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Abstract: Viscous linear surface waves are studied at arbitrary wavelength, layer thickness, viscosity,
and surface tension. We find that in shallow enough fluids no surface waves can propagate. This layer
thickness is determined for some fluids, water, glycerin, and mercury. Even in any thicker fluid layers,
propagation of very short and very long waves is forbidden. When wave propagation is possible,
only a single propagating mode exists for a given horizontal wave number. In contrast, there are two
types of non-propagating modes. One kind of them exists at all wavelength and material parameters,
and there are infinitely many such modes for a given wave number, distinguished by their decay
rates. The other kind of non-propagating mode that is less attenuated may appear in zero, one, or
two specimens. We notice the presence of two length scales as material parameters, one related to
viscosity and the other to surface tension. We consider possible modes for a given material on the
parameter plane layer thickness versus wave number and discuss bifurcations among different mode
types. Motion of surface particles and time evolution of surface elevation is also studied at various
parameters in glycerin, and a great variety of behaviour is found, including counterclockwise surface
particle motion and negative group velocity in wave propagation.

Keywords: shallow water; viscose fluid; surface waves; bifurcation analysis

PACS: 47.10.-g; 47.11.-j

1. Introduction

Although capillary gravity surface waves have been studied for a long time, they are
still a fascinating and interesting subject [1–15]. The dispersion of linear and nonlinear
waves, wave damping in deep water owing to viscosity, and weakly nonlinear waves in
shallow water are classic problems that have long been studied [16]. Comprehending the
dissipation and dynamics of internal waves occurring at the boundary between viscous flu-
ids holds significant importance. Surfactant, pollutant, and fluid film impacts at interfaces
are now hot subjects [17–35]. Current research on surface waves remains ongoing, with a
predominant emphasis on multi-layer models [18], damping rate [2,5,7,17–20,36,37], and
experimental verifications [17,20]. The majority of research endeavours in this particular
domain are founded upon the utilization of viscoelastic fluids [17,21]. Hence, the constancy
of surface tension is no longer maintained. The Marangoni number has been identified as a
significant factor in the determination of a fluid’s surface behaviour, owing to its ability to
characterize the fluid’s tendency to flow as a result of surface tension gradients [20,22,23].
The aforementioned phenomenon exhibits potential practical implications in the field of
hydrodynamics, particularly in microfluidics and the study of nanoscopic capillary waves.
This assertion is supported by various scholarly sources [24–28]. Whilst recent theoretical
and experimental investigations [29,30] have primarily focused on fluid in deep layers,
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it is important to note that the structure and velocity of surface waves are significantly
impacted by finite depth.

It is noteworthy that the uncomplicated scenario of linear surface waves in a vis-
cous fluid possessing a clean surface and finite depth has not yet been fully explored.
Only few works have been identified that address this problem, as documented in the
references [33,36,38,39]. References [36,38] exclusively examined the scenario where sur-
face tension was absent. The reference [39] incorporated surface tension, although the
dispersion relation it obtained did not align with those presented in references [36,38]
under the condition of zero surface tension. The appendix of reference [33] examines linear
surface waves in finite depth, neglecting surface tension, and providing an approximation
that is valid only under weakly damped conditions. Additionally, it should be noted that
the dispersion relations derived in the works [36,38] exhibit dissimilarities.

The current investigation involves the derivation of the dispersion relation for surface
waves that are both viscous and gravity-capillary in nature. This is achieved for fluid depths
that are arbitrary. The outcome of our study in the limit of zero surface tension concurs
with the dispersion relation derived in Hunt’s work [38]. As far as current understanding
allows, the present work contains the first correct dispersion relation for viscous surface
waves, which also incorporates the influence of surface tension and finite fluid depth. The
present study demonstrates concurrence with prior research [17,21] in the context of the
deep water regime. Upon examining the implications of the dispersion relation, it becomes
apparent that a multitude of over-damped modes exist across all parameter values in an
infinite fashion. There exist two distinct types of over-damped modes, characterized by
either monotonic or oscillatory behaviour along the vertical axis. The latter category is a
perpetual presence (in actuality, there are an infinite number of such modes at a specified
wave number), whereas there may be zero, one, or two modes of the former category at a
given wave number.

It has been observed that a single propagating mode can exist in a specific direction.
This mode experiences a bifurcation at both long and short wavelengths, resulting in
the emergence of two over-damped modes. The parameter space wave number versus
layer thickness (we actually use the parameter p, which is related to layer thickness, cf.
Equation (23)) can be thus partitioned according to the presence or absence of propagating
modes and types and number of over-damped modes. The present study includes a
discussion, primarily through numerical demonstration, of the bifurcations that occur at
the boundaries of the distinct parameter space regions.

This paper is organized in the subsequent fashion: In Section 2, a derivation and dis-
cussion of the dispersion relation is presented, which serves as the basis for our subsequent
investigations. Section 3 of the paper investigates various modes, their dependence on pa-
rameters, and bifurcations. Section 4 is dedicated to analysing the minimum layer thickness
required for wave propagation. Section 5 delves into the examination of particle motion
at the surface, and Section 6 scrutinizes the temporal progression of surface elevations.
Section 7 of the paper offers a comprehensive analysis of the findings.

2. Dispersion Relation

The propagation of surface waves in deep water has been studied by several works,
with results that generally agree with each other [17,21,24,40,41]. They are based on
linearization of the Navier–Stokes equation. Here, we also consider linear surface waves
on a viscous, incompressible fluid layer of finite, constant depth h. The coordinates x and y
are horizontal, z is vertical. The origin lies at the undisturbed fluid surface. Suppose that
the flow corresponding to the surface wave does not depend on y.

The linearized Navier–Stokes equation may be written as

∂V
∂t
− ν4V = ∇

(
−P

ρ
− gz

)
. (1)
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where g indicates acceleration due to gravity, V is velocity vector, P is pressure, ν is viscosity,
and ρ is fluid density. Since the right hand side is a full gradient, we have

∂

∂z

(
∂u
∂t
− ν4u

)
=

∂

∂x

(
∂w
∂t
− ν4w

)
. (2)

Due to linearity, we may search for the horizontal u and vertical w velocity components
in the following form:

u(x, z, t) = f ′(z)ei(kx−ωt) (3)

w(x, z, t) = −ik f (z)ei(kx−ωt) (4)

here the prime denotes derivative with respect to the argument. Further, k is a real, positive
wave number, while ω is in general complex frequency, its imaginary part describing the
damping. The specified x and t dependence is due to translational symmetry in horizontal
direction and time, respectively, while the specific form of z dependence is forced by
the incompressibility condition ∇ ·V = 0. Note that the stream function is given by
f exp(i(kx−ωt)) .

Putting Ansatz (3), (4) into Equation (2), we obtain

f ′′′′ +
(

i
ω

ν
− 2k2

)
f ′′ −

(
i
ω

ν
− k2

)
k2 f = 0 . (5)

Equation (5) has exponential solutions f = exp(κz). For the exponent κ we get

κ4 +
(

i
ω

ν
− 2k2

)
κ2 −

(
i
ω

ν
− k2

)
k2 f = 0 . (6)

The solutions are

κ1,2 = ±k , (7)

κ3,4 = ±
√

k2 − i
ω

ν
. (8)

For brevity, we shall use the notation κ for κ3 = −κ4 and k for κ1 = −κ2. The general
solution for f may be given as

f = a1 cosh[k(z + h)] + a2 sinh[k(z + h)] + b1 cosh[κ(z + h)] + b2 sinh[κ(z + h)] , (9)

where a1, a2, b1, b2 are the integration constants and h stands for the fluid depth. Then
boundary conditions at the bottom,

u(z = −h) = w(z = −h) = 0 , (10)

imply

a1 = A , b2 = B , b1 = −A , a2 = −κ

k
B , (11)

expressed in terms of the new constants A and B. Hence for f we get

f = A cosh[k(z + h)]− κ

k
B sinh[k(z + h)]− A cosh[κ(z + h)] + B sinh[κ(z + h)] . (12)

Upon integrating the x component of the Navier–Stokes equation with respect to x,
we get the pressure as

P = Po − ρgz− ρei(kx−ωt)
(
−ω

k
f ′ − iνk f ′ + i

ν

k
f ′′′
)

. (13)
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At the fluid surface we have zero boundary conditions, therefore (in linear approxima-
tion) we have

∂u
∂z

+
∂w
∂x

= 0 (14)

for the shear and

P− 2ρν
∂w
∂z

= P0 − σ
∂2η

∂x2 (15)

for the pressure. Here η = η(x, t) stands for the deviation of the fluid surface from
equilibrium and σ is the surface tension.

Equation (14) implies

f ′′ + k2 f = 0 (16)

at z = 0, while Equation (15) implies

−gη +
σ

ρ

∂2η

∂x2 − ei(kx−ωt)
(
−ω

k
f ′ − iνk f ′ + i

ν

k
f ′′′
)
+ 2iνk f ′ei(kx−ωt) = 0 . (17)

In linear approximation, we have at the surface

∂η

∂t
= w . (18)

Note that on the right hand side we may set z = 0. Putting here the expression
of w (i.e., Equation (4)) and combining the result with Equation (17), in terms of κ (cf.
Equation (8)), we have(

1 +
σ

gρ
k2
)

k2 f +
ν2

g
(κ2 − k2)(κ2 + 2k2) f ′ − ν2

g
(κ2 − k2) f ′′′ = 0 . (19)

Here, again, z = 0. By now inserting the solution (12) into Equations (16) and (19)
we obtain a linear homogeneous system of equation for the quantities A and B. A non-
trivial solution can be found only if the determinant of the 2× 2 matrix formed out of the
coefficients of A and B is zero. The resulting dispersion relation, expressed in terms of
dimensionless quantities, sounds

K(Q sinh K cosh Q− K cosh K sinh Q)(1 + sK2) + p
[
−4K2Q

(
K2 + Q2)

+Q
(
Q4 + 2K2Q2 + 5K4) cosh K cosh Q− K

(
Q4 + 6K2Q2 + K4) sinh K sinh Q

]
= 0 (20)

Here

K = kh (21)

Q = κh (22)

p =
ν2

gh3 (23)

s =
σ

ρgh2 (24)

Given parameters p and s, and scaled wave number K, a solution Q of Equation (20)
yields the angular frequency (cf. Equations (8) and (22))

ω = −i
ν

h2

(
K2 −Q2

)
. (25)
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For the ratio of the coefficients A and B we get (cf. Equations (12) and (16))

B
A

=
2K2 cosh(K)− (K2 + Q2) cosh(Q)

2QK sinh(K)− (K2 + Q2) sinh(Q)
. (26)

Let us compare dispersion relation (20) with those available in the literature. The
dispersion relation (20) for σ = 0 coincides with the result of Hunt [38], albeit he used
different notations. Meur [36] derived the dispersion relation

4K2Q(K2 + Q2) + 4QK3[Q sinh(K) sinh(Q)− K sinh(K) cosh(Q)]

−(K2 + Q2)2[Q cosh(K) cosh(Q)− K sinh(K) sinh(Q)]

−KRe2[Q sinh(K) sinh(Q)− K cosh(K) sinh(Q)] = 0 (27)

for σ = 0. Here Re = hc
ν where c =

√
gh, hence, according to Equation (23),

p =
1

Re2 . (28)

Note that Re looks formally like a Reynolds number, but it has a quite different
physical meaning. Reynolds number traditionally means the ratio of the nonlinear term to
the viscous term in the Navier–Stokes equation. Now, there is no nonlinear term present.
Further, in the definition of the present Re, the velocity c is not the fluid velocity but the
propagation velocity of waves in shallow fluid.

Equation (27) is almost identical with (20), but there is a difference in the the bracket
of KRe2[. . .]. The first term should be Q sinh(K) cosh(Q). Sanochkin [39] also introduced
a dispersion relation. All terms in [39] are the same as Equation (20) if cosh (a

√
q) and

sinh ( a√
1+q

) change to cosh (a
√

1 + q) and sinh (a
√

1 + q), respectively. Note that q in his

notation represents Q2

K2 − 1 and a ≡ K.
In the limit of K → ∞, the dispersion relation (20) agrees with [21]. The author studied

the dispersion relation in terms of dimensionless variables in three layers.

K
(

1 + sK2
)
+ p(Q− K)

(
Q3 + Q2K + 3K2Q− K3

)
= 0 (29)

Parameters p and s may be expressed in terms of the viscous length scale and the
capillary length scale, which is related to surface tension, respectively. These parameters
characterize the physical mechanisms that govern the oscillatory motion of capillary waves.

`ν =

(
ν2

g

)1/3

(30)

`σ =

(
σ

ρg

)1/2
, (31)

namely,

p =

(
`ν

h

)3
(32)

s =
(
`σ

h

)2
. (33)
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It is obvious that the ratio

µ =
`σ

`ν
=

s1/2

p1/3 (34)

is a material parameter (apart from g), and does not depend on the layer thickness. On the
other hand, when parameter dependence is studied, often this is done by changing the layer
thickness of a given material. In that case it is advisable to use parameters µ and p, while

s = µ2 p2/3 . (35)

Rajan [21] also utilizes dimensionless variables in dispersion relation that involve the
properties of the fluid and of the interface. We are interested in comparing wave-Reynolds
σRajan number with s and p

σRajan =
(1− R) + sK2

(1 + R)pK3 (36)

where R =
ρupper
ρlower

. The density ratio R is restricted to take values less than or equal to unity
due to the requirement of static stability. As R→ 1 in the fluid system, the effects of gravity
tend to vanish [21]. In the case R = 0, Equation (36) reduces to the well-known form of free
fluid surface if the Marangoni number is zero. Therefore, we have

σRajan =
1 + sK2

pK3 (37)

In this study the Marangoni number P equals to zero, which represents zero interfacial
elasticity and implies that the interface is clean.

Note that if Q is a solution of Equation (20), then so is −Q. On the other hand, this
sign does not matter when calculating ω or f (cf. Equation (12)). Henceforth we assume
that the real part of Q is positive, and thus tanh Q→ 1 when |Q| → ∞.

The dispersion Equation (20) is valid for waves in a general system of fluids with
arbitrary density, viscosity, surface tension, and depth. Here we modify Equation (20) for
small viscosity and large wavelength cases that are applicable to specific systems. We also
obtain numerical solutions. To this end, Equation (20) was expanded as a 50-order polynomial
and all roots were found. The non-physical roots arising from the expansion were eliminated
by the requirements that ω satisfy the original equation. Our analyses reveal the presence of
bifurcation in some physical solutions, which are discussed in Section 2.4.

2.1. Small Viscosity Case

In the small viscosity case, Equation (20) may be solved approximately. In that case
p→ 0 and |Q| → ∞. This implies that in leading order Equation (20) reduces to

K tanh K (1 + sK2) + pQ4
0 = 0 , (38)

or

Q2
0 = −i

√
K tanh K (1 + sK2)

p
. (39)

Here the negative sign has been chosen in order to get a positive real part of angular fre-
quency via Equation (25). Further, according to the convention mentioned above, we have

Q0 =
1− i√

2

(
K tanh K (1 + sK2)

p

)1/4

. (40)
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A systematic expansion in terms of p1/4 leads in the next two orders to [38]

Q = Q0 −
K

2 sinh(2K)
− K2

2Q0

Y2 + 6Y + 5
Y(Y + 4)

. (41)

Here Y = 4 sinh2 K. To this order we have for the angular frequency

ω =


√(

gk +
σk3

ρ

)
tanh(kh)−

√
2νk2

√(
gk + σk3

ρ

)
tanh(kh)

2 sinh(2kh)



−i


√

2νk2

√(
gk + σk3

ρ

)
tanh(kh)

2 sinh(2kh)
+ 2νk2 Y2 + 5Y + 2

Y(Y + 4)

 . (42)

The first term of the real part is the well-known dispersion relation of surface waves
in ideal fluids. As for damping, the leading term is the first one in the second bracket,
proportional to

√
ν, except in deep fluid. In deep fluid (K → ∞) this term vanishes and one

gets the well-known damping exponent 2νk2 [17,19]. The result (42) was first published
(for σ = 0) in reference [42] and then to higher orders in reference [38]. Note that taking
into account surface tension is formally equivalent with replacing p with p/(1 + sK2).

2.2. Behaviour at Large Wavelengths

At K = 0 Equation (20) reduces to

Q5 cosh(Q) = 0 (43)

(independently of p and s), which can be solved analytically: either

Q = 0 (44)

or

Q = i(2n + 1)
π

2
, n = 0, 1, 2, . . . (45)

The corresponding frequencies are ω = 0 and

ω = −i
νπ2

4h2 (2n + 1)2 . (46)

Note that the order of the limits ν → 0 and K → 0 does matter. If we take the limit
ν → 0 first, we get ideal fluid, and if we take K → 0 first, we get a limit where viscosity
dominates and no wave propagation is possible.

2.3. Numerical Methods for Finding Roots

Equations (44) and (45) proved to be important technically, as solutions of Equation (20)
could be obtained numerically from the differential equation (obtained directly by differen-
tiating Equation (20) with respect to K)

dQ
dK

= − ∂D/∂K
∂D/∂Q

(47)

where D stands for the left hand side of Equation (20). Then Equations (44) and (45) play
the role of initial conditions at K = 0. At bifurcations we get singular behaviour, which is
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avoided on the complex K plane, afterwards we return to real K values. This method worked,
and one could even choose different branches by going around the singularity from left or
right on a half circle, yet it was somewhat in a state-of-art, as we had to experiment to get the
correct radius of the half-circles. Another method we applied to get Q was direct numerical
solution of Equation (20). In this case, bracketing solutions were a nontrivial task. Note that
we compared the results obtained with these two different methods, and found an excellent
agreement. A graphical solution was also helpful in locating roots.

2.4. Numerical Results for Frequencies

Having obtained Q for parameters p, s and K one may calculate mode frequencies. We
present such results for a given material—glycerine—at some selected p values and as a
function of scaled wave number K. The grand picture is this: at any given parameter settings
one obtains infinitely many solutions, organized into branches as K changes (cf. Figure 1).
In the following, the mode frequencies belonging to branch n will be denoted by Ω(n)(K).
They emanate from values (46) or from zero. Most of them remain purely imaginary, but the
lowest two may collide when increasing K. At such a collision, a bifurcation takes place, as
in Figures 1 and 2a, and two imaginary solutions Q may combine to complex solutions with
non-zero real parts. Note that this bifurcation is also present in the parameters of Figure 3,
but cannot be seen at the given resolution (it happens at very small wave numbers). The
presence of complex Q solutions manifests itself in the appearance of a real part for the
frequency. This means that wave propagation becomes possible. In that case the imaginary
parts are the same, and the real parts differ in their signs only. As the value of p is increased,
after a while such a collision no longer occurs, as in Figure 2c. This means that no wave
propagation is possible because all modes are over-damped. The intermediate situation
is approximately shown in Figure 2b. The mechanism of this possible bifurcation will be
studied in more details in the next section (cf. Figures 4 and 5). A bifurcation that is closely
related to the one we find here at short wavelengths has already been found by Refs. [21,37].
In those works an infinitely deep fluid was studied.

Figure 1. First, we find 10 branches of solutions for glycerin at p = 0.077. The majority of the
frequencies remain purely imaginary, but the two lowest branches intersect when the value of K
is increased.

In contrast, the bifurcation at long wavelength has been found explicitly here, and can
be seen in Figures 1 and 2a, where imaginary parts of the two lowest branches collide at a
small wave number or long wavelength (we consider the wave number to be the control
parameter when we speak about bifurcations). Below that wave number, all frequencies
are purely imaginary, while above that wave number a real part arises (not shown in the
figures), hence wave propagation becomes possible, as mentioned above. This bifurcation
is also shown in Figure 6 on the p−K parameter plane. There, wave propagation is possible
in region IV, and a bifurcation at low wave numbers takes place when for a sufficiently low
parameter p the red line between region I and region IV is crossed. For small wave numbers
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this line is parabolic, as quantified by Equation (75). This equation readily implies that the
critical wavelength is λc ∝ h5/2, hence this bifurcation appears only in fluids of finite depth.
The physical reason why this bifurcation happens can be understood from a simple order
of magnitude estimate as follows. Let us consider a finite volume of the fluid, vertically
from top to bottom, horizontally from a trough to the nearest crest. The main restoring
force is gravity. If η is the surface elevation, the pressure difference between the two
vertical sides of the fluid volume is ∝ gρη, and the restoring force (per unit perpendicular
horizontal distance) is ∝ −gρhη. Friction with the bottom is ρνdu/dz ∝ ρνu/h per unit
surface (the characteristic vertical length scale is h, cf. Equation (74)), or ∝ λρνu/h for the
whole segment (numerical factors are neglected), where λ is the wavelength. The mass of
the fluid segment is ρhλ. Hence, Newton’s second law reads in this case as

ρhλu̇ = −λρνu/h− gρhη . (48)

Further, we have the kinematic condition at the surface, w = η̇, and the condition
of incompressibility, ∂u/∂x + ∂w/∂z = 0 . The partial derivatives may be estimated as
∂u/∂x ∝ u/λ and ∂w/∂z = w/h. By inserting these relations into Equation (48), we have

η̈ +
ν

h2 η̇ +
gh
λ2 η = 0 . (49)

It is clear that for long waves friction prevails and the wave becomes over-damped.
Indeed, the Ansatz η = η0 exp(−iωt) leads to

ω = −i
ν

2h2 ±
√

gh
λ2 −

ν2

4h4 . (50)

This shows that for very long waves frequencies are purely imaginary. When wave-
length λ is decreased, at around

λc ∝
g1/2h5/2

ν
(51)

a non-zero real part of the frequencies emerges. Note that Equation (51), obtained from
rough order of magnitude estimates for the bifurcation point, agrees well with Equation (75).

There are a number of works where the bifurcation phenomena in surface waves were
studied [23,43–47]. All these works considered the infinite depth fluid case. They fall into
three categories: (1) a non-viscous case where bifurcation is due to nonlinearity [45,46].
(2) The presence of a surfactant where an interplay between dilational and capillary waves
takes place [21,23,47]. (3) The presence of elastic membrane at the surface of the ideal
fluid [43,44].

A further work, not belonging to the above categories, contains an ingenious appli-
cation of bifurcation theory in order to prove the existence of linear waves and find the
dispersion relation [48]. The system considered is a finite depth ideal (non-viscous) fluid
without surface tension. Laminar rotational flow is assumed with constant vorticity (i.e.,
horizontal velocity is changing linearly with depth), and linear surface gravity waves at a
fixed wavelength are considered. Stationary solutions are sought for in a coordinate system
moving horizontally with constant speed compared to the fluid. This speed is considered
to be the control parameter (in fact, the equivalent mass flux is used). Now, if the speed of
the coordinate system is not equal to the phase speed of the waves, only the trivial, zero
amplitude stationary solution exists, since the linear wave is a travelling wave as seen from
that coordinate system. If, however, the speed of the coordinate system is equal to the
phase speed, a further, nontrivial stationary solution emerges, whose existence is proved
with mathematical exactitude under quite general circumstances. This technique has also
been applied to study linear capillary waves in the same system, by neglecting gravity [49].
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(a)

(b)

(c)

Figure 2. Two lowest branches of solutions for glycerin at different p values. Moduli of imaginary
parts of frequencies are displayed. (a) Two lowest branches of solutions for glycerin at p = 0.077.
(b) Two lowest branches of solutions for glycerin at p = 0.085. (c) Two lowest branches of solutions
for glycerin at p = 0.086. The collision no longer occurs by increasing the value of p.
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Figure 3. The real and imaginary parts of frequencies corresponding to the lowest lying branches
versus K for glycerin at p = 0.001 (h = 5.04 cm).

3. Parameter Dependence
3.1. Wave Modes

Plotting the real and imaginary parts of Equation (20) on the complex Q plane one
usually observes several intersections, i.e., roots. They can be real, purely imaginary,
or complex with non-zero real and imaginary parts (henceforth we shall use the term
“complex” as an equivalent with “complex with non-zero real part and non-zero imaginary
part”). In the first two cases the angular frequency (25) is purely imaginary, so these modes
decay exponentially with time. Propagating modes are only possible if Q is complex.

3.1.1. Modes with Real Q

In this case, Equation (25) implies that Q < K, since the decay rate cannot be negative.
We have found numerically that at a given parameter settings (s, p, and K) there can exist
zero, one, or two real modes (due to the symmetry of the solutions, we consider roots only
in the first quadrant). There is always a trivial solution Q = K. Then, we get f = 0 from
Equation (12), so this solution is irrelevant.

In case of nontrivial real solutions, the decay rate is always smaller than νk2. Velocity
components may be calculated from Equations (3), (4), (12) and (26). Provided that coef-
ficient A is real, u is real, too, while w is purely imaginary, so there is a 90◦ phase shift in
their x-dependent oscillations.

3.1.2. Modes with Imaginary Q

In this case the decay rate is always larger than νk2. Such modes exist at any parameter
setting, moreover, there are infinitely many of them. Indeed, if Q is purely imaginary as
Q = iβ and its modulus is large, Equation (20) reduces to

p
[

Q5 cosh K cosh Q− KQ4 sinh K sinh Q
]
= 0 , (52)

or, substituting Q = iβ,

β cosh K cos β− K sinh K sin β = 0 . (53)

Now, if β = 2nπ (n being an integer), the left hand side is positive, and if β = 2nπ + π/2,
the left hand side is negative. Therefore, between these values there is a root for any
(arbitrarily large) n. The distance between imaginary roots is approximately constant and
independent of viscosity.
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As before, the phase of velocity components does not change with depth, while there
is a 90◦ phase shift between the x and z components. It is interesting that imaginary Q
causes an oscillatory behaviour with depth.

3.1.3. Modes with Complex Q

On the basis of our numerical investigations, we believe that at a given parameter
setting at most one such mode can exist. If there exists one, then at the same parameter
setting no mode with real Q can exist. This time the phases of velocity components do
change with depth. An oscillatory dependence on depth is in principle present, but much
less pronounced than in the imaginary case.

3.2. Bifurcations

If, at the given s and p parameters one adjusts K, the type and number of solutions
changes. This is shown in Figure 4a–i where s = 7.44 and p = 2.0. The left hand side of
Equation (20) divided by K2Q cosh(K) cosh(Q) is plotted (this factor is chosen to avoid
exponential growth.) on the complex Q plane, the zero level lines of the real part in blue,
and those of the imaginary part in red. Hence, intersections of red and blue curves are
solutions of Equation (20). As wave number K grows, these solutions are moving on that
plain and display bifurcations. Since there are other (sometimes non-physical) solutions
present, we denoted by black arrows the solutions we wish to focus on. In Figure 4a one
can see a real solution. A bifurcation is shown in Figure 4b, where the real solution and its
mirror image collide at the origin, and a further increase of the wave number gives rise to
an imaginary solution (cf. Figure 4c, lower arrow) and its mirror image.

Increasing the scaled wave number K further, one can observe that that two imaginary
solutions in Figure 4c collide (see Figure 4d) and give rise to a complex solution (see Figure 4e).
This complex solution gradually goes down to the real axis (cf. Figure 4e–h) and decays to two
real solutions (Figure 4i) which survive any further increase of K.

Choosing the parameter values s = 7.44 and p = 3.0, one has a different scenario, see
Figure 5a–c. This time only a single bifurcation takes place, namely, an imaginary solution
and its mirror image collide at the origin (see Figure 5b) and give rise to a (second) real
solution (cf. Figure 5c).

These observations allow us to find the mathematical conditions of the bifurcations,
which mean transitions among different types of possible modes. These conditions appear
as curves on the K-p plane and partition that plane according to the types of possible
solutions. Since the p-dependence is simpler than the K-dependence, we find these curves
at constant K by varying p, rather than varying K at constant p, as has been done above
when demonstrating the bifurcations. The curves are certainly the same.
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(a) K=2.0 (b) K=2.021 (c) K=2.050

(d) K=2.100 (e) K=2.200 (f) K=3

(g) K=6 (h) K=6.370 (i) K=7

Figure 4. Zero level lines of the real (blue) and imaginary (red) part of Equation (20) divided by
K2Q cosh(K) cosh(Q) plotted on the complex Q plane at parameter values p = 2.0 and s = 7.44.

(a) (b) (c)

Figure 5. Zero level lines of the real (blue) and imaginary (red) part of Equation (20) divided by
K2Q cosh(K) cosh(Q) plotted on the complex Q plane at parameter values p = 3.0 and s = 7.44.
(a) K = 2.900. (b) K = 2.926. (c) K = 3.00.



Fluids 2023, 8, 173 14 of 30

In all the above numerically discussed cases (Figures 4 and 5) at the birth of new solutions
one can observe that by approaching the critical parameter the zero level lines of the real part
of Equation (20) develop an edge, and at bifurcation they become (locally) two straight lines
crossing each other on the real and/or the imaginary axis (Figures 4b,d,h and 5b). This means
that at the bifurcation point the derivative of the line is undetermined, i.e., it has a form 0

0 .
Note in passing that it is equivalent with the condition that the second derivative becomes
infinite. Let us denote for brevity the real part of Q with α and its imaginary part with β (i.e.,
Q = α + iβ), further, the left hand side of Equation (20), divided by K2Q cosh(K) cosh(Q) be
D(α + iβ). Then the zero level line of the real part of D is given by

<(D(α + iβ)) = 0 . (54)

Here < stands for the real part. Taking its derivative with respect to α, we get

<
(

D′(α + iβ) + iD′(α + iβ)
dβ

dα

)
= 0 , (55)

hence the derivative of the curve is written as

dβ

dα
=
<(D′(α + iβ))
=(D′(α + iβ))

. (56)

Here = stands for the imaginary part (without i). It follows that at bifurcation

D′(α + iβ) = 0 (57)

must be satisfied, together with D(α + iβ) = 0. Now it is easily seen that D(α + iβ) is real
along both the real and the imaginary axis, while D′(α + iβ) is real along the real axis and
imaginary along the imaginary axis. Therefore, in case of a bifurcation on the real axis we have

D(α) = 0 (58)

D′(α) = 0 , (59)

i.e., two real equations for the two real parameters α and p (at constant K and µ). Similarly,
in case of a bifurcation on the imaginary axis we have

D(iβ) = 0 (60)

iD′(iβ) = 0 , (61)

again two real equations for the two real parameters β and p.
Equation (20) shows that D(Q) may be expressed as

D(Q) =
(

1 + sK2
)

F(Q) + p G(Q) (62)

where

F(Q) =
tanh K

K
− tanh Q

Q
, (63)

G(Q) =− 4
K2 + Q2

cosh K cosh Q
+

(
Q4

K2 + 2Q2 + 5K2
)

(64)

−
(

Q4 + 6K2Q2 + K4
) tanh K

K
tanh Q

Q
.
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In terms of these functions we have (cf. Equations (58) and (59))

F(α)G′(α)− G(α)F′(α) = 0 (65)

p
1 + sK2 = − F(α)

G(α)
(66)

and (cf. Equations (60) and (61))

F(iβ)G′(iβ)− G(iβ)F′(iβ) = 0 (67)

p
1 + sK2 = − F(iβ)

G(iβ)
(68)

for bifurcations on the real and imaginary axis, respectively. In these cases, Equation (65) or
Equation (67) is solved numerically to get α or β, respectively, then the solution is inserted
into Equations (66) and (68), respectively, which in turn are solved for p at constant K and
µ, taking into account Equation (35).

As for the transformation of an imaginary solution to a real one at the origin, men-
tioned above, for the critical p(K) line one obtains

p
1 + sK2 = − F(0)

G(0)
=

1− tanh K
K

5K2 − 4 K2

cosh(K) − K3 tanh K
. (69)

Since both F(Q) and G(Q) are even functions of Q, it follows that F′(0) = G′(0) = 0,
hence Equations (65) and (67) are automatically satisfied for α = 0 and β = 0, respectively.
The results are plotted in Figure 6a,b for glycerin and water, respectively. These two
figures are very much different, not only in the shape of the curves, but in their vertical
scales, in the first place. The values in Figure 6b are of order 109. Such a huge difference
needs an explanation. When we solve the Equations (66), (68), or (69) for p, we actually solve
an equation

p
1 + µ2K2 p2/3 = a , (70)

where a is a function of K alone and is of order 0.1. The solution of Equation (70) is

p =
1

µ3K3 Φ−1(µ3K3a) , (71)

where Φ−1(x) stands for the inverse of function Φ(x) = x/(1 + x2/3). It is easily seen that

Φ−1(x) ≈ x, if x � 1 , (72)

and

Φ−1(x) ≈ x3, if x � 1 . (73)

Therefore, when µ3K3a � 1, the solution is approximately p = a, as is the case for
glycerin. In contrast, if µ3K3a � 1, then the solution is p = µ6K6a3. This happens in the
case of water and mercury, and we get huge values for p, except for very small K values.
These large p values are equivalent with extremely small layer widths (cf. Section 4). In fact,
they are so small that the bifurcations in question are hardly observable in case of water or
mercury as well as other fluids with low viscosity. They might be observable, however, in
more viscous fluids such as glycerin.

In short, the physical reason of the difference between Figure 6a,b is that in case of
water the viscosity is much smaller than in the case of glycerin (the surface tensions in the
two cases are comparable) and this is reflected in the corresponding µ values (58.40 for
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water and 0.45 for glycerin ). The two order of magnitude difference in the values of µ for
water and glycerin is further magnified by the cubic functional dependence (73).

On the other hand, for small enough K values, condition µ3K3a� 1 is satisfied, hence
in that limiting case the parameter space regions become independent of µ. This is natural,
since in the long wavelength limit the impact of the surface tension vanishes.

In Figure 6 the red line means the onset of the creation of a complex solution at the
imaginary line, i.e., the solution of Equations (67) and (68). The bue line is the same at the
real line (cf. Equations (65) and (66)), while the black line is the onset of the crossover from
the imaginary to the real solution at the origin (Equation (69)). It is obvious that these lines
must have a common point. The lines partition the K− p parameter space to four regions,
denoted in the figures by Roman numbers:

I. Only imaginary solutions (infinitely many of them) are present;
II. There is a single real solution and there are infinitely many imaginary solutions;
III. There are two real solutions and there are infinitely many imaginary solutions;
IV. There is a single complex solution and there are infinitely many imaginary solutions.

Figure 6. The maximal parameters p versus the scaled wave-number K for glycerin (a) and water (b).
Note the vertical scale in (b). The red line signifies the emergence of complex solutions at the
imaginary line, while the blue line represents the real solutions obtained from Equations (65) and (66).
The black line denotes the onset of the crossover from imaginary to real solutions at the origin.

Asymptotics and some special cases of the bifurcation curves are the following.

1. Imaginary to complex Q (border between regions I and IV, the red curve in Figure 6):
For small K (K � 1) we have

Q = (1.1127 + 0.2509 K2)i (74)

p = 0.53667 K2
(

1 + (s− 3.8674)K2
)

(75)

2. Complex to real Q (border between regions IV and III, the blue curve in Figure 6):
For large K we have

Q = 0.6823 K (76)

p =
1.7200(1 + sK2)

K3 ≈ 1.7200s
K

. (77)

This implies (cf. Equations (21)–(24) and Equations (30) and (31)) that the transition to
the over-damped mode happens at wavelength

λ = 3.6530
ρν2

σ
= 3.6530

`3
ν

`2
σ

. (78)

It is remarkable that this value does not depend on layer thickness h or gravity of Earth
g, as it is a purely material constant. Numerically, we get λ = 5× 10−8 m for water,
7× 10−4 m for glycerin and 10−9 m for mercury. In our opinion, this effect cannot be
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observed in water or mercury, but might be observed in glycerin. It is questionable if
hydrodynamics are applicable at the scales obtained for water and mercury, albeit at
least one study states that it is applicable down to the nanoscales [28]. It is obvious
that in case of these short waves gravity does not play a role. Here we demonstrate,
that our more general setup leads to the right results in this limiting case. There are
other situations, however, when gravity becomes important. This happens, e.g., at
the bifurcation at long wavelengths. Gravity and surface tension become equally
important when the two bifurcations (at large and small wavelength) are close to each
other, as in Figure 2a.

3. Imaginary to real Q (borders between regions I, II, and III, the black curve in Figure 6):
For small K we have

p =
1
3

[
1 +

(
s− 7

5

)
K2
]

. (79)

At K ≈ 4.9435 parameter p diverges as

p =
0.8452 + 20.654 s

4.9435− K
, (80)

For a given material this implies (cf. Equation (35))

p =
8.8× 103 µ6

(4.9435− K)3 . (81)

4. The common point of the bifurcation parameter curves (red, blue, and black lines in
Figure 6 satisfies

F(0)
G(0)

= − p
1 + sK2 = lim

Q→0

F′(Q)

G′(Q)
=

F′′(0)
G′′(0)

, (82)

since F′(0) = G′(0) = 0. This implies

F(0)G′′(0)− G(0)F′′(0) = 0 . (83)

The solution of this equation yields for the coordinates of the common point

K = 2.4152 (84)

p = 0.05307(1 + 5.8332 s) . (85)

4. Minimal Layer Thickness Necessary for Wave Propagation

Viscosity not only damps waves, but it can even prevent their propagation. Indeed,
propagation, mathematically, a real part of the complex angular frequency, appears only in
region IV (cf. Figure 6). This implies that no gravity-capillary waves can propagate if p is large
enough (or, equivalently, if the layer width is small enough). Further, even if the layer thickness
is larger than the critical value, neither very long, nor very short waves can propagate.

The critical layer thickness is found from the maximum point of the curves bordering
region IV in Figure 6 (cf. Equations (65)–(68)). This depends on the material parameter µ,
so we present the results in Table 1. Clearly, for water and mercury the critical layer width
is so extremely small that at such scales even the applicability of standard hydrodynamics
is more than questionable.
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Table 1. Material parameters lν, lσ and µ for some fluids.

Material lν lσ µ pmax h

water 4.67× 10−5 2.73× 10−3 58.40 2.255× 109 3.561× 10−8

glycerin 5.04× 10−3 2.27× 10−3 0.45 1 0.085 1.146× 10−2

mercury 1.09× 10−5 1.90× 10−3 174.86 1.625× 1012 9.271× 10−10

1 Properties are at 20 ◦C.

5. Particle Motion at Surface

In this section, we focus on the numerical simulation of particle trajectories associated
with wave patterns at the surface of the fluid. Since we are considering linear waves, both
the horizontal and vertical motion is that of a damped harmonic oscillator. If we neglect
damping, the resulting motion due to these two perpendicular harmonic oscillations results
in a general elliptical motion. Note that in the presence of damping, the actual motion
will be a spiral. The parameters of the ellipse (see Figure 7), main axis a, small axis b, and
angle of the main axis made with x direction, ϕ are related to the horizontal and vertical
amplitudes and phase difference. The relevant relations are the following:

Figure 7. Motion of the particles at the surface.

a2 =
X2

o cos2 ϕ− Z2
o sin2 ϕ

cos2 ϕ− sin2 ϕ
, (86)

b2 =
Z2

o cos2 ϕ− X2
o sin2 ϕ

cos2 ϕ− sin2 ϕ
. (87)

Angle of main axis compared to horizontal, ϕ, is given by

tan ϕ =
c2 − 1 +

√
(c2 + 1)2 − 4c2 sin2 γ

2c cos γ
. (88)

Here

c =
∣∣∣∣Zo

Xo

∣∣∣∣ (89)

and
γ = ξ − χ , (90)
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where ξ and χ are phases of the horizontal and the vertical oscillations, respectively:

x = Xoeiχ · e−iωt (91)

z = Zoeiξ e−iωt (92)

Explicitly,

Xoeiχ =
i
ω

K[Q(Q2 + 3K2) · (cosh(Q) cosh(K)− 1) (93)

− K · (K2 + 3Q2) sinh(Q) sinh(K)]

and

Zoeiξ =
1
ω

K(Q2 − K2) · [K cosh(K) sinh(Q) (94)

−Q · cosh(Q) sinh(K)] .

According to Equations (93) and (94), when Q is a real, the value of γ is −π
2 , but if Q

is purely imaginary, then the value of γ is π
2 .

These parameters are plotted versus scaled wave number K in Figure 8 at p = 0.001.
Wave propagation is permitted from K = 0 to K = 13, as seen in Figure 3 (Except for very
small K values where the motion always becomes damped. At the resolution of the figure,
this regime can not be seen). The motion is virtually linear ( b

a � 1) for small values of K but
quickly transforms into a circle with b

a close to unity at K ≈ 1. The angle that the main axis
makes with the horizontal, ϕ, is almost zero up to this point, then it rapidly takes 90 degree
turn and remains around that. The ellipse gets narrower for wave numbers greater than
unity (K > 1) and at wave number K = 7.5, it degenerates into a linear segment. The
corresponding motion is nearly perpendicular to the surface. The ellipse then gets a little bit
thicker. Both the horizontal and vertical motion are excessively over-dampened at K ≈ 13.
The change in the phase difference between horizontal and vertical motion is also displayed.
It is clear that with K being approximately 1, the phase difference is approximately π/2.
When the ellipse degenerates into a line segment at K ≈ 7.5, the phase difference reaches π.
At the K ≈ 13 bifurcation point, the phase difference γ hits −π/2.

Figure 8. The ratio of b
a and the angles φ and γ in terms of K are presented for glycerin at p = 0.001

(cf. Figure 3). Angles are given in π units.

6. Time Evolution of Surface Elevations

Figures 9–15 demonstrate the time evolution of a propagating wave in a fluid, along
with the associated dispersion relations. We have chosen glycerin as the fluid medium due
to its physical properties, as other fluids may require a thinner layer for observation of the
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phenomena. Then, the critical thickness for glycerin is 1.1 cm, for water is 3.6× 10−8 m,
and for mercury is 9.3× 10−10 m, which is the reason we have chosen the glycerin for
simulation. We limit our study to the lowest two branches of the dispersion relation,
because, as shown in Figure 1 these branches have the longest lifetime and, i.e., they are
the least damped.

We aim to establish a correlation between theoretical predictions and empirical ob-
servations. The findings indicate that wave propagation is detected at a particular wave-
number of K = 1, within a narrow range, when p = 0.077, which is in proximity to the
critical value of p = 0.086. Conversely, no propagation is observed at longer wavelengths,
such as K = 0.62, or at shorter wavelengths, such as K = 2, as illustrated in Figures 9–11.
Figure 9 depicts the over-damped mode characterized by a long wavelength. At a specific
wavelength of λ = 12 cm, a wavenumber of K = 0.62, it can be observed that wave
propagation is not feasible due to the nodes remaining in the unchanged position (cf.
Figure 2a). It should be noted that surface tension plays a minor role in this context. The
nodes in Figure 10 are observed to be in motion due to the occurrence of wave propagation
at a wavenumber of K = 1. This is in agreement with Figure 2a. At K = 2, the wave
in Figure 11 exhibits over-damping. Surface tension is a dominant phenomenon in this
particular regime.

At p = 0.001, the range of wavelengths that undergo propagation is wider. However,
it is worth noting that a non-propagating long-wave mode develops at a wavelength of
8 m in a fluid layer of 5 cm, which poses a challenge for observation (refer to Figure 12).
Figure 13 illustrates the observation of a travelling wave with a shorter wavelength of
λ = 6.33 m. The demonstration shows the limited wavenumber spectrum within which
long wavelength over-damped modes exist. Figure 14 shows the propagation of waves at
the same layer width, with a wavelength of λ = 3.16 cm. It should be noted that the velocity
is significantly greater, as evidenced by the time labels. The propagation of waves with a
shorter wavelength, specifically those with a wavelength of λ = 2.11 cm, is prohibited, as
shown in Figure 15.

Figure 9. Time evolution of surface elevation in glycerin at parameter p = 0.077 and wave number
K = 0.62.
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Figure 10. Time evolution of surface elevation in glycerin at parameter p = 0.077 and wave number
K = 1.00.

Figure 11. Time evolution of surface elevation in glycerin at parameter p = 0.077 and wave number
K = 2.00.



Fluids 2023, 8, 173 22 of 30

Figure 12. Time evolution of surface elevation in glycerin at parameter p = 0.001 and wave number
K = 0.04.

Figure 13. Time evolution of surface elevation in glycerin at parameter p = 0.001 and wave number
K = 0.05.
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Figure 14. Time evolution of surface elevation in glycerin at parameter p = 0.001 and wave number
K = 10.0.

Figure 15. Time evolution of surface elevation in glycerin at parameter p = 0.001 and wave number
K = 15.0.

For the purpose of demonstrating the group velocities present in the propagating
modes, we overlay two wavelengths that are in close proximity. Specifically, we consider
the expression sin(k1(x − xo) −Ω(1)t) − sin(k2(x − xo) −Ω(2)t), where both waves are
propagating towards the right. Nevertheless, the direct observation of this phenomenon
appears improbable due to significant damping. In order to show the motion of the
envelope, the superposition is amplified at a rate of e(|γ|t), where γ denotes the lesser decay
rate. Figure 16 illustrates the superposition of two waves with two nearby wavenumbers
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(K = 0.75 and K = 0.76) at three consecutive time intervals. The direction of their travel is
towards the right. At the onset, the envelope exhibits a node. At a subsequent time interval,
the node expands to form a bottleneck. The position of the bottleneck is moving to the right,
which indicates that the group velocity is also positive in this scenario. The phenomenon
of broadening can be attributed to the disparate damping exhibited by two modes that
are superimposed. Figure 17 describes the superimposition of two waves with closely
spaced wavenumbers at the same fluid depth as previously. The present instance involves
a reduction in wavelength, specifically with values of K equal to 0.94 and 0.95. Although
the phase velocity retains a positive value, the position of the envelope remains unaltered
in implying zero group velocity. The phenomenon of bottleneck widening persists due to
the dissimilar damping exhibited by the two modes. Figure 18 illustrates the presence of
two superimposed modes, which exhibit a comparatively reduced wavelength of K = 1.2
and K = 1.21. At present, although the phase velocity remains positive, the retrograde
motion of the envelope indicates a negative group velocity. It should be noted that the
frequency’s real part exhibits a negative slope versus K in this instance.

Figure 16. Time evolution of surface elevation in glycerin at parameter p = 0.077 with two nearby
wave numbers at K = 0.75 (∆K = 0.01).

Figure 17. Time evolution of surface elevation in glycerin at parameter p = 0.077 with two nearby
wave numbers at K = 0.94 (∆K = 0.01).
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Figure 18. Time evolution of surface elevation in glycerin at parameter p = 0.077 with two nearby
wave numbers at K = 1.20 (∆K = 0.01).

An arbitrary initial condition means specifying the velocity field at an instant of time
everywhere within the fluid layer. In linear approximation one may decompose such an
initial condition in terms of modes:

V(x, z, t = 0) =
∫ ∞

−∞
dk

∞

∑
n=1

an(k)Vn(k, z)eikx (95)

Here an(k) stands for suitable expansion coefficients, while

Vn(k, z) =
(

Ak sinh[k(z + h)]− Bκ cosh[k(z + h)]− Aκ sinh[κ(z + h)] + Bκ cosh[κ(z + h)]
−iAk cosh[k(z + h)] + iBκ sinh[k(z + h)] + iAk cosh[κ(z + h)]− iBk sinh[κ(z + h)]

)
(96)

is the velocity field of a mode (cf. Equations (3), (4) and (12)). Note that κ = κn(k)
corresponds to the n-th solution of Equation (20), while the ratio of A and B is specified by
Equation (26) (The quantities A and B are thus specified up to an arbitrary normalization
factor), hence they also depend on κ, and thus on n and k.

If we take the Fourier transform of both sides of Equation (95) with respect to the x
variable, we get

Ṽ(k, z, t = 0) =
∞

∑
n=1

an(k)Vn(k, z) , (97)

where

Ṽ(k, z, t) =
1

2π

∫ ∞

−∞
dx e−ikxV(x, z, t) . (98)

For arbitrary later times t we have

Ṽ(k, z, t) =
∞

∑
n=1

an(k)Vn(k, z)e−iΩ(n)(k)t . (99)

Most modes are strongly damped. Therefore, leaving them out of the decomposition (99)
may not lead to a significant error, except initially for a very short time. If we keep only
the lowest two branches, it is possible to formulate the initial value problem in terms of
the surface profile and its time derivative. Note that in the range of wave numbers where
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propagation is possible, the two branches differ only in the sign of the real part of the
frequency, allowing a description of both directions of propagation. Explicitly, we may
formulate the initial value problem in wave number space (Fourier space) as follows. At a
given wave number we have two modes, therefore the decomposition (99) reduces to

η̃(k, t) = c1(k)e−iΩ(1)t + c2(k)e−iΩ(2)t (100)

for surface elevation at time t, where (cf. Equation (18))

cn(k) = an(k)
k

Ω(n)

{
A cosh[kh]− B

κ

k
sinh[kh]− A cosh[κh] + B sinh[κh]

}
, (101)

and

η̃(k, t) =
1

2π

∫ ∞

−∞
dx e−ikxη(x, t) . (102)

If the initial surface profile is η̃(k, t = 0), then

η̃(k, t = 0) = c1 + c2 (103)

should hold. Similarly, given the initial vertical velocity profile η̃t(k, t = 0) we have

η̃t(k, t = 0) = −iΩ(1)c1 − iΩ(2)c2 (104)

From this we get for the coefficients c1 an c2

c1 =
iη̃t −Ω(2)η̃

Ω(1) −Ω(1)
(105)

c2 =
iη̃t −Ω(1)η̃

Ω(2) −Ω(1)
(106)

This allows one to solve the initial value problem within the limits of the approximation
sketched above. On the other hand, such an approximation is completely equivalent with a
second order differential equation for the surface elevation

∂2η̃

∂t2 + i(Ω(1)(k) + Ω(2)(k))
∂η̃

∂t
−Ω(1)(k)Ω(2)(k)η̃ = 0 (107)

As an application of Equations (100)–(107), a narrow initial Gaussian profile (blue line)
encompassing both propagating modes and over-damped modes is chosen (cf. Figure 19).
Time evolution can be seen on the displayed profiles with different colours.

It is seen that the two peaks develop and radiate off symmetrically due to the propa-
gating modes. Since there is no initial velocity, the peaks are in the same weight. Gradually,
the Gaussian wave gives way to a much broader Gaussian shape profile, composed of
non-propagating over-damped modes (yellow line). It is worth mentioning that in this
example over-damped modes have a much smaller damping rate than the propagating
ones. Therefore, the contributions of the propagating modes, the peaks, decay, and the
longer living over-damped mode content of the initial profile becomes visible.
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Figure 19. Time evolution of an initial Gaussian wave for glycerin at p = 0.001(h = 5.04 cm)

presented. Time values are t = 0., 0.3, 0.4, 0.5, 0.7, 1.4, 2.5, 4, and 10 s. A slim initial Gaussian wave
(blue line) containing both propagating modes and over-damped modes spreads outwards and
gradually diminishes and leaves behind a broader Gaussian shape profile due to non-propagating
modes at long wavelengths (yellow line).

7. Conclusions

Linear viscous capillary-gravity waves were studied in a channel of constant depth,
without restricting the parameters. The resulting dispersion relation is published for the
first time. We explored all the modes numerically. Modes were labelled by horizontal wave
number K, a continuous parameter, and vertical wave number Q, a discrete, complex quantity.
We found that there were always infinitely many non-propagating (over-damped) modes.
Propagation can only occur in the two modes with the smallest decay. In a sufficiently thin
layer no propagation occurs at all. When increasing layer thickness, a bifurcation occurs,
which shows up in the plot of imaginary parts of frequencies, such as a collision of the
lowest lying branches of modes. After that collision, at increasing wave numbers, one can
observe a merging and a subsequent split of these branches. The wave number range of
the merged section frequencies have a non-zero real part (propagation). We stress that
even at those depths where propagation becomes possible, propagation at very low and
very high wave numbers is still prohibited. The over-damping at large wave numbers
is already known [21,37]. The over-damping at small wave numbers has been discussed
in Section 2.4. This is due to the fact that by increasing the wavelength, the restoring
force (due to gravity) does not change, but the friction increases significantly. We also
determined the minimal layer thickness necessary for wave propagation. Further, we
studied surface motion. Assuming a monochromatic wave propagating to the positive x
direction, we found that a surface particle in a viscous fluid could rotate both clockwise or
counterclockwise, depending on the wave number. We also demonstrated the propagation
or non-propagation of waves in a few cases. In order to illustrate that both positive, zero,
or even negative group velocities can occur, the beat of two nearby wave numbers was
displayed at a few consecutive time instants. Finally, with the assumption that the effect
of fast decaying high lying branches was negligible, we kept the lowest two modes and
formulated the solution of the initial value problem of surface motion in wave number
space. As an application, the time evolution of a narrow initial Gaussian surface elevation
with zero velocity was studied and a radiation of propagating modes in the form of two
oppositely travelling bumps was observed. A slowly decaying wide Gaussian was left
behind, consisting of large wavelength non-propagating modes.
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It is remarkable how many interesting phenomena occur in this simple setup. It is an
intriguing question what happens in the presence of an elastic surface at finite fluid depth,
since two propagation modes, a capillary mode and a dilational mode, exist in deep water [23].

It is a natural question whether and how these results can have practical applications.
As we already noted, in water most of the phenomena discussed are unobservable, because
its viscosity is small and surface tension is large. In thick oils, however, these phenomena
might be observed. For actual applications (industrial, or perhaps biological) one has to
consider thin layers, but then other surface effects, such as pollution or surface elasticity,
should be included, as well. It is tempting to think of the effect of the surfactant because
they clearly decrease surface tension and with that µ. However, with surfactants a wealth
of new phenomena appear, e.g., the possibility of a dilational wave due to the presence
of surface elasticity and interplay between this propagating mode with capillary waves
(cf. [21,23,47]). Such phenomena are certainly not covered by the current paper.

Another potential application might be in geology (lava flows, glaciers) with especially
large viscosity or planetology with different g parameters. In the first case, however, many
other effects can be important, too, so the results of the present work could be used as
the order of magnitude estimates at best. In case of other planets, a larger g decreases
µ, since it is proportional to g−1/6, but at the same time parameter p is decreased, so an
even thinner fluid layer (or larger viscosity) is necessary to prevent wave propagation,
than in Earth. However, the minimal layer thickness was determined numerically, so
it is not straightforward to predict the effect of changing g. It may happen that under
suitable planetary circumstances the minimal layer thickness for some fluid that is present
in abundance will be significantly larger than that for water on Earth.
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