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Abstract: In this study, a numerical simulation of fluid flow through railway ballast in the time
domain is presented, providing a model for unsteady-state flow. It is demonstrated that the position
of the free surface with respect to time can also be used to solve the steady flow case. The effect of
ballast fouling is included in the model to capture the realistic behavior of railway ballast, which is
critical to understanding the impact of flooding. A thorough comparison with a range of previous
studies, including theoretical and experimental approaches, is made, and very close agreement is
obtained. The significant impact of ballast fouling on fluid flow and its potential consequences for
railway infrastructure are highlighted by the simulation. Valuable insights into the behavior of water
flow through porous media and its relevance to railway ballast management are offered by this study.

Keywords: free surface; steady state; unsteady state; railway ballast; fouling ratio; specific yield;
finite element method

1. Introduction

The understanding of water flow behavior through porous media is crucial in many
applications to minimize damage caused by seepage [1–5]. In this context, the present
study focuses on water flow through railway ballast, which is commonly modeled as a
porous medium. Of particular importance is the scouring of railway ballast due to flood
waters, which can occur when the upstream height exceeds the railway ballast’s height [6,7].
Heterogeneous ballast gradations can also cause erosion of the ballast, even if the upstream
height is less than the railway ballast’s height [8]. The scouring of railway ballast can lead
to catastrophic outcomes, as discussed in [9], particularly if the ballast becomes too weak
to support the weight of a train.

However, analyzing the problem of porous media flow is much more challenging
when the free surface needs to be calculated. The problem becomes even more complicated
when considering the time-dependent motion of the problem. Nevertheless, solving the
time-dependent problem, which involves determining the free surface position of water
flow, can be used to provide the steady-state solution (which is commonly calculated
iteratively) [10]. In our present study, we also use the method developed to solve for the
steady-state unknown free surface.

Nonetheless, the primary challenge is to solve the unsteady problem, where the actual
time is considered. This problem represents the realistic flow through porous media and
the time-dependent change in the position of the free surface. We must also consider
the specific yield Sy when investigating the motion of the free surface for unsteady flow,
whereas this is not necessary for determining the steady-state solution [10]. The specific
yield Sy models the drainage capacity of the porous material [11]. In the present work, we
particularly focus on validating our calculations by comparing them with results in the
literature, particularly those obtained from three cases in [12,13], in which they solved for
the steady-state flow through a rectangular dam. For the unsteady calculations, we use the
experimental results calculated in [14] and the theoretical results of [15].
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The aim of this work is to develop numerical methods to determine the unsteady flow
through railway ballast with a moving free boundary. We consider realistic ballast models
that represent the effect of ballast fouling, which is regarded as critical to ballast flooding.
We also thoroughly and carefully validate our present study by comparing it with previous
studies [12–15] and our previous study [9], which solved the steady free boundary problem.
We use the Finite Element Method (FEM) for all our calculations.

2. Methods and Numerical Modeling of Flow through Ballast

The region under consideration is depicted in Figure 1 and can be defined by the
domain D : [(x, z)|0 ≤ x ≤ a, 0 ≤ z ≤ b]. The saturated part of the region is denoted by
Ω(t) ⊂ D, which is a function of time t, where Ω(t) : [(x, z)|0 ≤ x ≤ a, 0 ≤ z ≤ ϕ(x, t) ≤ b].
Here, ϕ(x, t) represents the water level inside the rectangular ballast. The free surface within
the porous medium is denoted by Γ5(t), while Γ1(t) and Γ3(t) represent the upstream and
downstream regions, respectively, with a fluid boundary. The seepage face is denoted
by Γ4(t). The water heights are represented by H1(t) and H2(t), while the impermeable
boundary is represented by Γ2, where there is no flux.

H1(t)

H2(t)

x

z

a

b

(0,0)

Flow Free Boundary

Γ3(t)

Γ5(t)

Γ1(t) Γ4(t)

Γ2

D

Ω(t) ϕ(x, t)

Figure 1. Schematic diagram of the problem with a free boundary.

The governing equation is derived from the divergence of the seepage velocity and is
given by

∇ · Ks∇φ = 0, (1)

where Ks and φ are the hydraulic conductivity and the hydraulic head, respectively [16].
We use the following boundary conditions [12]

φ(x, z, t) = H1(t) on Γ1(t), ∀t ∈ [0, T],
φ(x, z, t) = H2(t) on Γ3(t), ∀t ∈ [0, T],
φ(x, z, t) = z on Γ4(t) ∪ Γ5(t), ∀t ∈ [0, T],
∂φ
∂v = 0 on Γ2, ∀t ∈ [0, T].

(2)

The final condition is that for the movement of the free surface,

∂ϕ

∂t
= [(

Ks

Sy
∇φ) · n], (3)

where Sy is the specific yield. We will discuss this term shortly. We also need to specify the
initial value of the free surface ϕ(x, 0) = ϕ0(x)

The solution of Equation (1) with boundary conditions (2) is obtained using the finite
element method, as described in [16]. Time marching is employed to solve the boundary
equation and track the movement of the free boundary over time:

ϕ(x, t + δt) = ϕ(x, t) + δt[(
Ks

Sy
∇φ) · n], (4)
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in Ref. [12]. The movement of the free boundary function ϕ with respect to time is shown
in Figure 2.

x

z
Flow ϕ(x, t)ϕ(x, t + δt)

Figure 2. Schematic showing the evolution of the free boundary position with respect to time.

In order to investigate the effect of variable inflow levels on the unsteady-state flow, it
is necessary to define the evolution of the water level with respect to time. The inclusion
of the specific yield Sy is important for our railway ballast problem [11], although not all
previous studies have considered this term. Caution must be exercised when comparing our
results with those reported in the literature. The importance of Sy is discussed in [10]. The
method for obtaining the free surface in Equation (4) by dividing hydraulic conductivity
by the specific yield was developed by France et al. [17] and Mills [18]. This method does
not have any impact on the numerical difficulties encountered. Unless explicitly stated
otherwise, we will assume Sy to be unity.

3. Results for Rectangular Regions

We will commence by examining the three cases that have been previously explored
by [12,13], in which the inflow height is constant for all three. We will compute these three
cases and conduct a thorough comparison with the aforementioned studies. The specific
parameters for each case are outlined in Table 1.

Table 1. Parameter values for the three cases in [12,13] and the δt that is used in this study.

Cases H1 H2 a Ks δt

Case 1 1 0.167 0.667 2.5 0.0125 s
Case 2 3.22 0.84 1.62 5 0.0125 s
Case 3 4 0.84 1.62 5 0.0125 s

The results of Case 1 are presented in Figure 3, where the free surface elevations
obtained with our method are compared with those obtained by Di Nucci [13], who
employed an approximate method to solve the same problem. A slight discrepancy between
the free surface elevations is observed, with Di Nucci’s results yielding higher elevations
than ours. However, such a difference is not surprising given that the two methods solve
slightly different problems. Conversely, the results of Chakib and Nachaoui [12], depicted
in Figure 4, exhibit discrepancies with our outcomes, as shown in Figure 3. Nonetheless,
our results match closely with those of Di Nucci, as previously mentioned. We also note
that our final free surface elevations align with those of Chakib and Nachaou, as depicted
in Figure 5. We thus infer that the errors in Chakib and Nachaou’s outcomes stem from
their time steps, while the consistency of our results with Di Nucci’s supports the accuracy
of our method.

The results obtained for Case 1 enable a comparison of the free surface evolution, as
shown in Figure 5. The figure includes the free surface results from this study, as well as
those from previous investigations, including the steady-state results reported in [16,19].
Figure 6 displays the free surface convergences at ϕ(a, z) over the time interval t ∈ [0, 2],
as well as the steady-state free surface. The variation in ϕ(a, t) is relatively constant for
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0.5 ≤ t in both this study and Di Nucci’s study, while Chakib and Nachaoui’s study shows
a slightly different pattern, with the variation in ϕ being constant for 1 ≤ t, as evident
from Figure 6. The solution converges to the desired accuracy when t = 2, as illustrated in
Figures 5 and 6.
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Figure 3. The free surface elevations for Case 1 of this study and Di Nucci [13].
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Figure 4. The free surface elevations for Case 1 for Chakib and Nachaou [12].
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Figure 5. The converged free surface for Case 1 for the studies listed ( Di Nucci [13], Chakib and
Nachaou [12], Elliott and Ockendon [19] and Alrdadi and Meylan [9]).

The free surface elevations for Cases 2 and 3 are presented in Figures 7 and 8, respec-
tively. The steady-state free surface solutions for these cases are computed through the
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iterative algorithm proposed in [9]. Our findings indicate that the results and conclusions
for Cases 2 and 3 are comparable to those of Case 1.

0 0.5 1 1.5 2

0.4

0.6

0.8

1

t

ϕ(a, t)

Figure 6. The free surface elevation at ϕ(a, t) when t ∈ [0, 2] ( Di Nucci [13], Chakib and Nachaou [12],
Elliott and Ockendon [19] and Alrdadi and Meylan [9]).
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Figure 7. Cont.
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Figure 7. The free surface convergence of Case 2. (a) The free surface elevations of this study and
Di Nucci [13]. (b) The free surface elevations of Chakib and Nachaou [12]. (c) The converged free
surface for the studies listed. (d) The free surface elevation at ϕ(a, t) when t ∈ [0, 2].
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Figure 8. Cont.
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Figure 8. The free surface convergence of Case 3. (a) The free surface elevations of this study and
Di Nucci [13]. (b) The free surface elevations of Chakib and Nachaou [12]. (c) The converged free
surface for the studies listed. (d) The free surface elevation at ϕ(a, t) when t ∈ [0, 2].

3.1. Unsteady-State Flow Through a Rectangular Dam

In this study, we compare our results with the findings reported in [15] concerning the
flow of water through a homogeneous rectangular dam with a hydraulic conductivity of
1 m/s. The dam dimensions are 500 m in width and 12 m in height. In this scenario, the
inflow water level rises abruptly from an equilibrium value of 7 m to 12 m at the first time
step. The time steps used in this case are half an hour. This case simulates a sudden flow
through saturated railway ballast.

Figure 9 displays the solutions for the free surface of a rectangular dam with a specific
yield Sy of 0.1 at different times. The dam has a width of 500 m and a height of 12 m, with a
hydraulic conductivity equal to 1 m/s. Additionally, we included the analytical solutions
of Ye et al. [15] to compare them with the solutions from our method. The free-surface
elevations were computed at t = 0s, t = 5 days, t = 20 days, and t = 50 days using a time
step of half an hour. Our results exhibit excellent agreement with those of Zuyang et al. [15].
The calculations for various time steps are presented in Figure 10. This figure demonstrates
that both time step values yield the same outcomes for the free-surface position. Selecting a
higher value for δt during the calculation may cause a numerical instability error. Therefore,
it is essential to choose an appropriate time step value to ensure good convergence. This
issue is comprehensively discussed in Appendix A.

0 100 200 300 400 500
6

7

8

9

10

11

12

x

z

50 days

5 days 20 days

t = 0s

Figure 9. Free-surface positions of the rectangular dam, comparing our results with Ye et al. [15].
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x
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t = 0s

Figure 10. Free surface positions for different values of δt.

3.2. Unsteady-State Flow Through a Trapezoidal Dam

The porous medium of railway ballast can be accurately modeled as trapezoidal in
shape. In this study, we aim to analyze the unsteady-state flow through such a trapezoidal
porous region. To achieve this, we apply the same boundary conditions as presented in
Equation (2) but adapted to the trapezoidal shape, as depicted in Figure 11. The scenario
under investigation involves a linear increase in the upstream variation, and the goal is to
determine the free-surface position at different times. The obtained results will be carefully
compared with previous studies in the field.

z

x

Flow

Free Boundary

Γ3(t)

Γ5(t)
Γ1(t)

Γ4(t)

Γ2(t)

ϕ(x, t)

D

Ω(t)

b

a

H2(t)
H1(t)

Figure 11. Schematic diagram of the trapezoidal model.

Desai et al. [14] conducted a comprehensive investigation of unsteady-state flow
through various types of dams with differing hydraulic conductivities. Their study provides
an opportunity to verify the validity of Equation (4) using diverse scenarios for the upstream
variation. In one of their experiments, a trapezoidal dam was subjected to a linear increase
in upstream head from 0 to 15 cm, as depicted in Figure 12. Analysis of the resulting
increase in water level indicates a rate of increase of approximately 1.28 cm/min, according
to [15]. Thus, the water levels at 7 and 9 min were approximately 8.96 cm and 11.52 cm,
respectively. This type of upstream variation mimics the flow of water through unsaturated
railway ballast.
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Figure 12. The variation in the water level for inflow with respect to time [14].

The experiment conducted by Desai et al. [14] involved a trapezoidal dam of 34 cm
in length and 26.2 cm in height, with a hydraulic conductivity of 0.1 cm/s and a specific
yield of 0.4. They recorded the free-surface elevations at 7 and 9 min. In this study, we
aim to compare our predictions for the free-surface elevation of the saturated region of the
dam with their experimental observations. Initially, we assume a straight line at a height of
3.84 cm, representing the water level at 3, and minimizing Equation (4) with δt = 1s, we
determine the free surface. Our results, along with those of Desai et al. and Zuyang et al.,
are shown in Figure 13. The calculation of the free surface for this case is presented in
Appendix B.

0 10 20 30 34
0

5

8.96

11.52

15

20

26.2

x

z 9 min

7 min

Figure 13. Free surface positions of Desai et al.’s experiment [14] and the calculations of Ye et al. [15]
compared with our results.

The results obtained from our analysis closely correspond with the experimental
observations and the solutions proposed by Zuyang et al., as illustrated in Figure 13. While
Desai et al.’s solution exhibited limitations after 9 min due to various factors that are
discussed in [14], our method used a time step of δt = 1s, and we assumed a downstream
height of H2(t) = 0.05 cm as the boundary condition Γ3(t). It should be noted that
the free-surface positions in our study are marginally lower downstream because of the
maintenance of a downstream height of 0.05 cm. Consequently, we have established that
our code is operational, and we have successfully completed the validation process.
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4. Water Flow Through Realistic Railway Ballast
4.1. Steady-State Flow for Realistic Railway Ballast

Here, we investigate the time-dependent water flow through railway ballast, taking
into account the realistic dimensions of railway ballast, as depicted in Figure 14. Initially,
we solve the steady-state flow problem and compare our results with the findings of [9].
We consider the porosity of the ballast to be affected by fouling, as illustrated in Figure 15,
following the work of [9,20]. Subsequently, we analyze the free surface positions for various
models, including clean ballast, Model 1, Model 2, and Model 3 (refer to Figure 15), as they
evolve over time. The results are presented in Figure 17.

45◦

4 m

0.3 m0.5 m 0.5 m
Shoulder Shoulder

Impermeable layer

Figure 14. The railway ballast geometry following the Australian track dimensions [20].

Clean Ballast

Layer 1
Layer 2

Layer 3 0.1 m
0.1 m
0.1 m

Model 1

Layer 1

Layer 2 0.1 m

0.2 m

Model 2

Layer 4 0.1 m
0.1 m
0.1 m

Model 3

Figure 15. Models of realistic railway ballast include fouling following the ratio in [20]. The colours
correspond to the different fouling ratios shown in Figure 16.
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Figure 16. Fouling ratio or Void Contaminant Index (VCI) and the equivalent hydraulic conductivity
Ks [9].

The red dashed lines presented in Figure 17 depict the free surface positions calculated
using the iterative algorithm, as proposed in [9]. The time step, δt, used in all models was
set to 0.05s. Interestingly, each model resulted in different times for the final position of
the free surface. For instance, the free surface of the clean ballast was achieved after 86.4s,
while for Models 1 and 2, it was achieved after 7 minutes. Our findings indicated that the
free-surface positions for the first three models closely corresponded to those reported in
[9]. However, in the last model, convergence was slower, and the iterative algorithm did
not converge even after 22 minutes.

x

z

(a) Clean ballast

x

z

(b) Model 1

x

z

(c) Model 2

x

z

(d) Model 3

Figure 17. Free surface of steady-state flow with respect to time for different models.

The convergence rate of the time-dependent free surface in comparison to the steady-
state free surface is significantly influenced by the hydraulic conductivity value, as demon-
strated in Figure 17. The free surface of the clean ballast model converged at 86.4s due to
its homogeneous material with high conductivity. In contrast, Model 3 is nonhomogeneous
and complex, with regions of low conductivity, resulting in a much slower convergence rate.
Therefore, we suggest utilizing the iterative algorithm proposed in [9] for nonhomogeneous
hydraulic conductivity, but only if the steady-state solution is required.

(a) (b) (c) (d)

Figure 16. Fouling ratio or Void Contaminant Index (VCI) and the equivalent hydraulic con-
ductivity Ks: (a) Ks = 0.3 m/s; (b) Ks = 3.5968 × 10−4 m/s; (c) Ks = 1.7995 × 10−4 m/s;
(d) Ks = 9× 10−5 m/s [9].

The red dashed lines presented in Figure 17 depict the free surface positions calculated
using the iterative algorithm, as proposed in [9]. The time step, δt, used in all models was
set to 0.05 s. Interestingly, each model resulted in different times for the final position of
the free surface. For instance, the free surface of the clean ballast was achieved after 86.4 s,
while for Models 1 and 2, it was achieved after 7 min. Our findings indicated that the
free-surface positions for the first three models closely corresponded to those reported
in [9]. However, in the last model, convergence was slower, and the iterative algorithm did
not converge, even after 22 min.

The convergence rate of the time-dependent free surface in comparison to the steady-
state free surface is significantly influenced by the hydraulic conductivity value, as demon-
strated in Figure 17. The free surface of the clean ballast model converged at 86.4s due to
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its homogeneous material with high conductivity. In contrast, Model 3 is nonhomogeneous
and complex, with regions of low conductivity, resulting in a much slower convergence rate.
Therefore, we suggest utilizing the iterative algorithm proposed in [9] for nonhomogeneous
hydraulic conductivity, but only if the steady-state solution is required.

(a) Clean ballast (b) Model 1

(c) Model 2 (d) Model 3

Figure 17. Free surface of steady-state flow with respect to time for different models.

4.2. Unsteady-State Flow for Realistic Railway Ballast

In this section, we model a sudden flood in railway ballast by considering a sudden
rise in water level upstream. We incorporate the specific yield Sy to compute the free surface
at various times. The specific yield represents the capacity of railway ballast to drain water.
For realistic railway ballast, we assume a specific yield of 0.2, as coarse sand and gravel
typically have specific yields of up to 0.2 [11]. We acknowledge that specific yield may
vary with contamination, but we keep it constant at 0.2 for all models. We investigate the
sudden flow for clean ballast and Model 1 in Figure 15, where the effect of the fouling ratio
is similar to that depicted in Figure 16 for Model 1. We employ Equation (4) to determine
the position of the free surface with respect to time. The hydraulic conductivity of the clean
ballast is 0.3 m/s [9].

Figure 18 shows the results of our investigation on sudden flood scenarios for clean
ballast and Model 1, where the sudden upstream change occurs from a stable water level
height of 0.005 m to the height of the railway ballast of 0.3 m at the first time step of δt1,
while the downstream height is held constant at 0.005 m. We compared the free surface
of both cases at specific time intervals of 0.1, 1, 5, 10, and 90 s. The impact of fouling
in Model 1 greatly affected the free surface compared to the clean ballast case, in which
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the fouling ratio was considered. This effect is supported by previous studies on railway
ballast scouring, which primarily occurs when the upstream height exceeds the height of
the ballast [6,7]. We also observed that the ballast fouling in Model 1 led to a slower flow
of water for a significant time compared to clean ballast, which may cause overflow in a
continuous flooding situation.

x

z

t = 0s

90s

0.1s
1s

5s

10s

Figure 18. Sudden upstream flow for Clean ballast and Model 1.

5. Conclusions

The solution of time-dependent flow with a variable free surface in fluid flow through
porous media is a powerful technique that enables the calculation of steady- and unsteady-
state flows. In this study, we have investigated both flow these conditions and compared the
results with experimental data. The steady-state flow results showed good agreement with
the iterative algorithm proposed in [9], except in regions with highly variable hydraulic
conductivity. For unsteady-state flow, we examined two inflow situations: linear and
sudden increases. Specifically, we analyzed the latter case as it pertains to sudden floods
that can occur in railway ballast. We demonstrated how fouling impacts the rate of
water flow through ballast, as illustrated in Figure 18. Furthermore, we observed that the
convergence of the free surface over time depends on the value of the specific yield, Sy, for
the unsteady state and that the time steps, δt, need to be chosen with care to obtain smooth
curves for the free surface.

Author Contributions: Conceptualization, R.A. and M.H.M.; Methodology, M.H.M.; Investigation,
R.A.; Writing—original draft, R.A.; Writing—review & editing, M.H.M.; Supervision, M.H.M.; Fund-
ing acquisition, M.H.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Australian Research Council’s Industrial Transformation
Training Centres Scheme (ARC Training Centre for Advanced Technologies in Rail Track Infrastruc-
ture; IC170100006).

Data Availability Statement: Data is available by request.

Acknowledgments: This research was supported under Australian Research Council’s Industrial
Transformation Training Centres Scheme (ARC Training Centre for Advanced Technologies in Rail
Track Infrastructure; IC170100006).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Convergence Study of the Rectangular Dam for Steady-State Flow

This section examines the computations employed in this study and outlines chal-
lenges encountered during the computation of the free surface. The finite element method
requires the discretization of the domain into triangular sections, as depicted in Figure A1.
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Given that the flow near the free surface is highly variable, this section necessitates a higher
number of elements. However, an excessive number of nodes may impede the iterative
technique employed in updating the free surface.

x

z

Figure A1. Mesh of case 1.

In Figure A2, it is observed that a high number of nodes made it difficult to converge
the free boundary to the correct positions of the free surface. At t = 0.062 s, variations in the
free surface were detected, as shown in the figure. To facilitate the next convergence, it may
be necessary to perturb the free surface at this point. One possible solution to this problem
is to reduce the mesh density or the number of nodes on the free boundary (indicated by
green nodes in Figure A1) to obtain the next free surface. However, a low mesh density can
lead to inaccurate solutions. This issue was resolved in Figure A3, where the free surface
became smooth.

Convergence of the free surface in this study is dependent on the time steps, δt.
When the time steps are set too high, similar errors to those seen in Figure A2 may occur,
but potentially in a different region of the free surface. To obtain a smooth curve and
avoid such errors, it is necessary to adjust the value of δt until convergence is achieved,
as demonstrated in Figure A3. It should be noted that altering the time steps will not
affect the real-time results of the free surface, as all values of δt yield the same result at a
given moment, as seen in Figure 10, where each value of δt at both 1 h and 2 h produced
identical results.

0 0.2 0.4 0.6

0.8

0.9

1

x

z

0 0.01 0.02 0.03 0.04 0.05

0.95

0.96

0.97

0.98

0.99

1

x

z

Figure A2. Errors caused by numerical instability, which appear as the time steps increase.
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Figure A3. The new free surface calculation after the convergence errors have been fixed using mesh
reduction on the free surface.

Appendix B. Calculating the Trapezoidal Dam for Unsteady-State Flow

In order to obtain a solution for the unsteady-state flow, an initial guess is required. In
this study, for the experiment conducted by Desai et al. [14], a straight line representing the
inflow height at 3 min is used as the initial guess, as shown in Figure A4. The boundary
conditions for this case are presented in Equation (2), where H2(t) is held constant at
0.05 cm throughout the calculation. H1(t), on the other hand, increases by 1.28 cm/m and
is initially set to 3.84 cm.

Initially, the downstream decrease in the free surface was followed by an increase. Our
calculated downstream flow results agreed with the experiment, but they were lower than
those reported by Zuyang et al. [15]. This discrepancy may be attributed to the constant
value of H2(t) that was held at 0.05 cm throughout our calculations. To accurately model
the water flow through the trapezoidal dam, we imposed the requirement that the edges of
the free-surface curve fit the shape of the dam, as depicted by the green lines in Figure A4.
Additional solutions for this problem are displayed in Figure 13.

x

z 9 min

7 min

Figure A4. Convergence of the free surface of the unsteady-state flow.
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