicity HK is not an ideal MHD invariant, it is an ideal invariant
of fluid turbulence [26]. As discussed in [13], we find that, for a periodic box,

dHK
dt

= {ω · j× b} − ν{∂iu · ∂iω}, HK = 1
2{u ·ω}. (9)

Thus, if b(x, t) ≡ 0 and ν = 0, then HK is an ideal invariant, but only for hydrodynamic
turbulence and not MHD.

The dynamic variables of interest are the turbulent velocity ũ(k, t) and magnetic field
b̃(k, t), but these can be written as

ũ(k, t) = ũ+(k, t)ê+(k) + ũ−(k, t)ê−(k), (10)

b̃(k, t) = b̃+(k, t)ê+(k) + b̃−(k, t)ê−(k). (11)

The ũ+(k, t) and ũ−(k, t) are coefficients with positive and negative kinetic helicity, re-
spectively; similarly, the b̃+(k, t) and b̃−(k, t) are coefficients with positive and negative
magnetic helicity, respectively. The ê±(k) are modal unit vectors associated with positive
and negative helicity (see [13] for more details).

The magnetic field b is the curl of the magnetic vector potential a, where b = ∇× a
and ∇ · a = 0; thus, b̃(k, t) = ik× ã(k, t); again, see [13]. Auxiliary variables, such as a,
also have a helical representation in k space:

ã(k, t) =
i

k2 k× b̃(k, t) =
1
k
[
b̃+(k, t)ê+(k)− b̃−(k, t)ê−(k)

]
. (12)

It proves very useful to use helical coefficients in the definition of various quadratic forms.
Explicitly, in k space, the total energy E, magnetic energy EM, kinetic energy EK,

kinetic helicity HK, mean-squared vector potential A, cross helicity HC, magnetic helicity
HM, parallel helicity HP, enstrophy Ω and mean-squared current J can be represented as
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E = EM + EK, (13)

EM =
1

2N3 ∑
k

[
|b̃+(k, t)|2 + |b̃−(k, t)|2

]
, (14)

EK =
1

2N3 ∑
k

[
|ũ+(k, t)|2 + |ũ−(k, t)|2

]
, (15)

HK =
1

2N3 ∑
k

k
[
|ũ+(k, t)|2 − |ũ−(k, t)|2

]
, (16)

A =
1

2N3 ∑
k

1
k2

[
|b̃+(k, t)|2 + |b̃−(k, t)|2

]
, (17)

HC =
1

2N3 ∑
k

[
ũ+(k, t)b̃∗+(k, t) + ũ−(k, t)b̃∗−(k, t)

]
, (18)

HM =
1

2N3 ∑
k

1
k

[
|b̃+(k, t)|2 − |b̃−(k, t)|2

]
, (19)

HP = HC − σHM, (20)

Ω =
1

2N3 ∑
k

k2
[
|ũ+(k, t)|2 + |ũ−(k, t)|2

]
, (21)

J =
1

2N3 ∑
k

k2
[
|b̃+(k, t)|2 + |b̃−(k, t)|2

]
. (22)

Again, ũ±(k, t) and b̃±(k, t) are coefficients with positive (+) and negative (−) helicities. In
the ideal MHD case with homogeneous b.c.s, E, HM (when Bo = 0), HC (when Ωo = 0) and
HP (when Ωo = σBo) are ideal invariants, as shown in Table 1. The other quadratic forms
involving ũ±(k, t) and b̃±(k, t) given above will generally be time-dependent, particularly
in numerical simulations during the transition from initial conditions to an equilibrium
state, at which point they may become quasi-stationary.

3. Numerical Procedure

A Fourier fully de-aliased spectral transform method [27] on an N3 grid with N = 128
is used; the minimum wave number is k = |k| = 1 and the maximum wave number is
K =

√
3640 ∼= 60.34. Time integration is performed with a third-order Adams–Bashforth–

Adams–Moulton method [28] with a time-step of ∆t = 0.0005. The cpu-time required for
one time-step in any run is ∆T ∼= 7.34 s, so the total cpu-time for all the runs listed in
Table 2 is 3.6 cpu-years; thus, the average cpu-time per run presented here is 0.6 cpu-years
(each run has its own cpu). However, we have been able to run to an average simulation
time of tend = 1280, and this has allowed us to see important phenomena in the transition
of ideal MHD turbulence from initial conditions to an equilibrium state. In comparison,
there is a very interesting run on a 5123 grid performed by [29] studying energy fluxes in
the inertial range of forced, dissipative MHD turbulence using a method similar to ours.
This 5123 run ends at a simulation time of tend = 15; if we ran our code on a 5123 grid for
this length of simulation time, it would take approximately 14 years, and to have one run
going to tend = 1280 would take about 150 years. However, in the work of [29], the run
time was greatly shortened by massively parallel processing [30]; for us, however, this is a
future project. Thus, with our current single-cpu approach, there is a trade-off: use a large
grid-size such as 2563 and run for a relatively short simulation time, or a smaller one such
as 1283 and run for much longer simulation times. Each has its advantages and we choose
the latter in order to have very-long-duration runs.
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Table 2. Time averages (avg) and standard deviations (std) for global quantities over the last quarter
of each run appear below for six new ideal MHD turbulence long-time 1283 Runs 1, 2a, 2b, 3, 4
and 5. The global quantities are: energy E, kinetic energy EK , magnetic energy EM, mean-squared
vector potential A, kinetic helicity HK , magnetic helicity HM, cross helicity HC, parallel helicity HP,
enstrophy Ω and mean-squared current J; these are defined in (2)–(4) and more explicitly in (13)–(22).
The angle θD at t = tend, is defined in (30) and is analogous to the geomagnetic dipole angle (if all
dipole moment components were equal, then θD = 54.7◦).

Run: 1 2a 2b 3 4 5

tend: 1475 1526 1426 1132 1276 846
Ωo 0 10ẑ 10ẑ 0 2ẑ 1ẑ
Bo 0 0 0 1ẑ 1ẑ 1

2 ŷ
θD 53.7◦ 14.6◦ 10.9◦ 61.2◦ 67.1◦ 63.1◦

Eavg 1.01100 1.01246 1.01226 1.02980 1.03506 1.00699
Estd 1.2609 × 10−3 1.1801 × 10−3 1.2758 × 10−3 2.1086 × 10−3 1.7358 × 10−3 7.7732 × 10−4

Eavg
K 0.44822 0.47564 0.44539 0.51489 0.51648 0.50349

Estd
K 6.8596 × 10−4 8.3465 × 10−4 9.4303 × 10−4 1.1379 × 10−3 9.1951 × 10−4 5.0655 × 10−4

〈EM〉 0.56277 0.53665 0.56648 0.51490 0.51961 0.50350

Eavg
M 0.56278 0.53682 0.56687 0.51491 0.51857 0.50350

Estd
M 7.0116 × 10−4 5.4670 × 10−4 5.1064 × 10−4 1.0846 × 10−3 9.4653 × 10−4 5.0999 × 10−4

Aavg 1.1570 × 10−1 6.0735 × 10−2 1.2060 × 10−1 4.5031 × 10−4 2.1962 × 10−3 4.1079 × 10−4

Astd 6.6740 × 10−6 1.2467 × 10−4 1.9983 × 10−4 5.9076 × 10−5 3.5112 × 10−5 5.2188 × 10−6

Havg
K 6.0009 × 10−3 −4.1736 × 10−4 −6.2487 × 10−5 3.5946 × 10−4 3.2657 × 10−2 −5.2689 × 10−4

Hstd
K 2.1744 × 10−2 2.3103 × 10−2 2.1481 × 10−2 2.5246 × 10−2 2.4646 × 10−2 2.3873 × 10−2

Havg
M 1.1570 × 10−1 6.0840 × 10−2 1.2070 × 10−1 −1.5986 × 10−5 2.2020 × 10−3 −1.6685 × 10−5

Hstd
M 2.4011 × 10−15 2.3803 × 10−15 5.7460 × 10−15 1.5901 × 10−5 3.5315 × 10−5 1.7279 × 10−5

Havg
C 5.6359 × 10−2 −9.9448 × 10−5 4.5145 × 10−4 5.2491 × 10−2 −1.2703 × 10−1 −1.0241 × 10−4

Hstd
C 6.5119 × 10−5 2.5384 × 10−4 4.5670 × 10−4 2.1550 × 10−5 6.9637 × 10−5 1.7423 × 10−4

Havg
P · · · · · · · · · · · · −1.3144 × 10−1 · · ·

Hstd
P · · · · · · · · · · · · 5.2471 × 10−5 · · ·

Ωavg 9.7631 × 102 1.0387 × 103 9.7270 × 102 1.1245 × 103 1.1277 × 103 1.0996 × 103

Ωstd 1.5758 1.9354 2.0917 2.5683 2.0880 1.2396

Javg 9.7686 × 102 1.0393 × 103 9.7328 × 102 1.1244 × 103 1.1282 × 103 1.0996 × 103

Jstd 1.5981 1.9306 2.1060 2.5085 2.0831 1.2747

Six long-duration Fourier spectral transform method runs on 1283 grids are considered
in this paper. They are the continuations of runs that we reported on in [13], where
their transition from non-equilibrium initial conditions was studied. Parameters for the
continued runs are given here in Table 2, which is similar in form to Table 2 of [13], except
that some new rows were added, including one indicating the statistical expectation value
〈EM〉. This has been added in order to compare it to the temporal mean value seen in
Table 2; the expectation values and the temporal means match to fractions of a percentage
point, providing a validation of the statistical theory.

Initial, non-equilibrium magnetic and kinetic modal energy values (spectra) are ĒM(k2) ∼
ĒK(k2) ∼ k4 exp(−k2/k2

o), where ko = 6. Viscosity and magnetic diffusivity are set to zero so
that the flow is ideal. Again, a grid size of 1283 was used so that the six single core runs listed
in Table 1 could be completed in a reasonable amount of time with the resources available, the
Hopper Cluster at George Mason University, with each simulation running at ≈11 s/∆t; thus,
a single run of 2 × 106∆ts requires about 36 weeks of cpu time.
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As mentioned previously, six computer simulations covering the five cases in Table 1
were run and are identified in that table. The ideal invariants for each case are quadratic
forms (global quantities) with terms that are scalar products of the vector Fourier coefficients
ũ±(k, t) and b̃±(k, t), with 0 < k ≤ K, as defined in (13)–(22). The partial differential
equations for MHD in x space are transformed into a set of ordinary differential equations
in k space. The k space equations, explicitly shown in [13], are numerically integrated
to advance the ũ(k, t) and b̃(k, t), with nonlinear terms being evaluated by a de-aliased
transform method.

4. Computational Results

As seen in Table 1, the integral invariants of ideal MHD turbulence are the volume-
averaged energy E and magnetic helicity HM when Bo = 0, as well as the cross-helicity
HC when Ωo = 0 and HP when Ωo = σBo 6= 0. In our numerical simulations, these ideal
invariants typically have a standard deviation of less than 1% per million time-steps, while
kinetic helicity HK, though an ideal invariant for hydrodynamic turbulence, falls to zero
very quickly and then has small fluctuations about that value, as shown in Table 2. We
stated that these runs came to ‘near equilibrium.’ To obtain an idea as to what this means,
consider Figure 1 where we show, at different times for Runs 1 and 4, the average magnetic
and kinetic energy spectra, ĒM(k2) and ĒK(k2), for modes k having the same value of
k2 = |k|2. There are 3036 different values of k2, where 1 ≤ k2 ≤ 3640, for N = 128; the
number of independent k (i.e., k but not −k) is n(k2).

The definitions of the averaged spectra ĒM(k2) and ĒK(k2) are

ĒM(k2) =
1

n(k2)

|k|2=k2

∑
k

|b̃(k)|2
N3 , (23)

ĒK(k2) =
1

n(k2)

|k|2=k2

∑
k

|ũ(k)|2
N3 . (24)

Here, n(k2) is the number of independent k that satisfies |k|2 = k2. The number n(k2)
jumps around as k2 increases; for example,

n(1) = 3, n(2) = 6, n(3) = 4, n(4) = 3,
n(5) = 12, n(6) = 12, n(7) = 0 · · ·
n(3628) = 36, n(3629) = 552, n(3630) = 264, n(3631) = 0,
n(3632) = 60, n(3633) = 144, n(3634) = 144 · · ·

(25)

We have n(k2) = 0 whenever k2 = 4a(8m + 7), a, m = 0, 1, 2, . . . ; see, for example, [31]. The
full magnetic and kinetic energy spectra, n(k2)ĒK(k2) and n(k2)ĒM(k2), jump wildly as k2

increases, which is why we prefer to look at the average energy spectra (23) and (24), as in
Figure 1. However, when averaged over nearest neighbors, n̄(k2) is well approximated by
n̄(k2) = πk and this can be used to give smoothed energy spectra, if desired.

Referring to [23], we find that the ideal expectation values of ĒM(k2) and ĒK(k2) are

〈
ĒM(k2)

〉
=

2
N3

α̂δ̂2

δ̂4 − α̂2γ̂2/k2
, (26)

〈
ĒK(k2)

〉
=

2
N3

α̂(δ̂2 − γ̂2/k2)

δ̂4 − α̂2γ̂2/k2
. (27)

Here, δ̂2 = α̂2 − β̂2/4 and α̂, β̂ and γ̂ are the normalized inverse temperatures related to
inverse temperatures appearing in the phase space probability density; please see [13]
for details. For each of the cases, α̂, β̂ and γ̂ are determined by numerically finding the
minimum of the entropy functional with proviso that, for Case II (Runs 2a and 2b), β̂ = 0;
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for Case III (Run 3), γ̂ = 0; and for Case V (Run 5), β̂ = γ̂ = 0. The values of α̂, β̂ and γ̂ for
the different runs are given in Table 3.

The spectra are shown in Figure 1 for various times. The spectra are approaching
their expectation values and are near equilibrium; when they match the ideal expectation
values (within small fluctuations), then they are in true equilibrium. The spectra ĒM(k2)
and ĒK(k2) for Runs 3 and 5 will both be similar to those in Figure 1d, i.e., becoming flat,
while the spectra for Runs 2a and 2b will be similar to Figure 1a,b, although not as highly
peaked at k2 = 1.
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Ē
M
(k

2
)

1 10 100 1000

10
−6

10
−5

10
−4

10
−3

(c) Run 4, average magnetic energy vs k2

k
2

Ē
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Figure 1. (Color online) Average magnetic and kinetic energy spectra, ĒM(k2) and ĒK(k2), for Runs 1
and 4. These are averages over modes k having the same value of k2 = |k|2; there are 3036 different
values of k2, where 1 ≤ k2 ≤ 3640, for N = 128. Spectra are shown in (a,b) for times t = 0, 1095 and
1475 for Run 1, and in (c,d) for times t = 0, 895 and 1276 for Run 4. As seen here, spectra are expected
to fluctuate about ideal expectation values.

Table 3. Values of the inverse temperatures α̂, β̂ and γ̂ for the Runs in Table 1 with proviso that, for
Runs 2a and 2b, β̂ ≡ 0; for Run 3, γ̂ ≡ 0; and for Run 5, β̂ ≡ 0 and γ̂ ≡ 0. When needed, E ,HC and
HM took their values from Eavg, Havg

C and Havg
M , respectively, in Table 2 (the need for precision here

is due to the possible smallness of the denominators in (26) and (27)).

Run α̂ β̂ γ̂

1 0.99101483544 −0.19849208643 −0.98106334761
2a 0.92181618056 0 −0.92179251089
2b 0.98391439550 0 −0.98390250359
3 0.83658011283 −0.17565170681 0
4 0.90153576833 0.42548700154 −0.85097400308
5 0.87722015381 0 0
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Now, consider Figure 1, where average magnetic and kinetic energy spectra, ĒM(k2)
and ĒK(k2), for Runs 1 and 4 are given. These are averages over modes k having the same
value of k2 = |k|2; there are 3036 different values of k2, where 1 ≤ k2 ≤ 3640, for N = 128.
In (a) and (b), the spectra are shown for times t = 0, 1095 and 1475 for Run 1 (t = 1095 was
the end of Run 1 in [13] and t = 1475 is the end of the continuation); and in (c) and (d) the
spectra are shown for times t = 0, 895 and 1276 for Run 4 (t = 895 was the end of Run 4
in [13] and t = 1276 is the end of the continuation). The spectra in Figure 1 appear to be
reaching expected values, although when MHD turbulence is in equilibrium, spectra will
be seen to fluctuate about these ideal expectation values; moreover, for Run 4, an extra term
may be needed in the perturbation expansion we used to more closely align computed and
expected values at k2 = 1; however, this effort will be deferred. The spectra for Runs 2a,
2b, 3 and 5 behave similarly. The correlation between computed and predicted spectra is
another validation of the statistical theory.

In Figure 2, we show how the six runs in Table 1 change over time with respect
to volume-averaged energy E, magnetic energy EM, kinetic helicity HK, mean-squared
magnetic vector potential A, cross helicity HC, magnetic helicity HM, enstrophy (mean-
squared vorticity) Ω and mean-squared electric current J; for Run 4, parallel helicity HP is
also shown; again, please see (13)–(22) for precise definitions of these quantities. In Figure 2,
the integral invariants for each run appear to be horizontal lines, i.e., have constant values.
Time averages and standard deviations for these quantities over the course of the runs is
given in Table 2. For each run in Table 2, the quantities that are supposed to be canonical
invariants are again seen to be well conserved. The most conserved quantity, by far, is the
magnetic helicity HM in Runs 1, 2a and 2b. Those quantities in Table 2 that have standard
deviations larger in magnitude than their average values are basically just fluctuating
around zero; in particular, this seems to be true for the kinetic helicity HK in every run
except for Run 4, where it is part of the invariant parallel helicity HP. Also note that
statistics for the enstrophy Ω and mean-squared current J are essentially equal in each
run, indicating that smaller length-scales effectively have equipartition in magnetic and
kinetic energy.

In Figure 2, near the ends of some runs, notice that one or both of the helicities HM
and HC appear to become constants for a period of time. These helicities, as well as mean-
average vector potential A for (a) Run 2a, (b) Run 2b, (c) Run 3 and (d) Run 5 are shown
again in Figure 3. Here, we more clearly see that HM or HC or both become constant in
these runs for a significant period of time: (a) ∆t = 267.4 (from t = 1140.1 to 1407.5);
(b) ∆t = 267.1 (from t = 1041.1 to 1308.2); (c) ∆t = 268.4 (from t = 718.5 to 986.9) and
(d) ∆t = 266.6 (from t = 465.4 to 732.0)—also notice that, during these periods in (c) and
(d), A makes a transition to a lower value. The essential equivalence of the ∆ts is intriguing;
however, to date, it remains unexplained and a puzzle for the future.

As mentioned earlier, continuation has resolved what seems to be an anomaly oc-
curring in the transition phase, i.e., the appearance of mildly energetic coherent magnetic
structures in Runs 3 and 5, as reported in [13]. These quasi-stationary structures are not
predicted and, as we will see, eventually disappear, signaling the end of transition for those
runs. Another novel feature is the behavior of the helicities HM and HC in those runs where
one or both were not integral invariants. Specifically, this feature is that of the helicity or
helicities that were not invariant became quasi-invariant for a significant interval of time
and then resumed their fluctuating behavior. This happened in Runs 2a, 2b, 3 and 5, and
signals the end of transition from initial conditions to equilibrium; for Runs 3 and 5, the
quasi-invariance of the helicities coincided with the collapse of their transitory coherent
structures, as seen in Figure 4.

In the previous work [13], there were many figures showing the trajectories of various
complex Fourier coefficients as 2D phase plots (real vs. imaginary parts), but we will not
look at these explicitly here. These 2D phase plots are quite interesting in that they are
projections onto different complex planes of the random walk through a phase space of
dimension 3,679,328 which the dynamical system takes as it evolves in time. These phase
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trajectories would not really look that different for the continued runs discussed here and
the reader is referred back to [13] if there is a desire to view them. Here, we show behavior
of the k = 1 modes through 3D plots of a ‘dipole moment vector’, as described below.
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(e) Run 4; 1283, Ω0 = 2ẑ, B0 = 1ẑ
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(f) Run 5; 1283, Ω0 = 1ẑ, B0 = 0.5ŷ

Figure 2. (Color online) Here, we see volume-averages defined in (13)–(22). Those quantities that
are supposed to be canonical invariants are, in fact, constant in each run: (a) Run 1: E, HM and HC;
(b) Run 2a: E and HM; (c) Run 2b: E and HM; (d) Run 3: E and HC; (e) Run 4: E and HP; and (f) Run
5: only E. Note that there are periods of quasi-stationarity near the ends of (b) Run 2a, (c) Run 2b,
(d) Run 3 and (f) Run 5; these will be examined more closely in Figure 3. Note also that the absolute
value of kinetic helicity |HK | is similar in all runs in that it merely fluctuates around zero, signifying
that HK is not of fundamental importance in MHD turbulence.

For all the runs in Table 1, the values of all the ũ(k, t) and b̃(k, t) with k2 ≤ 3 were
saved every 0.1 units of simulation time t (i.e., every 200 ∆ts). From these, we can calculate
a time history of modal energies

EK(k, t) = N−3|ũ(k, t)|2, E(k)
K (t) = ∑

k=|k|
EK(k, t), (28)

EM(k, t) = N−3|b̃(k, t)|2, E(k)
M (t) = ∑

k=|k|
EM(k, t). (29)

We now define a ‘dipole moment vector’ D as one that has components Dx, Dy, Dz and an
angle θD with respect to the z axis:

Dx =
√

EM(x̂), Dy =
√

EM(ŷ), Dz =
√

EM(ẑ), θD = tan−1

√
D2

x + D2
y

D2
z

. (30)

The evolution of D is shown in Figure 4 for each of the runs in Table 1. In Figure 4, the
initial growth of D from t = 0 is shown in red, while the last 10% of time for each run is
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shown in black; the periods shown in Figure 3 when HM or HC or both become constant
appear in Figure 4 in gray for (b) Run 2a, (c) Run 2b, (d) Run 3 and (f) Run 5. Table 1 also
has θD at the end of each run and there we see that Run 2a (θD = 14.6◦) and 2b (θD = 10.9◦)
have vectors D that are relatively well aligned with the rotation axis. We discuss how this
happens in [13].
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A

|H
C
|

|H
M
|

0 200 400 600 800 1000 1200 1400

10
−6

10
−4

10
−2

t

(b) Run 2b; 1283, Ω0 = 10ẑ, B0 = 0
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(c) Run 3; 1283, Ω0 = 0, B0 = 1ẑ
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(d) Run 5; 1283, Ω0 = 1ẑ, B0 = 0.5ŷ

Figure 3. (Color online) Absolute values of helicities HM and HC, as well as mean-average vector
potential A for (a) Run 2a, (b) Run 2b, (c) Run 3 and (d) Run 5. Notice how HM or HC or both become
constant in these runs for a short period of time: (a) ∆t = 267.4, (b) ∆t = 267.1, (c) ∆t = 268.4 and
(d) ∆t = 266.6; also notice that during these periods in (c,d), the mean-squared vector potential A,
defined by (17), makes a transition to a lower value.

In Figure 5, the temporal evolution of the magnetic energies defined in (29) at k = 1,
i.e., EM(k̂), k̂ = x̂, ŷ, ẑ, are presented for (a) Run 1, (b) Run 2a, (c) Run 2b and (d) Run 4.
In Figure 4, the square roots of the EM(k̂) defined a ‘dipole moment vector’ which was
seen there to become quasi-stationary for these runs. In Figure 5, energies are divided by
the corresponding mean values of |HM| over Runs 1, 2a and 2b, and the mean value of
|HM| over the last 5% of Run 4. Here, we see a verification of the theoretical result that the
energy of the dipole is Ed = kmin|HM|, where, for the Fourier case, kmin = 1. This result is
predicted for Runs 1, 2a and 2b, where HM is an ideal invariant, but also seems to apply
approximately to Run 4, as seen in (d).

In Figure 6, the temporal evolution of the magnetic energies at k = 1, i.e., EM(k̂),
k̂ = x̂, ŷ, ẑ, are presented for (a) Run 3 and (b) Run 5. The theoretical prediction when HM is
not an invariant is that energy will be equipartioned among all Fourier modes and all EM(k)
and EK(k) will have the same value, indicated above by 〈EM(k̂)〉 = 〈EK(k̂)〉 = E/2M.
Here, we see that, during the initial phase of growth starting from the initial spectra shown
in Figure 1, the temporary, relatively energetic, coherent structures arise but collapse in the
final transition to equilibrium. This collapse occurs during the gray parts of the trajectories
shown in Figure 4d,f. In Figure 6, we see that the EM(k̂) fluctuate about their expectation
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values 〈EM(k̂)〉 and that the anomalously large values that occurred during transition were,
in fact, transitory.
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Figure 4. (Color online) The 3D ‘dipole moment vector’ D is defined by Dx =
√

EM(x̂), Dy =√
EM(ŷ) and Dz =

√
EM(ẑ) and its evolution during each of the six runs is shown here. The initial

growth of D, starting from t = 0 when it is very close to the origin, is shown in red; at the end of each
trajectory, the last 10% of the run time is shown in black. The periods in Figure 3 when HM or HC or
both become constant are shown in gray for (b) Run 2a, (c) Run 2b, (d) Run 3 and (f) Run 5; during
these periods in (d,f), the temporary coherent structure represented by D collapses The runs shown
in (a–c,e) do not collapse but represent coherent structures.
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Figure 5. (Color online) The evolution of magnetic energies at k = 1, i.e., EM(k̂), k̂ = x̂, ŷ, ẑ, are
presented for (a) Run 1, (b) Run 2a, (c) Run 2b and (d) Run 4. In Figure 4, the square roots of the
EM(k̂) defined a ‘dipole moment vector’ which was seen there to become quasi-stationary for these
runs. Here, the energies are normalized by the mean value of |HM| during Runs 1, 2a and 2b, and the
mean value of |HM| over the last 5% of Run 4. We see a verification of the fundamental theoretical
result (1) that the energy of the dipole is Ed = kmin|HM|, where, for the Fourier case, kmin = 1. This
result is predicted for Runs 1, 2a and 2b, where HM is an ideal invariant, but also seems to apply
approximately to Run 4, as seen in (d).
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(b) Run 5; 1283, Ω0 = 1ẑ, B0 = 0.5ŷ
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EM (ẑ)
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Figure 6. (Color online) The evolution of the magnetic energies at k = 1, i.e., EM(k̂), k̂ = x̂, ŷ, ẑ,
are shown for (a) Run 3 and (b) Run 5. The theoretical prediction when HM is not an invariant is
that energy will be equipartioned among all Fourier modes and all EK(k) and EM(k), defined in
(28) and (29), will have the same expectation value 〈EM(k̂)〉 = 〈EK(k̂)〉 = E/2M. During the initial
phase of growth, relatively energetic, coherent structures arise but then collapse in the final transition
to equilibrium. This collapse occurs during the gray parts of the trajectories shown in Figure 4d,f.

Note in Figure 6a,b that the EM(k̂) with k̂ parallel to Bo is very small during the
transition phase while the other EM(k̂) are much more energetic. This is an example of
anisotropy induced by the mean magnetic field Bo [32–35], an anisotropy at the largest-scale
that is indicated by the θD in Table 2.

5. Discussion

The results presented herein were found by continuing to run the simulations first
presented in [13]. The continued runs have entered a state of apparent equilibrium and
resolved an important open question from that work, specifically, we have seen that the
coherent structures that appeared during transition from initial conditions in Runs 3 and
5—which had mean non-aligned magnetic fields—disappeared. Run 4, in which the mean
magnetic field was aligned with the rotation axis, maintained a coherent structure, but
one that was an order of magnitude less energetic that those in Runs 1, 2a and 2b, which
had no mean magnetic field. Runs 1, 2a and 2b are the pertinent ones for modeling
those planets and stars that contain a turbulent magnetofluid. The magnetic energy at
k = 1 (the ‘dipole’ energy Ed) matched the theoretical prediction that Ed = kmin|HM|
and that the effective ‘dipole moment vector’ D, with dipole angle θD and defined in
(30), was quasi-stationary, and, Runs 2a and 2b—which most closely modeled a rotating
planetary core—showed alignment with the rotation axis, as seen in Table 2 and graphically
illustrated in Figure 4. This quasi-stationarity was initially unsuspected [36] since the
ensemble prediction is that all variables have zero-mean, so what we have seen, again, is a
dynamically broken ergodicity.

Furthermore, the statistical theory of ideal MHD turbulence developed for a periodic
box has the same form as that developed for a spherical shell [14]. Therein lies the impor-
tance of ideal results to the real MHD turbulence contained in planetary liquid cores and
in the convective layers of stars: it is a basic, qualitative explanation of how these dipole
magnetic fields arise and is thus a solution to ‘the dynamo problem.’ The statistical theory
of ideal MHD turbulence began when [36] recognized that an inverse cascade of energy
may move from intermediate scales to the largest scale in the system, as confirmed by [37].
After this initial discovery, it was eventually noticed in 1982 (as discussed in [13]) that
this cascade created a coherent structure; the history of the subsequent development built
on it is given in the list of related references appearing in [13]. Once it was realized that
MHD turbulence, per se, was a dynamo, it was clear, at least to the author, that a deeper
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understanding of the statistical nature of ideal MHD turbulence, along with numerical
simulations of real MHD turbulence [19,20], held the key to solving the ‘dynamo problem.’
That has been our path over many decades and it has led, we believe, to a fundamental
understanding of self-generated planetary magnetic fields.

The exact nature of the turbulence within a planet, of course, is hidden from view in its
deep interior, but observations of the global magnetic fields of the Earth and other planets
indicate that they have long periods of quasi-stationarity in which a magnetic dipole field
exists and is closely aligned with a rotation axis. The only requirements that we need to
relate our results to these objects is for them to contain a sufficiently spherical shell of
relatively incompressible, turbulent magnetofluid that is in a state of quasi-equilibrium,
and that this state has an effectively constant (i.e., quasi-stationary) magnetic helicity; how
this state is maintained is an important question, but extraneous to our simple (but not
too simple) model. Our unique prediction that Ed = kmin|HM| tells us that if a planet has
a magnetic dipole field and we measure its value, then this also tells us that we know its
magnetic helicity.

6. Conclusions

Although recent numerical simulations [13] of MHD turbulence corresponding to
each of the five cases of ideal MHD turbulence in Table 1 had shown the quasi-stationary
largest-scale coherent structure to arise during transition, once these runs were allowed to
continue on and enter equilibrium, the transitory structures in Runs 3 and 5, where they
were not predicted to exist, were seen to collapse. On the other hand, Runs 1, 2a and 2b had
very energetic largest-scale coherent structures, both in transition and equilibrium, that
were robust and behaved as predicted. Run 4, where the mean field Bo and the rotation
vector Ωo were parallel, also showed a coherent structure, although an order of magnitude
less energetic. The largest-scale coherent structures seen in Runs 2a and 2b, in particular,
represent the dipole magnetic fields that are seen to occur around various planets and stars.

The origin of these largest-scale coherent structures in ideal MHD turbulence has been
understood through the application of classical statistical mechanics, with extensions, to the
interacting set of Fourier coefficients; again, this is detailed in [13]. The difference between
the statistical mechanics of an ideal gas and that of MHD turbulence, is that the former
has only one invariant, the total energy, while the latter can have one or two invariant
helicities. In the case of ideal MHD turbulence, an entropy functional can be defined and
the minimization of this functional with respect to magnetic energy leads, through a series
of logical steps, to an expression linking the energy of the dipole field to the magnetic
helicity contained in the turbulent magnetofluid (as well as to a specific value for the phase
entropy). Thus, in dynamo theory, as we have presented it, the statistical mechanics of
ideal MHD turbulence plays an essential role and is a key to theoretical understanding of
the geodynamo, as well as other planetary and stellar dynamos. Numerical simulation is
also another key factor as it offers a validation of the statistical theory.

In this paper, we presented new computational data, discussed new results and
resolved an open question left over from previous work. The importance of our theoretical
and numerical results, both now and in the past [13], is that they show that MHD turbulence,
per se, is a dynamo that produces an energetic, quasi-steady, magnetic dipole that is closely
aligned with a rotation axis when one is present. The energy in the ‘dipole’ field and
magnetic helicity were predicted and seen to satisfy Equation (1), the fundamental relation
Ed = kmin|HM|. This relation is also a prediction for model systems in which a turbulent
magnetofluid is confined within a spherical shell, since ideal MHD turbulence in this
geometry has the same statistical mechanics as in the Fourier case. In summary, broken
ergodicity in MHD turbulence appears to be a viable solution to the ‘dynamo problem.’

A future direction that our investigations can take is to add dissipation and forcing
to our 1283 simulations as was previously performed on 643 grids [19,20]; we also wish
to move to the larger grid-sizes enabled by massively parallel processing. The methods
employed to force a model magnetofluid at intermediate wavenumbers are speculative
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because physical forcing mechanisms are hidden from observation within a planet or star.
Nevertheless, having used a variety of mid-wavenumber, helical forcing methods on 643

grids [19,20], we have always seen behavior analogous to the ideal MHD turbulence at
the largest-length scale, specifically the emergence of a largest-scale coherent magnetic
structure whose energy is determined by the amount of magnetic helicity contained by
the magnetofluid turbulence in those cases (I and II) that are most pertinent to planets
and stars. We would expect to see this in 1283 and greater grid-size simulations that were
dissipative and forced. Perhaps some novel effects would also occur, but this, and much
else, remains worked that is yet to be performed.
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