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Abstract: Grid refinement is used to reduce computing costs while maintaining the precision of
fluid simulation. In the lattice Boltzmann method (LBM), grid refinement often uses interpolated
values. Here, we developed a method in which interpolation in space and time is not required.
For this purpose, we used the moment matching condition and rescaled the nonequilibrium part
of the populations, thereby developing a recalibration procedure that allows for the transfer of
information between different LBM stencils in the simulation domain. Then, we built a nonuniform
lattice that uses stencils with different shapes on the transition. The resulting procedure was verified
by performing benchmarks with the 2D Poisselle flow and the advected vortex. It is suggested that
grids with adaptive geometry can be built with the proposed method.
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1. Introduction

The lattice Boltzmann method (LBM) is one of the state-of-the-art methods in com-
putational fluid dynamics. It is a curious example of the way the cellular automata ap-
plication [1] has evolved to model fluids and was subsequently proven to be a rigorous
numerical scheme for integrating the kinetic Boltzmann equation with the use of Gauss
cubatures [2]. From the lattice gas stage of the method’s evolution, it inherited the use of
rectangular meshes, which are more common in LBM simulations than in other hydrody-
namic schemes, such as the finite element and discontinuous Galerkin methods [3].

Compared with other methods in computational fluid dynamics (CFD), LBM stands
out as a lightweight, efficient method with high locality and many options for paral-
lelism [4,5]. The downside is the limited fluid parameter range within which LBM, in its
classical formulation, works. It is known to lack Galilean invariance, to work in the range
of low Mach numbers, and to be valid for isothermal flows. Even in that range, many
applications have been found, such as mesoscale modeling in additive manufacturing [6].
Moreover, given the popularity of the method, many advanced variations have been devel-
oped for compressible flows, thermal flows, and additional physics. Presently, LBM is used
in almost every area of CFD.

In this work, we studied adaptive meshes for LBM. In a simulation of a model with
several characteristic scales, where both large-scale background flow and small-scale flow
variations need to be reproduced, we can use a finer mesh for the areas where it is required
and reduce the computational cost by coarsening the mesh in the area with lower gradients
of the fluid properties. Adaptive meshes are also used to cover the areas with fine geometry
features, such as thin channels. In the flow around the geometry with a high curvature
or a flat boundary that is not parallel to the Cartesian axes, the rectangular mesh has
to be either sufficiently fine to resolve it or be replaced by a curvilinear mesh such that
the faces of its cells are on the fluid–solid boundaries in the model. Because the classical
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LBM is constructed for rectangular meshes with a mesh step and time step equal to unity
in nondimensional units, in all of these cases, there are issues with information transfer
between the different mesh resolutions and different mesh geometries and with writing the
LBM for nonrectangular mesh.

Over the years, many researchers have solved these issues by supplementing the
LBM with some other numerical methods. When the mesh is refined in some regions,
the information is transferred via interpolation in space and/or time. There are two ways
of refining the lattice: node-based and cell-based [7,8]. In the node-based approaches,
a node is added between each pair of cells. In the cell-based approaches, a lattice node is
interpreted as a cubic cell, and each cell is subdivided into smaller cubes.

In the node-based methods [7,9–11], the order of interpolation can be increased by
using more nodes in the reconstruction of the populations [11,12] or through the use of
information on fluid moments to increase the accuracy of the relevant quantities only [13].

Cell-based methods [8,14] have the property of mass conservation. However, in the
conventional method [8], the information transfer from coarse to fine mesh, which is often
referred to as ‘explode’, is, essentially, an interpolation with a polynomial of the order zero:
the values are just copied to the nearest cells. An extension with improved accuracy was
proposed in References [7,14]. The mass-conserving method is used in software such as
PARAMESH [15] and waLBerla [16].

There are other methods to modify the LBM so as to work with nonuniform meshes,
such as the finite difference LBM [17–19], finite volume, and finite element methods [20–24],
which can be applied to curvilinear, tetrahedral, and unstructured mesh geometries; Taylor
series expansion; and least-squares methods [25].

In the areas with a high space resolution, a finer time step is also desired. Therefore,
interpolation in time is also used. However, it can be avoided [26,27].

The motivation for the current study is based on the following observation: As a nu-
merical scheme for the kinetic Boltzmann equation, the LBM uses a set of discrete velocities
to compute the moments of the particle distribution function with Gauss quadrature rules.
Various sets can be chosen as long as there are enough points in the quadrature to inte-
grate the polynomials of a given order [28]. The discretization of the Boltzmann equation
in space-time is performed by integration in the direction of the characteristic [29]. The
integration along the characteristic is a first-order scheme; but, with a change of variables,
a second-order scheme is obtained. The velocity sets are chosen to form a uniform lattice in
space, so that the streaming in the direction of the characteristic moves the particle from
one lattice node to another.

What if we choose an arbitrary lattice that fits the spatial and temporal scales and the
geometry of our model and choose a velocity set for each node in such a way that every
node is connected to its neighbors? If it is possible, then no other scheme except the basic
LBM would be introduced in the model, interpolation would be avoided, and the order of
accuracy would depend only on the proper LBM construction.

Methods exist in which LBM adapts to a stretched [30] or nonrectangular [31] mesh.
The fact that a composition of different stencils was not previously used for adaptive grids
is due to the following issue: A lattice with varied geometry requires different discrete
velocity sets in some nodes, and a discrete particle distribution function corresponds to each
velocity. These discrete particle distribution functions are the populations that are updated
in the LBM. We come to a situation where, in general, there are nodes in which the numerical
scheme is constructed differently and operates on a different number of populations, and it
is not known how these population sets can be converted into one another.

A well-known method of rescaling was used in the original grid refinement method [9]
and was improved in subsequent works [32]. This was motivated by the change in the
value of the time step, which required a change in the collision parameter that controls the
viscosity, and, in turn, the nonequilibrium part of the distribution functions. The change in
the quadrature rule requires further transformation.
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Our solution to this issue is motivated by the success in another area of advanced LBM
variations. In Reference [33], a revolutionary method of variable rescaling was introduced
for the modeling of high-Mach flows. Even with classical LBM collision operators and
no other modifications, flows with Mach numbers over 103 were reproduced. The work
set the stage for many new developments in complex flow simulations. The scheme was
extended and applied to various compressible flow simulations [34–39]. Recalibrating the
populations to the flow velocity temperature for the collision step is known to improve
stability [40].

Here, we propose to use this method of rescaling for the construction of nonuni-
form grids. Based on the moment matching condition from Reference [33], we develop a
population recalibration method that allows streaming between LBM nodes in which the
numerical parameters used in the construction of the LBM method (time and spatial scales
and the velocity set) are different. In a general case, we identify the numerical parameters
that are used to discretize the Boltzmann equations, and we find a method to convert a set
of LBM populations between a pair of LBM nodes in which the LBM is constructed with
different parameters.

The remainder of this paper is structured as follows: In Section 2, we remind the reader
of the construction of the LBM method and what is required to recalibrate LBM variables
from one set to another. In Section 3, we propose an algorithm for LBM simulation on
a nonuniform grid with the use of the proposed recalibration method. In Section 4, we
evaluate the resulting method for the trial problems; in Section 5, we discuss the impact of
the results.

2. Theoretical Background
2.1. Lattice Boltzmann Method and Its Parameters

The kinetic Boltzmann equation is

∂ f
∂t

+ ξ
∂ f
∂r

= Ω, (1)

where f (t, r, ξ) is the single particle distribution function; and its arguments are the time t,
the spatial coordinate r, and the particle velocity ξ. Ω is the collision term.

The macroscopic flow parameters—such as density ρ(t, r), flow speed u(t, r), and tem-
perature T(t, r)— are the moments of f (t, r, ξ):

ρ =
∫
RD

ξ

f dDξ, ρu =
∫
RD

ξ

ξ f dDξ, ρ(u2 + DT) =
∫
RD

ξ

ξ2 f dDξ, (2)

where D is the number of spatial dimensions, and the integral is taken over the entire
velocity space RD

ξ .
In equilibrium, the collision term is zero, and the solution of (1) that satisfies (2) is

f eq(ξ) =
ρ

(
√

2πξ0)D
e−(ξ−u)

2
/2ξ2

0 , (3)

and the temperature is T = ξ2
0.

In the LBM, the integration in (2) is performed numerically. Taking the solution (3)
into account, the integration kernel is chosen to be

ω(ξ) =
1

(
√

2πξ0)D
e−ξ2/2ξ2

0 . (4)

Let us take a quadrature rule with the order of accuracy equal to an arbitrary number n,
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∫
RD

g(ξ)dDξ =
∫
RD

g(ξ)
ω(ξ)

ω(ξ)dDξ =

/
ξ=ξ0v

dDξ=ξD
0 dDv

/
=

1
(2π)D/2

∫
RD

g(ξ0v)
ω(ξ0v)

e−v2/2dDv '∑
i

wig(ci)

ω(ci)
, (5)

where i is the number of quadrature points. The discrete velocities ci are defined as
ci ≡ ξ0vi, vi are the quadrature points, and wi are the corresponding weights. The expres-
sion is exact when g(ξ) is a polynomial of order n or less.

With the use of (2) and (5), we deduce

ρ = ∑
i

wi f (t, r, ci)

ω(ci)
= ∑

i
fi, (6)

where the discrete populations fi are defined as

fi(t, r) ≡ wi f (t, r, ci)

ω(ci)
= (
√

2πξ0)
Dwi f (t, r, ci)ec2

i /2ξ2
0 . (7)

Other moments are obtained in a similar manner:

ρu = ∑
i

fici, ρ(u2 + DT) = ∑
i

fic2
i . (8)

The equilibrium discrete populations are

f eq
i = ρwie(2ci ·u−u2)/2ξ2

0 . (9)

The standard polynomial representation of f eq
i [29] can be obtained by expanding this

expression in the Taylor series:

f eq
i = ρwi

(
1− u2

2ξ2
0
+

ci · u
ξ2

0
+

(ci · u)2

2ξ4
0

)
. (10)

By inserting (10) and T = ξ2
0 into (6) and (8), the moments are obtained exactly if the

chosen quadrature rule is at least of the fourth order of accuracy.
In this derivation, ξ0 is introduced as a scheme parameter in (4). It allows ci to be

scaled; therefore, it provides a connection between the temporal and spatial scales and
controls the lattice geometry. Taking the expression of f eq into account, we see that ξ0 is
also associated with the model temperature and the speed of sound. In the current work,
we considered only the athermal LBM, and ξ0 remains a numerical parameter in the scheme
construction. For the athermal LBM, the fifth-order quadrature is enough [28].

The LBM equations are obtained by letting ξ = ci in (1) and multiplying (1) by
wi/ω(ci) for each i:

∂ fi
∂t

+ ci
∂ fi
∂r

= Ωi, Ωi ≡
wi

ω(ci)
Ω|ξ=ci

. (11)

In this paper, the collision operator is taken in the Bhatnagar–Gross–Krook (BGK)
form [41,42]:

Ω =
f eq − f

τ
, Ωi =

f eq
i − fi

τ
, (12)

where τ is the collision parameter that controls the relaxation rate of populations and the
fluid viscosity.

Let us take a uniform lattice and denote the mesh step by ∆x and the time step by ∆t.
Then, (11) is discretized into the two steps of the LBM:
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• streaming:
∂ fi
∂t

+ ci
∂ fi
∂r

= 0 ⇒

fi(t + ∆t, r + ∆r)− fi(t, r) = 0, ∆ri ≡ ci∆t; (13)

• collision:
∂ fi
∂t

=
f eq
i − fi

τ
⇒

fi(t + ∆t, r)− fi(t, r) =
∆t
τ

(
f eq
i (t, r)− fi(t, r)

)
. (14)

In (13), the population transition vector ∆ri should point from one node to another;
therefore, every velocity in the set {ci} should be scaled accordingly. The ξ0 parameter
is used to scale {ci}. For example, in the widely used D2Q9 set, in which the quadrature
points are {

vD2Q9
i

}
=
{
(0, 0), (0,±

√
3), (±

√
3, 0), (±

√
3,±
√

3)
}

, (15)

this parameter is ξ0 = ∆x/(
√

3∆t).
Thus, according to (13) and (14), the LBM method consists of two steps: streaming

from one node to another in the direction of ci and a local collision operation.
Usually, the LBM stencil DNQM is understood as a set of discrete velocities {ci}

corresponding to a grid that is uniform in time and space, in which ∆t = ∆x = 1. The first
number in the indicated notation N is the number of dimensions of space, and the second
number M is the number of points of the quadrature from which the stencil is built. In this
paper, for convenience of presentation, we extend the standard definition of a stencil. Let
us define the LBM stencil as a complete set of scheme parameters that uniquely define
LBM streaming: quadrature points {vi} and weights, scaling coefficient ξ0, and time
step ∆t. We add these parameters to the usual stencil notation by putting them in brackets,
i.e., DNQM(∆t, ξ2

0). The commonly used D2Q9 LBM stencil (15) with ∆t = ∆x = 1 is
denoted as D2Q9(1, 1/3) hereafter.

The fluid viscosity ν is derived from the Chapman–Enskog analysis [29]:

ν = ξ2
0

(
τ − ∆t

2

)
. (16)

Finally, given a lattice and a fluid with a viscosity of ν, for the correctness of the
classical athermal LBM with BGK collision, we have to ensure that each vector ∆ri points
exactly from one lattice node to another, that the quadrature set has enough points to
integrate with the fifth order of accuracy, and that (16) is satisfied.

2.2. Recalibration of Populations

In an LBM with adaptive grids, lattice nodes may have varying stencils. For the
information exchange between the LBM nodes that operate with different LBM stencils,
we need to know how the population sets are converted into one another. To construct the
method of recalibration of populations from one stencil to another, let us find what changes
are required with the change in ∆t, ξ0 and the set of quadrature points.

Let us remark that we allow the stencil and, thus, ci to vary in time and space,
and the derivation of (11) requires inserting ω(ci) under the derivative [43]. There is no
contradiction here. In each node, we construct the LBM as if it were on a uniform grid. In
the following, we find how the information is converted between the LBM populations that
are constructed with the use of different stencils.

2.2.1. Recalibration with ∆t

According to (13), (14), the equations of the LBM are

fi(t + ∆t, r + ci∆t) = fi(t, r) +
∆t
τ

(
f eq
i (t, r)− fi(t, r)

)
. (17)
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In other words, the populations collide in (t, r) and travel to (t + ∆t, r + ci∆t).
To find the relationship between the populations that travel from node (t, r) in the

direction of the velocities of different stencils, let us use the Chapman–Enskog analysis.
Taking into account only the term that is linear in the Knudsen number ε [44], we obtain

fi ' f eq
i + ε f (1)i , f (1)i = −τ

(
∂
(1)
t f eq

i + ci∂
(1)
r f eq

i

)
, (18)

where we use the upper index (1) to denote the first-order term in the expansions of
populations and operators in terms of the Knudsen number. As for the derivatives,
∂
(1)
t = ε−1∂t, ∂

(1)
r = ε−1∂r ; ∂t and ∂r are shortcut notations for the time derivative and

the gradient, respectively. Rewriting (18), we find the expression for nonequilibrium
populations to be

fi ' f eq
i − τ

(
∂t f eq

i + ci∂r f eq
i

)
= f eq

i − τD f eq
i , (19)

where the differential operator is D ≡ ∂t + ci∂r .
In what follows, we denote the quantities related to the coarse grid by the subscript

c and those related to the fine grid by the subscript f . Let us consider the conversion
between stencils that differ only in ∆t: D2QM(∆tc, ξ0) and D2QM(∆t f , ξ0). By inserting (19)
into (17), we have

fi, c(t + ∆tc, r + ci∆tc)− f eq
i (t, r) = (∆tc − τc)D f eq

i (t, r) (20)

and a similar relationship for the fine stencil. By equating D f eq
i (t, r) in the expression for

the fine and coarse stencils, we obtain a well-known relationship [9]:

fi, c(t + ∆tc, r + ci∆tc)− f eq
i (t, r)

fi, f (t + ∆t f , r + ci∆t f )− f eq
i (t, r)

=
∆tc − τc

∆t f − τf
. (21)

The relationship between τc and τf is obtained by requiring the invariance of fluid
viscosity (16):

ν = ξ2
0

(
τc −

∆tc

2

)
= ξ2

0

(
τf −

∆t f

2

)
⇒ 2τc − ∆tc

2τf − ∆t f
= 1. (22)

2.2.2. Recalibration with Both ∆t and ξ0

Let us take the two stencils DNQM(∆tc, ξ2
0, c) and DNQM(∆t f , ξ2

0, f ), which corre-
spond to the same quadrature {vi} but different ξ0, ∆t, and τ. We have

{ci, c} 6= {ci, f }, Dc 6= D f , f eq
i, c 6= f eq

i, f , (23)

and instead of (22), we have

ν = ξ2
0, c

(
τc −

∆tc

2

)
= ξ2

0, f

(
τf −

∆t f

2

)
⇒ 2τc − ∆tc

2τf − ∆t f
=

ξ2
0, f

ξ2
0, c

. (24)

Taking (23) into account, (20) leads to the following expression:

fi, c(t + ∆t, r + ci, c∆t)− f eq
i, c(t, r)

fi, f (t + ∆t, r + ci, f ∆t)− f eq
i, f (t, r)

=
(∆tc − τc)Dc f eq

i, c

(∆t f − τf )D f f eq
i, f

. (25)

Let us find how D f eq
i depends on the stencil. Let us express this quantity through the

derivatives of the physical quantities ρ and u. From (10) and (19), we have
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D f eq
i = wiε

(
∂
(1)
t ρ− 1

2ξ2
0

∂
(1)
t ρu2 +

ci, β

ξ2
0

∂
(1)
t ρuβ +

ci, βci, γ

2ξ4
0

∂
(1)
t ρuβuγ +

ci, α∂
(1)
α ρ− ci, α

2ξ2
0

∂
(1)
α ρu2 +

ci, αci, βci, γ

2ξ4
0

∂
(1)
α ρuβuγ +

ci, αci, β

ξ2
0

∂
(1)
α ρuβ

)
, (26)

where, for convenience, we switch to tensor notations for vectors.
The time derivatives in (26) are replaced by the space derivatives with the use of

conservation laws

∂
(1)
t ρ + ∂

(1)
α (ρuα) = 0, ∂

(1)
t (ρuα) + ∂

(1)
γ Πeq

αγ = 0, (27)

where
Πeq

αγ = ρuαuγ + ρξ2
0δαγ. (28)

The time derivative is expanded:

∂
(1)
t ρuβuγ = uβ∂

(1)
t ρuγ + uγ∂

(1)
t ρuβ − uβuγ∂

(1)
t ρ. (29)

Finally, with the use of (27) and (28), (26) becomes

D f eq
i = wiε

(
−ρ∂

(1)
α uα +

ci, αci, β

ξ2
0

ρ∂
(1)
α uβ−

ci, β

ξ2
0

∂
(1)
γ ρuβuγ −

ci, α

2ξ2
0

∂
(1)
α ρu2 +

ci, αci, βci, γ

2ξ4
0

∂
(1)
α ρuβuγ +O(u3)

)
. (30)

According to (18), here, we can use ∂ instead of ∂(1), and we can insert ci = ξ0vi to
find how D f eq

i depends on ξ0.

D f eq
i = wi

(
−ρ∂αuα + vi, αvi, β ρ∂αuβ−

.
vi, β

ξ0
∂γρuβuγ −

vi, α

2ξ0
∂αρu2 +

vi, αvi, βvi, γ

2ξ0
∂αρuβuγ +O(u3)). (31)

The underlined terms do not depend on ξ0. These terms are unchanged as long
as the same quadrature rule is used. The remaining terms can be neglected in the low-
compressibility limit. Therefore, the recalibration expression is similar to (21):

fi, c(t + ∆t, r + ci, c∆t)− f eq
i, c(t, r)

fi, f (t + ∆t, r + ci, f ∆t)− f eq
i, f (t, r)

=
∆tc − τc

∆t f − τf
, (32)

and the relationship between τf and τc is expressed by (24).

2.2.3. Recalibration with a Change in Quadrature

Let us construct the conversion method between populations in D2QM1(∆t, ξ2
0) and

in D2QM2(∆t, ξ2
0).

The conversions in (21) and (32) are between the stencils of the same quadrature {vi}
but different τ. Therefore, these are the conversions between LBMs with different collision
operators, which are expressed by essentially different equations, and the conversions give
the correct nonequilibrium part of the populations.

When the τ parameter remains the same, the moment matching condition [33–36] is
used for the conversion. It is required that the change in the LBM populations does not
lead to a change in the physical moments:(

∑
i

c p
i, xcq

i, y fi

)∣∣∣∣∣
D2QM1(∆t, ξ2

0)

=

(
∑

i
c p

i, xcq
i, y fi

)∣∣∣∣∣
D2QM2(∆t, ξ2

0)

. (33)
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The number of equations in the linear system (33) depends on the order of approxima-
tion of the quadrature and its symmetries [28,29,45]. For athermal fluid physics, we require
at least

p + q ≤ 5 p, q ∈ N0. (34)

Additionally, an explicit relationship can be found for f0, which corresponds to the
zero discrete velocity vector (7):

( f0/w0)|D2QM1(∆t, ξ2
0)
= ( f0/w0)|D2QM2(∆t, ξ2

0)
. (35)

A similar relationship is valid whenever stencils have a shared nonzero discrete veloc-
ity.

Relations (33) and (35) form a system of linear equations that has to be solved to find
the populations of one stencil, while the populations of the other stencil are known. In gen-
eral, the system can be underdetermined or inconsistent. For example, in the conversion of
D2Q9 to D2Q15, we need to find 15 unknown populations from 9 computable moments. In
this case, we append the systems by equating the relationships from (33) to the equilibrium
moments [46].

2.2.4. Recalibration with the Change of Stencil

In total, for the recalibration of the populations from D2QM1(∆t1, ξ2
0,1) to

D2QM2(∆t2, ξ2
0,2), the two conversions are applied.

First, the quadrature rule is fixed; and ∆t, τ, and ξ0 are modified with the use of (24)
and (32). This converts D2QM1(∆t1, ξ2

0,1) to D2QM1(∆t2, ξ2
0,2). Second, the quadra-

ture is changed while keeping the same τ and ξ0 values, and the stencil is converted
to D2QM2(∆t2, ξ2

0,2). The two steps can be performed in any order. In any case, in the
middle of the conversion, there is a virtual LBM stencil (here, D2QM1(∆t2, ξ2

0,2)) for which
neither streaming nor collision take place.

3. Grid Refinement Interface without Interpolation
3.1. Grid Geometry

The recalibration method allows us to construct a transition between grids with
different time and space steps if we only construct the stencils that point to or from the
lattice points exactly in the grid transition region.

Let us take a grid refinement boundary with a coarse uniform grid (∆tc = ∆xc = 1) on
the left side and a fine uniform grid (∆t f = ∆x f = 1/2) on the right side (Figure 1):

LBM stencils can be used in the “pull” or “push” paradigms, which is relevant for
conversion purposes. In the “push” method, the populations are streamed from a node
according to the stencil of that node. After the streaming, the populations in any node may
come from different stencils, and the set of populations is not full in some nodes. In the “pull”
method, populations are converted into the stencil of the node before they are streamed
into that node. The “pull” method was used in the original work [33] and in the current
study. In the case of uniform grids, no stencil conversions are used, and the “pull” and
“push” methods are equivalent. The difference between rescaling incoming and outgoing
populations in the grid refinement method that is supplemented with interpolation is
reported in Reference [32].
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(a) (b)

Figure 1. Scheme of the discrete velocity sets of the stencils near the grid refinement boundary at the
integer (a) and half-integer (b) time steps. Dark-green: D2Q9(1, 1/3); light-green: D2Q9(1/2, 1/3);
blue: D2Q7(1, 1/4); orange: D2Q9(1/2, 4/3); gray: no streaming at half-integer steps.

3.2. Stencils and Recalibration

Let us construct an LBM algorithm in which the coarse and fine grids use the classical
LBM stencil, and the transition between grids does not require interpolated values; that is,
all ci point from one node to another. This is possible by introducing several transitional
LBM stencils.

Let us use D2Q9(1, 1/3) (dark green in Figure 1) and D2Q9(1/2, 1/3) (light green) for
the coarse and fine grids, respectively. This leads to the classical, unaltered D2Q9 LBM in
the fine and coarse grids away from the boundary.

For the grid transition, the well-known quadrature derivation rules can be used [47].
D2Q15(1, 25/38) (see Appendix A for the derivation) is a stencil of the fifth order that uses
the existing nodes. It can reproduce the moments of the equilibrium distribution at least
as well as D2Q9, which is used away from the grid transition. We also tried D2Q7(1, 1/4)
(details in Appendix A). This stencil performs correct integration for fewer moments, but it
is more local. The tests with both stencils are reported in Section 4. In Figure 1, D2Q7(1, 1/4)
is depicted, but D2Q15(1, 25/38) can be used instead.

To perform the grid transition, we use nodes with the D2Q7(1, 1/4) (or
D2Q15(1, 25/38)) stencil (blue in Figure 1) on the integer time steps and the D2Q9(1/2, 4/3)
stencil on half-integer time steps (orange nodes in Figure 1). This is just one of the many
possibilities that can be constructed for the boundary transition. Other configurations can
be used depending on the requirements of the model.

When the introduced stencils are used in the “pull” paradigm, the streaming operation
at a node requests populations from the neighboring nodes. At the node from which
the population is requested, recalibration into the target stencil takes place. If it is a
recalibration between different variations of D2Q9, (24) is used. If any other stencil is
involved, the recalibration is performed in two steps according to Section 2.2.4.

D2Q9(. . . ) � D2Q9(1, 1/4) � D2Q7(1, 1/4), (36)

D2Q9(. . . ) � D2Q9(1, 25/38) � D2Q15(1, 25/38), (37)

Here, D2Q9(1, 1/4) and D2Q9(1, 25/38) are the virtual stencils that are used only as an
intermediate state in the conversion of populations.
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3.3. Full Grid Transition Algorithm

The initial state t = t0 corresponds to Figure 1a. The proposed algorithm for the grid
transition is as follows:

1. Perform streaming on the coarse grid t0 → t0 + ∆tc with the use of

(a) The D2Q7(1, 1/4) (or D2Q15(1, 25/38)) stencil for the blue nodes;
(b) The D2Q9(1, 1/3) stencil for the dark-green nodes. Here, the incoming popu-

lations at the nodes that are exactly on the boundary are saved in a separate
temporary buffer to be used in Step 5, because the prestreaming populations
are still needed in the next step.

2. Perform streaming on the fine grid at t0 → t0 + ∆t f (Figure 1b) with the use of

(a) The D2Q9(1/2, 1/3) stencil for the light-green nodes;
(b) The D2Q9(1/2, 4/3) stencil for the orange nodes.

3. Perform collisions on the fine grid at the orange and light-green nodes (Figure 1b).
4. Perform the second streaming at t0 + ∆t f → t0 + ∆tc into the light-green nodes of the

fine grid (Figure 1a).
5. Restore the values of the boundary nodes from the buffer.
6. Perform collisions on all nodes with the respective stencils depicted in Figure 1a.

4. Benchmarks

The proposed algorithm was implemented in C++ with the use of the Zipped Data
Structure for Adaptive Mesh Refinement (ZAMR) [48] library in the Aiwlib [49] package.
The library provides convenient tools to work with binary refined grids based on the
Z-order curve traversal. It allows us to perform operations on all nodes of uneven grids
and to set flags on the nodes where operations differ. With it, we set unique flags for each
color of the nodes in Figure 1 and implement the described algorithm.

4.1. Poiseuille Flow

The stationary solution of the Navier–Stokes equation

∂u
∂t

+ (u∇)u = −1
ρ
∇p + ν∆u (38)

in the −Hx/2 ≤ x ≤ Hx/2, 0 ≤ y ≤ Hy domain with a no-slip boundary in x and a
periodic boundary in y:

u
(
−Hx

2
, y
)
= u

(
Hx

2
, y
)
= 0, u(x, y + Hy) = u(x, y), (39)

subject to the pressure gradient
∇p = (0,−g), (40)

is
ux = 0, uy(x) =

gH2
x

8ρν

(
1− 4x2

H2
x

)
. (41)

The flow is modeled with the use of the bounce-back boundary conditions on the x
boundary [29]. The pressure gradient is simulated with an additional term ∆uy = gτ/ρ
in the expression for the flow velocity during the computation of the equilibrium distri-
bution [50] for the collision step. The initial state was set by computing the equilibrium
populations, in which

ρ = 1, ux = uy = 0. (42)

The flow evolves to its equilibrium state (41).
In this benchmark, the classical LBM with BGK collision and bounce-back boundary

has a well-known problem. The effective channel width Hx depends on the collision
parameter τ [51]. We fix τf = (

√
3 + 2)∆t f /4 on the fine grid. Then, the viscosity is
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ν =
√

3∆t f /12, and the boundary is considered to be at the distance ∆x f /2 from the
boundary nodes [29].

We refine the grid near the no-slip boundaries. The sizes of the grid are

Hr
x = 23+r∆xc + ∆x f , Hr

b = 2r∆xc +
∆x f

2
≈ Hr

x
8

, Hy = 4∆xc, (43)

where r is the parameter that controls the grid resolution. For r = 1, half of the grid
geometry is as shown in Figure 2.

y

x

∆xc = 1

∆xf = 1/2

H1
x/2

H1
b

H
y

Figure 2. Grid geometry in the Poiseuille flow benchmark. Dark green nodes correspond to the
coarse grid, light green nodes correspond to the fine grid, and blue nodes are auxiliary and use one
of the stencils D2Q7(1, 1/4) or D2Q15(1, 25/38).

The fine grid takes approximately one-quarter of the domain. In our benchmarks,
the tests with such grid geometry gave better results than the tests in which the grid was
refined in half of the simulation region.

To evaluate the order of the approximation of the proposed scheme, the numerical
error dependency on r was studied. If ∆x is fixed, but r is changed, the effective channel
width and velocity maximum increase. Thus, the error is normalized to (H0

x/Hr
x)

2. Note
that in the evaluation of the Lp norm in the case of nonuniform grids, the contribution of
nodes is scaled to the effective area of the node dS(node) to ensure the correct numerical
representation of the finite integral:

L∞(Hr
x) =

(
H0

x
Hr

x

)2

max
nodes

|ur, num
y − ur

y|, (44)

Ln(Hr
x) =

(
H0

x
Hr

x

)2
n

√√√√√ ∑
nodes

|ur, num
y − ur

y|ndS(node)

∑
nodes

dS(node)
, n ∈ {1, 2}, (45)

dS(coarse) = ∆x2
c , dS(fine) = ∆x2

f , dS(border) = (∆x2
c + ∆x2

f )/2. (46)

The blue nodes in Figure 2 serve an auxiliary purpose in the scheme and are not taken
into account in the total error.

The benchmark results are reported in Figures 3 and 4. The results are compared with
those of the LBM simulation on a uniform fine grid (light green lines).

We observed that the proposed method of grid transition works correctly.
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The D2Q7(1, 1/4) stencil performs better in terms of space–time discretization and
produces results almost as good as those obtained with a uniform fine grid. However,
the stencil does not reproduce high-order velocity moments and suffers from Galilean
invariance errors. That is why its performance is better when g is lower (Figure 4).

The discretization errors for the D2Q15(1, 25/38) stencil are higher and show the
first order of accuracy. The source of the error has yet to be found. The dependencies
of this stencil in the space–time grid are the longest of all of those of the other stencils
in the constructed scheme. The low angle of the space–time characteristics may cause
such behavior.

101 102

Hx

10 9

10 8

10 7

10 6

L
, L

1, 
L 2

LQ7

LQ7
1 LQ7

2
LQ15

LQ15
1 LQ15

2
Lfine Lfine

1 Lfine
2

first order
second order

Figure 3. The Linf, L1 and L2 errors for the Poiseuille flow with g = 1× 10−6, ν =
√

3/24.
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1 LQ15

2
Lfine Lfine

1 Lfine
2

first order
second order

Figure 4. The Linf, L1 and L2 errors for Poiseuille flow with g = 1× 10−8 and ν =
√

3/24.

Let us compare the order of accuracy of our algorithm with those of the already known
schemes for constructing nonuniform grids. When the D2Q7(1, 1/4) stencil is used, we
are close to the second order of accuracy for every computed norm, and this result is
better than the results for both the initial-value problem (IVP) and the boundary-value
problem (BVP) types of interpolation in Reference [26] and is similar to the results obtained
with the cell-vertex and cell-centered hybrid-recursive regularized (HRR) algorithms with
linear explosion in Reference [7]. When the D2Q15(1, 25/38) stencil is used, we obtain
an order of accuracy close to unity, which is close to the results of the method with IVP
interpolation in Reference [26] and the cell-centered HRR algorithm with uniform explosion
in Reference [7].
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Let us note that the benchmark results can be improved by the use of advanced
collision and boundary conditions [29,51]. Here, we demonstrate only the impact of the
proposed recalibration method; thus, the classical LBM with BGK collision is used.

In Figure 5, the difference between the numerical and theoretical solutions is plotted
vs. the x coordinate. Here, r = 1, g = 1× 10−6, and ν =

√
3/24. It can be seen that

the grid transition introduced an error that leads to nonphysical current in the x-axis
direction; and the error, indeed, appears on the grid boundary and is not caused by the
bounce-back boundary.

In the current study, we concentrated on the verification of the method in terms of
accuracy and did not optimize the code in terms of performance. However, we can say that
one full LBM step, corresponding to ∆t = 1, performs approximately two times faster with
our code on a nonuniform grid than with the same code with classic LBM on a uniform
fine grid. We are sure that with proper optimization of the code, this ratio can increase.
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Figure 5. The absolute error of the Poiseuille flow solution vs. the x coordinate. Here, r = 1,
g = 1× 10−6, and ν =

√
3/24. Dashed lines indicate the boundaries of the transition between fine

and coarse meshes.

4.2. Athermal Vortex

In the second benchmark, the dynamics of the advected athermal vortex [52,53] is
modeled. The initial conditions are

uϕ(r)
∣∣
t=0 =

rβ0

2πR
exp

(
1− r2/R2

2

)
, ρ(r)|t=0 = exp

(
−

β2
0

8π2T
exp

(
1− r2/R2

))
(47)

for the stationary vortex, and a constant u0 is added to ux to model advection. Here, β0 is
the amplitude of the vortex rotation, R is the vortex radius, and T is the lattice temperature.
According to the Navier–Stokes solution, the vortex relaxes to a uniform flow, and the
relaxation rate is proportional to viscosity. In our benchmarks, we set a low viscosity and
studied the preservation of the vortex shape under the influence of the grid boundaries.

The simulation domain size was −512 ≤ x ≤ 512, 0 ≤ y ≤ 512, and the left half of
the domain was refined. All boundaries were periodic. The vortex was initialized in the
left half by setting the equilibrium populations on the fine grid with the flow parameters
according to (47). The numerical parameters were ν = 0.01, β0 = 0.05, R = 40, T = 1/3,
and u0 = 0.1.

The D2Q15(1, 25/38) stencil was used on the grid transition. Figure 6 shows the mo-
ment of vortex interaction with the grid boundary. Its shape is preserved in the interaction,
even after it passes back onto the fine grid (Figure 7). The effect of the transition on the
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solution can be seen by magnifying the density range on the color map (Figure 6b). The
effect is several orders of magnitude lower than the solution.

(a) (b)

Figure 6. Vortex density distribution on the color scale at t = 3072. The grid on the left is refined,
and empty spaces in place of the finer nodes on the coarse area are shown in gray. The left (a) and
right (b) images differ in the color map range.
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Figure 7. Density contours for 1− ρ = {75÷ 125, 375÷ 425, 875÷ 925} × 10−7 for 4 time instants.
Solid lines indicate the center of the vortex and dashed line indicate the boundary of the transition
between fine and coarse grids.
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5. Conclusions

To conclude, we showed how the moment matching condition [11] can be used to
perform conversions between LBM stencils on nonuniform grids. For an LBM with BGK
collision, we developed a method of recalibrating the populations, which extends the one
proposed in Reference [9] to variable lattice temperatures, and supplemented it with a
method of transition to a different discrete velocity set.

We proved the recalibration to be valid on 2D benchmarks with a 1D grid transition
interface. For this purpose, an algorithm that involves intermediate stencils on the transition
interface was proposed.

We think that this is an important contribution because it allows building nonuniform
meshes while remaining in the LBM framework, without the use of interpolation, finite
differences, series expansion, or other supplementary schemes. The recalibration method is
based only on the correctness of the quadrature rule in the velocity space and the Chapman–
Enskog analysis. This method can be used for different configurations of mesh interfaces
and even for dynamically refined or moving grids [54].

To further apply the method to more complex grid configurations, a combination of
stencils for the grid interface needs to be built. After that, the proposed method can be
applied to perform the transitions.

The best configuration is yet to be found. In the following studies, we may search for
the source of errors that led to a worse order of approximation in the Poiseuille flow bench-
mark.

Furthermore, it would be interesting to formulate the recalibration procedure in
the “push” framework with the rescaling of the outgoing populations [32] and moment
matching of more than two population sets. By combining the “pull” and “push” types of
streaming, a configuration of stencils that leads to a grid transition without mass loss may
be found.

In this study, we used the basic BGK collision and the basic bounce-back boundary
to focus on the impact of the recalibration method. For the other collision operators,
the recalibration procedure and the adaptation of the collision parameter to the stencil may
differ, but they may be built on the same principles that were discussed in the current text.

While the classical LBM is known to be limited in the range of its applicability, it is
still valid in the vicinity of the equilibrium function with a fixed (usually zero) velocity,
a low Mach number, and on a sufficiently detailed space–time lattice. With the use of the
moment matching condition, the LBM can be locally rebuilt with different background
flows [33,55,56] and different compressibility assumptions [46]. Thus, the LBM stencil can
change both in time and space to adapt to the flow conditions. Our work is a demonstration
of the fact that moment matching can also be used to adapt the stencil to the local geometry
or to flows with a higher Reynolds number.
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Appendix A. Stencils for the Grid Transition

The stencils for the grid transitions are built according to the basic Gauss–Hermite
quadrature construction rules. For the constructed quadrature rule to be no worse than the
classical D2Q9 variant, we require the expression

1
2πξ2

0

∫
R2

ξ
p
x ξ

q
ye−(ξ

2
x+ξ2

y)/2ξ2
0 d2ξ = ∑

i
wic

p
i, xcq

i, y, p, q ∈ N0, (A1)

to be satisfied for all monomials up to the 5th order (p + q ≤ 5).
The quadrature points {ci} are chosen in the grid refinement process. After that,

the weights are found by solving (A1) for wi and ξ0. The quantities are assumed to satisfy
the standard inequalities 0 < wi < 1, ξ0 > 0.

This amounts to a total of (n + 1)(n + 2)/2 = 21 (n = 5) equations in general. If the
quadrature point configuration is symmetrical in x and y, the equations for all odd powers
in ci, x or ci, y are trivially satisfied. A total of six equations remain to be solved. Therefore,
at least five independent weights are required in addition to the free parameter ξ0.

As the most local configuration with five independent shells, we choose (Figure A1)

{ci} =
{
(0, 0),

(
0,±3

2

)
,
(
±1,±3

2

)
,
(
±1,±1

2

)
,
(
±2,±1

2

)}
. (A2)

ω0

ω1

ω1

ω2ω2

ω2ω2

ω3ω3

ω3ω3

ω4ω4

ω4ω4

∆x

Figure A1. Streaming scheme for a D2Q15(∆t, 25∆x2/(38∆t2)) stencil in the “pull” paradigm. Dashed
arrows correspond to the discrete set of velocities (A2) in the case of ∆t = ∆x = 1.

The equations to be satisfied are
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p = 0, q = 0 1 = w0 + 2w1 + 4w2 + 4w3 + 4w4, (A3)

p = 2, q = 0 ξ2
0 = 4w2 + 4w3 + 16w4, (A4)

p = 0, q = 2 ξ2
0 = 9w1/2 + 9w2 + w3 + w4, (A5)

p = 4, q = 0 3ξ4
0 = 4w2 + 4w3 + 64w4, (A6)

p = 2, q = 2 ξ4
0 = 9w2 + w3 + 4w4, (A7)

p = 0, q = 4 3ξ4
0 = (81w1 + 192w2 + 2w3 + 2w4)/8. (A8)

The solution of the system is

w0 =
1249
3249

, w1 =
6125

103968
, w2 =

775
23104

, w3 =
5375
69312

, w4 =
925

69312
, (A9)

and ξ2
0 = 25/38.

In this work, we also use the stencil with the following points (Figure A2):

{ci} =
{
(0, 0), (0,±1),

(
±1,±1

2

)}
. (A10)

For the fifth order of accuracy, the following relationships have to be satisfied:

p = 0, q = 0 1 = w0 + 4w1 + 2w2, (A11)

p = 2, q = 0 ξ2
0 = 4w1, (A12)

p = 0, q = 2 ξ2
0 = w1 + 2w2, (A13)

p = 4, q = 0 3ξ4
0 = 4w1, (A14)

p = 2, q = 2 ξ4
0 = w1, (A15)

p = 0, q = 4 3ξ4
0 = w1/4 + 2w2. (A16)

It is impossible to satisfy all of these with just four parameters, so among the fourth-
order equations, we choose to satisfy only the equation for p = q = 2, while the equations
for p = 4, q = 0 and p = 0, q = 4 are not satisfied. This is the only choice that results in a
correct solution for the Poiseuille flow benchmark.

When the relationship for p = q = 2 is satisfied, the weights are

w0 =
9
16

, w1 =
1
16

, w2 =
3

32
, (A17)

and ξ2
0 = 1/4. This is the variant used in the current work.

ω0

ω2

ω2

ω1ω1

ω1ω1

∆x

Figure A2. Streaming scheme for a D2Q7(∆t, ∆x2/(4∆t2)) stencil in the “pull” paradigm. Dashed
arrows correspond to the discrete set of velocities (A10) in the case of ∆t = ∆x = 1.



Fluids 2023, 8, 179 18 of 19

References
1. Wolf-Gladrow, D.A. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction; Springer: Berlin, Germany, 2004.
2. Shan, X.; Yuan, X.F.; Chen, H. Kinetic theory representation of hydrodynamics: A way beyond the Navier–Stokes equation. J.

Fluid Mech. 2006, 550, 413–441. [CrossRef]
3. Cockburn, B.; Shu, C.W. Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 2001,

16, 173–261. [CrossRef]
4. Wittmann, M.; Haag, V.; Zeiser, T.; Köstler, H.; Wellein, G. Lattice Boltzmann benchmark kernels as a testbed for performance

analysis. Comput. Fluids 2018, 172, 582–592. [CrossRef]
5. Levchenko, V.; Perepelkina, A. Heterogeneous LBM Simulation Code with LRnLA Algorithms. Commun. Comput. Phys. 2023,

33, 214–244. [CrossRef]
6. Zakirov, A.; Belousov, S.; Bogdanova, M.; Korneev, B.; Stepanov, A.; Perepelkina, A.; Levchenko, V.; Meshkov, A.; Potapkin, B.

Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale. Addit.
Manuf. 2020, 35, 101236. [CrossRef]

7. Schukmann, A.; Schneider, A.; Haas, V.; Böhle, M. Analysis of Hierarchical Grid Refinement Techniques for the Lattice Boltzmann
Method by Numerical Experiments. Fluids 2023, 8, 103. [CrossRef]

8. Rohde, M.; Kandhai, D.; Derksen, J.; Van den Akker, H.E. A generic, mass conservative local grid refinement technique for
lattice-Boltzmann schemes. Int. J. Numer. Methods Fluids 2006, 51, 439–468. [CrossRef]

9. Filippova, O.; Hänel, D. Grid refinement for lattice-BGK models. J. Comput. Phys. 1998, 147, 219–228. [CrossRef]
10. Filippova, O.; Hänel, D. A novel lattice BGK approach for low Mach number combustion. J. Comput. Phys. 2000, 158, 139–160.

[CrossRef]
11. Dorschner, B.; Frapolli, N.; Chikatamarla, S.S.; Karlin, I.V. Grid refinement for entropic lattice Boltzmann models. Phys. Rev. E

2016, 94, 053311. [CrossRef]
12. Lagrava, D.; Malaspinas, O.; Latt, J.; Chopard, B. Advances in multi-domain lattice Boltzmann grid refinement. J. Comput. Phys.

2012, 231, 4808–4822. [CrossRef]
13. Tölke, J.; Krafczyk, M. Second order interpolation of the flow field in the lattice Boltzmann method. Comput. Math. Appl. 2009,

58, 898–902. [CrossRef]
14. Chen, H.; Filippova, O.; Hoch, J.; Molvig, K.; Shock, R.; Teixeira, C.; Zhang, R. Grid refinement in lattice Boltzmann methods

based on volumetric formulation. Phys. A Stat. Mech. Its Appl. 2006, 362, 158–167. [CrossRef]
15. Yu, Z.; Fan, L.S. An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase

flow simulation. J. Comput. Phys. 2009, 228, 6456–6478. [CrossRef]
16. Bauer, M.; Eibl, S.; Godenschwager, C.; Kohl, N.; Kuron, M.; Rettinger, C.; Schornbaum, F.; Schwarzmeier, C.; Thönnes, D.; Köstler,

H.; et al. waLBerla: A block-structured high-performance framework for multiphysics simulations. Comput. Math. Appl. 2021,
81, 478–501. [CrossRef]

17. Fakhari, A.; Lee, T. Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique.
Phys. Rev. E 2014, 89, 033310. [CrossRef]

18. Mei, R.; Shyy, W. On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates. J. Comput. Phys. 1998,
143, 426–448. [CrossRef]

19. Guo, Z.; Zhao, T.S. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates. Phys. Rev. E 2003, 67, 066709.
[CrossRef]

20. Peng, G.; Xi, H.; Duncan, C.; Chou, S.H. Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys.
Rev. E 1999, 59, 4675. [CrossRef]

21. Xi, H.; Peng, G.; Chou, S.H. Finite-volume lattice Boltzmann schemes in two and three dimensions. Phys. Rev. E 1999, 60, 3380.
[CrossRef]

22. Li, Y.; LeBoeuf, E.J.; Basu, P. Least-squares finite-element lattice Boltzmann method. Phys. Rev. E 2004, 69, 065701. [CrossRef]
[PubMed]

23. Krämer, A.; Küllmer, K.; Reith, D.; Joppich, W.; Foysi, H. Semi-Lagrangian off-lattice Boltzmann method for weakly compressible
flows. Phys. Rev. E 2017, 95, 023305. [CrossRef] [PubMed]

24. Wilde, D.; Krämer, A.; Reith, D.; Foysi, H. Semi-Lagrangian lattice Boltzmann method for compressible flows. Phys. Rev. E 2020,
101, 053306. [CrossRef] [PubMed]

25. Chew, Y.; Shu, C.; Niu, X. A new differential lattice Boltzmann equation and its application to simulate incompressible flows on
non-uniform grids. J. Stat. Phys. 2002, 107, 329–342. [CrossRef]

26. Guzik, S.; Gao, X.; Weisgraber, T.; Alder, B.; Colella, P. An adaptive mesh refinement strategy with conservative space-time
coupling for the lattice-Boltzmann method. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013; p. 866. [CrossRef]

27. Liu, Z.; Li, S.; Ruan, J.; Zhang, W.; Zhou, L.; Huang, D.; Xu, J. A New Multi-Level Grid Multiple-Relaxation-Time Lattice
Boltzmann Method with Spatial Interpolation. Mathematics 2023, 11, 1089. [CrossRef]

28. Nie, X.; Shan, X.; Chen, H. Galilean invariance of lattice Boltzmann models. Europhys. Lett. 2008, 81, 34006. [CrossRef]
29. Timm, K.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. The Lattice Boltzmann Method: Principles and Practice;

Springer: Cham, Switzerland, 2016. [CrossRef]

http://doi.org/10.1017/S0022112005008153
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1016/j.compfluid.2018.03.030
http://dx.doi.org/10.4208/cicp.OA-2022-0055
http://dx.doi.org/10.1016/j.addma.2020.101236
http://dx.doi.org/10.3390/fluids8030103
http://dx.doi.org/10.1002/fld.1140
http://dx.doi.org/10.1006/jcph.1998.6089
http://dx.doi.org/10.1006/jcph.1999.6405
http://dx.doi.org/10.1103/PhysRevE.94.053311
http://dx.doi.org/10.1016/j.jcp.2012.03.015
http://dx.doi.org/10.1016/j.camwa.2009.02.012
http://dx.doi.org/10.1016/j.physa.2005.09.036
http://dx.doi.org/10.1016/j.jcp.2009.05.034
http://dx.doi.org/10.1016/j.camwa.2020.01.007
http://dx.doi.org/10.1103/PhysRevE.89.033310
http://dx.doi.org/10.1006/jcph.1998.5984
http://dx.doi.org/10.1103/PhysRevE.67.066709
http://dx.doi.org/10.1103/PhysRevE.59.4675
http://dx.doi.org/10.1103/PhysRevE.60.3380
http://dx.doi.org/10.1103/PhysRevE.69.065701
http://www.ncbi.nlm.nih.gov/pubmed/15244659
http://dx.doi.org/10.1103/PhysRevE.95.023305
http://www.ncbi.nlm.nih.gov/pubmed/28297853
http://dx.doi.org/10.1103/PhysRevE.101.053306
http://www.ncbi.nlm.nih.gov/pubmed/32575305
http://dx.doi.org/10.1023/A:1014579125174
http://dx.doi.org/10.2514/6.2013-866
http://dx.doi.org/10.3390/math11051089
http://dx.doi.org/10.1209/0295-5075/81/34005
http://dx.doi.org/10.1007/978-3-319-44649-3


Fluids 2023, 8, 179 19 of 19

30. Saadat, M.H.; Dorschner, B.; Karlin, I. Extended Lattice Boltzmann Model. Entropy 2021, 23, 475. [CrossRef]
31. Alexander, F.J.; Chen, S.; Sterling, J. Lattice Boltzmann thermohydrodynamics. Phys. Rev. E 1993, 47, R2249. [CrossRef]
32. Dupuis, A.; Chopard, B. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Phys. Rev. E

2003, 67, 066707. [CrossRef]
33. Dorschner, B.; Bösch, F.; Karlin, I.V. Particles on demand for kinetic theory. Phys. Rev. Lett. 2018, 121, 130602. [CrossRef]
34. Zakirov, A.; Korneev, B.; Levchenko, V.; Perepelkina, A. On the Conservativity of the Particles-On-Demand Method for Solution of the

Discrete Boltzmann Equation; Keldysh Institute: Moscow, Russia, 2019; pp. 35:1–35:19. [CrossRef]
35. Zipunova, E.; Perepelkina, A.; Zakirov, A.; Khilkov, S. Regularization and the Particles-on-Demand method for the solution of the

discrete Boltzmann equation. J. Comput. Sci. 2021, 53, 101376. [CrossRef]
36. Zipunova, E.; Perepelkina, A. Development of Explicit and Conservative Schemes for Lattice Boltzmann Equations with Adaptive

Streaming; Keldysh Institute: Moscow, Russia, 2022; pp. 7:1–7:20. [CrossRef]
37. Kallikounis, N.; Dorschner, B.; Karlin, I. Particles on demand for flows with strong discontinuities. Phys. Rev. E 2022, 106, 015301.

[CrossRef]
38. Kallikounis, N.; Karlin, I. Particles on Demand method: Theoretical analysis, simplification techniques and model extensions.

arXiv 2023, arXiv:2302.00310. [CrossRef]
39. Sawant, N.; Dorschner, B.; Karlin, I.V. Detonation modeling with the particles on demand method. AIP Adv. 2022, 12, 075107.

[CrossRef]
40. Li, X.; Shi, Y.; Shan, X. Temperature-scaled collision process for the high-order lattice Boltzmann model. Phys. Rev. E 2019,

100, 013301. [CrossRef] [PubMed]
41. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and

neutral one-component systems. Phys. Rev. 1954, 94, 511. [CrossRef]
42. Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 1992, 17, 479. [CrossRef]
43. Philippi, P.C.; Hegele Jr, L.A.; Dos Santos, L.O.; Surmas, R. From the continuous to the lattice Boltzmann equation: The

discretization problem and thermal models. Phys. Rev. E 2006, 73, 056702. [CrossRef]
44. Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal

Conduction and Diffusion in Gases; Cambridge University Press: Cambridge, UK, 1970.
45. Karlin, I.; Asinari, P. Factorization symmetry in the lattice Boltzmann method. Phys. A Stat. Mech. Its Appl. 2010, 389, 1530–1548.

[CrossRef]
46. Kallikounis, N.G.; Dorschner, B.; Karlin, I.V. Multiscale semi-Lagrangian lattice Boltzmann method. Phys. Rev. E 2021, 103, 063305.

[CrossRef]
47. Spiller, D.; Dünweg, B. Semiautomatic construction of lattice Boltzmann models. Phys. Rev. E 2020, 101, 043310. [CrossRef]
48. Ivanov, A.; Perepelkina, A. Zipped Data Structure for Adaptive Mesh Refinement. In Proceedings of the Parallel Computing

Technologies PaCT 2021, Kaliningrad, Russia, 13–18 September 2021; Lecture Notes in Computer Science; Malyshkin, V., Ed., Springer:
Cham, Switzerland, 2021; pp. 245–259. [CrossRef]

49. Ivanov, A.; Khilkov, S. Aiwlib library as the instrument for creating numerical modeling applications. Sci. Vis. 2018, 10, 110–127.
[CrossRef]

50. Sukop, M.; Thorne, D.J. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers; Springer: Berlin, Germany, 2006.
[CrossRef]

51. Ginzburg, I.; d’Humières, D. Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 2003, 68, 066614.
[CrossRef]

52. Wissocq, G.; Boussuge, J.F.; Sagaut, P. Consistent vortex initialization for the athermal lattice Boltzmann method. Phys. Rev. E
2020, 101, 043306. [CrossRef]

53. Astoul, T.; Wissocq, G.; Boussuge, J.F.; Sengissen, A.; Sagaut, P. Analysis and reduction of spurious noise generated at grid
refinement interfaces with the lattice Boltzmann method. J. Comput. Phys. 2020, 418, 109645. [CrossRef]

54. Yoo, H.; Bahlali, M.; Favier, J.; Sagaut, P. A hybrid recursive regularized lattice Boltzmann model with overset grids for rotating
geometries. Phys. Fluids 2021, 33, 057113. [CrossRef]

55. Coreixas, C.; Latt, J. Compressible lattice Boltzmann methods with adaptive velocity stencils: An interpolation-free formulation.
Phys. Fluids 2020, 32, 116102. [CrossRef]

56. Frapolli, N.; Chikatamarla, S.S.; Karlin, I.V. Lattice kinetic theory in a comoving Galilean reference frame. Phys. Rev. Lett. 2016,
117, 010604. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e23040475
http://dx.doi.org/10.1103/PhysRevE.47.R2249
http://dx.doi.org/10.1103/PhysRevE.67.066707
http://dx.doi.org/10.1103/PhysRevLett.121.130602
http://dx.doi.org/10.20948/prepr-2019-35-e
http://dx.doi.org/10.1016/j.jocs.2021.101376
http://dx.doi.org/10.20948/prepr-2022-7
http://dx.doi.org/10.1103/PhysRevE.106.015301
https://doi.org/10.48550/arXiv.2302.00310
http://dx.doi.org/10.1063/5.0095122
http://dx.doi.org/10.1103/PhysRevE.100.013301
http://www.ncbi.nlm.nih.gov/pubmed/31499796
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1103/PhysRevE.73.056702
http://dx.doi.org/10.1016/j.physa.2009.12.032
http://dx.doi.org/10.1103/PhysRevE.103.063305
http://dx.doi.org/10.1103/PhysRevE.101.043310
http://dx.doi.org/10.1007/978-3-030-86359-3_19
http://dx.doi.org/10.26583/sv.10.1.09
http://dx.doi.org/10.1007/978-3-540-27982-2
http://dx.doi.org/10.1103/PhysRevE.68.066614
http://dx.doi.org/10.1103/PhysRevE.101.043306
http://dx.doi.org/10.1016/j.jcp.2020.109645
http://dx.doi.org/10.1063/5.0045524
http://dx.doi.org/10.1063/5.0027986
http://dx.doi.org/10.1103/PhysRevLett.117.010604
http://www.ncbi.nlm.nih.gov/pubmed/27419555

	Introduction
	Theoretical Background
	Lattice Boltzmann Method and Its Parameters
	Recalibration of Populations
	Recalibration with t
	Recalibration with Both t and 0
	Recalibration with a Change in Quadrature
	Recalibration with the Change of Stencil


	Grid Refinement Interface without Interpolation
	Grid Geometry
	Stencils and Recalibration
	Full Grid Transition Algorithm

	Benchmarks
	Poiseuille Flow
	Athermal Vortex

	Conclusions
	Stencils for the Grid Transition
	References

