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Abstract: We present the theoretical description of plane Couette flow based on the previously
proposed equations of vortex fluid, which take into account both the longitudinal flow and the vortex
tubes rotation. It is shown that the considered equations have several stationary solutions describing
different types of laminar flow. We also discuss the simple model of turbulent flow consisting of
vortex tubes, which are moving chaotically and simultaneously rotating with different phases. Using
the Boussinesq approximation, we obtain an analytical expression for the stationary profile of mean
velocity in turbulent Couette flow, which is in good agreement with experimental data and results of
direct numerical simulations. Our model demonstrates that near-wall turbulence can be described by
a coordinates-independent coefficient of eddy viscosity. In contrast to the viscosity of the fluid itself,
this parameter characterizes the turbulent flow and depends on Reynolds number and roughness of
the channel walls. Potentially, the proposed model can be considered as a theoretical basis for the
experimental measurement of the eddy viscosity coefficient.

Keywords: viscous fluid; vortex plane Couette flow; turbulent flow; eddy viscosity; Boussinesq
approximation

1. Introduction

To describe vortex flows, many authors construct Maxwell-type symmetric equations
for the local velocity and vorticity vectors [1–6]. In particular, these equations are used
for the description of turbulent flows [4] and electron–ion plasma in the framework of a
hydrodynamic two-fluid model [7–15]. However, in all mentioned papers, the additional
equation for vortex motion is obtained by taking the “curl” operator from the Euler equa-
tion, hence the resulting equation is not independent. Recently, we have developed an
alternative approach based on the droplet model of a liquid, which was first introduced by
Helmholtz [16]. In particular, we have obtained a closed system of Maxwell-type equations
for vortex flow, taking into account the rotation and twisting of vortex tubes [17]. We
applied this approach to derive self-consistent hydrodynamic equations for electron–ion
plasma [18] and electron fluids in solids [19].

In the present paper, we apply the proposed equations for the description of the plane
Couette flow between two moving plates [20,21]. This is a relatively simple canonical
type of a walls-bounded shear flow, which is actively studied both theoretically and
experimentally. At present, extensive experimental material has accumulated on studies of
laminar and turbulent Couette flows [22–26].

The conventional theoretical description of laminar Couette flow is based on the
solution of the Navier–Stokes equation for a viscous fluid. The stationary solution of this
equation corresponds to a steady flow with a linear velocity distribution in the channel
between the plates [20]. The description of turbulent flow is a more difficult task. The
turbulent flow is characterized by unsteady eddy movements with a wide range of spatial
scales, which are superimposed on a slowly varying mean flow. Vortices mix fluid and are
responsible for the higher rates of momentum, mass, and heat transfer from large to small
scales. In accordance with the concept of Reynolds decomposition, in this case, all quantities
in a liquid can be represented as a composition of mean and fluctuating values, and the
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averaged turbulent flow is described by the Reynolds-averaged Navier–Stokes (RANS)
equation for mean values [27,28]. The main problem related to this description is finding
the Reynolds stress tensor, which takes into account the effect of velocity fluctuations on
the average flow characteristics [28]. There are several approaches for calculation of the
Reynolds tensor and closing the system of equations [29–39]. Boussinesq proposed the
concept of turbulent viscosity [29], establishing a relationship between stress tensor and
mean flow velocity. However, in order to obtain a satisfactory match with the experimental
data within the framework of the RANS equation, it is commonly assumed that the eddy
viscosity coefficient depends on the coordinates in the turbulent flow, which requires the
development of complex models of the boundary layer using additional equations [31–37].
With the development of computer technology, different methods for the direct numerical
simulations (DNS) based on the solution of the non-stationary RANS equation have become
widespread. These methods allow one to simulate the evolution of unsteady flows and
calculate the average values of different physical characteristics [35–39]. In particular,
the DNS are in demand in engineering calculations of complex flows. However, the
requirement for a fine grid for calculations significantly limits the possibilities of these
methods, especially at high Reynolds numbers.

Although the existing analytical models of turbulence provide adequate descriptions
of experimental data, they contain many fitting parameters and are difficult to analyze. The
advantages and disadvantages of various models are considered in [40,41]. A relatively
simple analytical model of the turbulent Couette flow was proposed in [31]. It satisfactorily
describes the experimental distributions of mean velocity in the central region of the
flow, however, the matching of the velocity profiles near the walls requires additional
assumptions related to the properties of the eddy viscosity in this region. Therefore, there is
still a need for a simple analytical model suitable for the estimation calculations and simple
explanation of experimental results.

In the model proposed in this article, vortex tubes are directly involved in the formation
of walls-bounded flow, which is especially important in the case of turbulent motion. The
theoretical description of turbulent flow, in addition to the RANS equation, includes an
equation describing the motion of vortex tubes. This makes it possible to obtain simple
analytical solutions for the profiles of the mean velocity in Couette flow. Our model
contains only two fitting parameters, as well as the calculated mean velocity profiles in
a good agreement with the experimental data and DNS in the entire cross section of the
turbulent flow and for various Reynolds numbers (Re).

2. Model of Vortex Plane Couette Flow

We consider a flow of viscous vortex fluid formed between two infinite, parallel plates
moving relative to each other in opposite directions (Figure 1).

Figure 1. Sketch of a system consisting of fluid placed between two infinite plates, which move along
the X axis with speed v in opposite directions.
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As we previously showed in [17], a vortex isentropic flow of viscous fluid is described
by the following symmetric system of equations:
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Here, c is a speed of sound,
→
v is a local velocity, ν is the kinematic viscosity,

→
∇ is

the Hamilton operator, and ∆ is the Laplace operator. The value u is proportional to
the enthalpy.

u = 1
c ε,

dε = c2

ρ d ρ,
(2)

where ε is an enthalpy per unit mass and ρ is a fluid density. The vector
→
w characterizes the

rotation of the vortex tube around its axis.

→
w = 2c

→
θ ,

→
ω = d

→
θ

dt ,
(3)

where
→
θ is the angular vector of rotation of the vortex tube and

→
ω is the angular velocity of

the vortex tube rotation. The value ξ characterizes the twisting of the vortex tube.

|ξ|= c γ, (4)

where γ is the twisting angle of the vortex tube [17]. To simplify the model, we assume that
the liquid is incompressible (ρ = const, u = const) and neglect the twisting of the vortex
tubes (ξ = 0). Then, the system of equations describing the motion of the fluid takes the
following form:
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(5)

In plane flow, we assume that for the one-dimensional motion along the X axis, the
velocity

→
v has only an X component and depends only on the Y coordinate vx = vx(y, t).

Similarly, in plane flow, the vector of rotation angle
→
w has only a Z component and depends

only on the Y coordinate wz = wz(y, t). Thus, the system of equations for the plane flow of
vortex fluid takes the following form:

1
c

∂vx
∂t −

ν
c

∂2vx
∂y2 + ∂wz

∂y = 0,
1
c

∂wz
∂t −

ν
c

∂2wz
∂y2 + ∂vx

∂y = 0.
(6)

These equations make it possible to describe the plane Couette flow taking into account
the effects associated with the rotation of vortex tubes.
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3. Laminar Plane Couette Flow of Vortex Fluid
3.1. Stationary Flow without Rotation of Vortex Tubes

First, we consider a stationary flow when the angular velocity of the vortex tubes
rotation is equal to zero (ωz = 0). We assume that the functions vx(y) and wz(y) are time
independent. Then, the system of Equation (6) takes the following form:

−λ ∂2vx
∂y2 + ∂wz

∂y = 0,

−λ ∂2wz
∂y2 + ∂vx

∂y = 0.
(7)

Here, we introduce the parameter λ = ν /c. In addition, we assume that for the liquid
at the plate surfaces, the conditions of complete no-slip are realized. This means that the
near-wall liquid layer moves at the same speed as the plate and the vortex tubes are rigidly
attached to the wall without the possibility of rotation around their axis. This brings us to
the following boundary conditions:

vx (h) = v,
vx (−h) = −v,
wz (h) = wz (−h) = 0.

(8)

The solutions of system (7) satisfying the boundary conditions (8) are

vx = v
sinh(y/λ)

sinh(h/λ)
, (9)

wz = v
cosh(y/λ)− cosh(h/λ)

sinh(h/λ)
. (10)

The velocity distribution in the channel between the plates is shown schematically in
Figure 2.

Figure 2. The steady profiles of flow velocity in the channel between two moving plates. The solid
blue line corresponds to the distribution (9). The dotted red line corresponds to the distribution (15).

Since for the majority of experimentally realized channels (except very thin capillary
channels), h/λ� 1, such laminar flow is realized only near the plate’s surface.

Schematically, the distribution of the angle of the vortex tubes rotation (10) is shown
in Figure 3.
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Figure 3. Schematic normalized distribution (10) of the angle of the vortex tubes rotation (θz = wz/2c)
across the channel θmin = wz(0)/2c.

According to (9), the vortex of velocity (vorticity,
→
Ω =

→
∇×→v ) has only a Z component,

which is equal to

Ωz = −
v
λ

cosh(y/λ)

sinh(h/λ)
. (11)

The distribution of the vorticity in the channel between the plates is shown schemati-
cally in Figure 4.

Figure 4. Distributions of vorticity in the channel between two moving plates. The solid blue line cor-
responds to the distribution (11). The dotted red line corresponds to the normalized distribution (18).

3.2. Flow with in-Phase Rotation of Vortex Tubes

Another stationary flow satisfying Equation (6) is characterized by a uniform field of
vortex tubes rotating at constant angular velocity ωz = const and having the same phases.
We find a solution for the angle of vortex tubes rotation as

wz(t) = 2c ωzt. (12)
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In this case, system (6) takes the following form

∂2vx
∂y2 = 0,

2ωz +
∂vx
∂y = 0,

(13)

with boundary conditions
vx(h) = v,
vx(−h) = −v.

(14)

From the first equation of system (13), we obtain

vx =
v
h

y. (15)

From expression (12), we obtain

θz(t) = ωzt. (16)

From the second equation of system (13), we obtain the relationship between the
angular velocity of tubes rotation and the velocity of the plates:

ωz = −
v
2h

. (17)

Expression (17) shows that in this case, the vortex tubes rotate with the maximum
angular velocity determined by the speed of the plates. The vorticity is constant over the
channel cross section and is equal to

Ωz = −
v
h
= 2ωz. (18)

The distributions of velocity (15) and vorticity (18) are shown in Figures 2 and 4
by dotted lines. Stationary distributions (15) and (18) coincide with the known classical
solutions for the Couette flow.

3.3. Case of Vortex Tubes Rotating with Different Phases

Let us consider a stationary flow consisting of vortex tubes oriented along the Z axis
and rotating with a constant angular velocity ωz = const but with different phases ϕz(y)
depending on the Y coordinate. We will look for a solution in the form

wz(y, t) = 2c ωzt + ϕz(y). (19)

In this case, Equation (6) take the following form:

−λ ∂2vx
∂y2 + ∂ϕz

∂y = 0,

−λ
∂2 ϕz
∂y2 + ∂vx

∂y + 2ωz = 0.
(20)

In addition, we take the following boundary conditions:

vx(h) = v,
vx(−h) = −v,
ϕz(h) = ϕz(−h) = 0.

(21)

The solution of system (20) can be represented in the following form:

vx = αv
y
h
+ (1− α) v

sinh(y/λ)

sinh(h/λ)
, (22)
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ϕz = (1− α) v
cosh(y/λ)− cosh(h/λ)

sinh(h/λ)
, (23)

where the dimensionless parameter α is

α = −2ωzh
v

. (24)

The schematic distribution of velocity over the channel cross section is shown in
Figure 5. Note that in the case of α = 0, the solutions (22)–(24) are reduced to (9)–(10), and
in the case of α = 1, these solutions are reduced to (15)–(17).

Figure 5. The profile of the fluid velocity in the channel between two moving plates corresponding to
the distribution (22).

4. Turbulent Plane Couette Flow

To describe a turbulent flow, we introduce the time-averaged values of the flow
velocities, denoting them as vx, vy, vz, and corresponding fluctuations, v′x, v′y, v′z. Then,
the local velocities of the turbulent flow are written in the following form:

vx = vx + v′x,
vy = vy + v′y,
vz = vz + v′z.

(25)

Similarly, for the vector of rotation
→
w, we have

wx = wx + w′x,
wy = wy + w′y,
wz = wz + w′z.

(26)

Let us consider a plane turbulent flow along the X axis. We take into account that
vy = 0, vz = 0 and the mean velocity vx(y, t) depends only on the Y coordinate. In
addition, we assume that vortex tubes are oriented along the Z axis wx = 0, wy = 0,
wz = wz(y, t). Substituting (25) and (26) into Equation (6), we account that fluctuations
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v′x, v′y, v′y and w′x, w′y, w′z depend only on the Y coordinate. Then, averaging over time
(Reynolds averaging), we obtain:

1
c

∂vx
∂t −

ν
c

∂2vx
∂y2 + 1

c
∂

∂y v′xv′y + ∂wz
∂y = 0,

1
c

∂wz
∂t −

ν
c

∂2wz
∂y2 + 1

c
∂

∂y w′zv′y + ∂vx
∂y = 0.

(27)

Here, v′xv′y and w′zv′yy are the components of the corresponding Reynolds
tensors [27,28]. In the framework of Boussinesq approximation [29,30], we can write

− v′xv′y = νT
∂vx

∂y
, (28)

− w′zv′y = νT
∂wz

∂y
, (29)

where νT is the turbulent (eddy) kinematic viscosity. Let us assume νT = const, then
Equation (27) take the form

1
c

∂vx
∂t −

ν+νT
c

∂2vx
∂y2 + ∂wz

∂y = 0,
1
c

∂wz
∂t −

ν+νT
c

∂2wz
∂y2 + ∂vx

∂y = 0.
(30)

Let us consider a fully developed stationary flow vx = vx(y), in which the vortex
tubes on average rotate with a constant angular velocity ωz = const but with different
phases ϕz(y). Therefore, we will look for a solution in the following form:

vx = vx(y),
wz(y, t) = 2c ωzt + ϕz(y).

(31)

Then, Equation (30) take the final form

−λT
∂2vx
∂y2 +

∂ϕz
∂y = 0,

−λT
∂2 ϕz
∂y2 + ∂vx

∂y + 2ωz = 0.
(32)

Here, we introduced a characteristic scale of the turbulent length λT = (ν + νT)/c. As
the boundary conditions, we choose

vx (h) = v,
vx (−h) = −v,
ϕz (h) = ϕz (−h) = 0.

(33)

Then, the solutions of Equation (32) are written as

vx = αv
y
h
+ (1− α) v

sinh(y/λT)

sinh(h/λT)
, (34)

ϕz = (1− α) v
cosh(y/λT)− cosh(h/λT)

sinh(h/λT)
, (35)

α = −2ωzh
v

. (36)

In form, the solutions (34)–(36) coincide with (22)–(24), but they have a different
characteristic spatial scale λT � λ, defined by eddy viscosity. As an example, in Figure 6,
we demonstrate the comparison of solution (34) with the DNS results for Couette flow with
Re = 3000 [42] and Re = 12800 [43].
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Figure 6. Distributions of the mean velocity in a turbulent Couette flow between two moving plates.
Squares (�) are the results of DNS with Re = 3000 [42]; the solid red line corresponds to (34) at
λT/h = 0.18, α = 0.165. Circles (#) are the DNS results with Re = 12800 [43]; the solid blue line
corresponds to (34) at λT/h = 0.072, α = 0.189. The characteristic scale of the velocity profiles is
y ∼ λT.

In Figure 7, we show the comparison of mean velocity distribution (34) with experi-
mental results for Re 2900 and 18,000 [44]. In Figure 8, we represent the results of velocity
profiles fitting for the flows in channels with smooth and rough walls at close Re [24]. As
can be seen, the velocity profiles calculated within the framework of the proposed model
are in good agreement with the experimental data and the results of the DNS. We believe
that it is possible to reproduce the mean velocity profile for the Couette flow with any
Reynolds number by choosing corresponding combinations of the parameters λT and α.

Figure 7. Distributions of the mean velocity in a turbulent Couette flow. Squares (�) are the
experimental results for Re = 2900 [44]; the solid red line corresponds to (34) at λT/h = 0.16, α = 0.3.
Circles (#) are the experimental results for Re = 18,000 [44]; the solid blue line corresponds to (34) at
λT/h = 0.09, α = 0.24.
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Figure 8. Profiles of the mean velocity in a turbulent Couette flow. Squares (�) are the experimental
data for rough wall channels, Re = 10,850 [24]; the solid red line corresponds to (34) at λT/h = 0.14,
α = 0.34. Circles (#) are the experimental results for smooth wall channels, Re = 9524 [24]; the solid
blue line corresponds to (34) at λT/h = 0.065, α = 0.21.

5. Discussion

The considered model predicts several types of stationary laminar Couette flow. As
can be seen from solutions (9)–(10), the laminar motion without vortex tubes rotation is
realized only in a narrow region near the plates. This regime can be important in tribology
at low Re, in case of supersmooth plates sliding relative to each other, when a narrow
gap between them is filled with a viscous lubricant. However, in the case of macroscopic
channels, the plates have rough surfaces and the microvortices in the near-wall region can
destroy this flow regime [45,46]. The linear distribution of velocity is obtained in the case
when the vortex tubes rotate in-phase with the same angular velocity. On the other hand,
taking into account the non-uniform phases of the tubes rotation, we obtained solutions
(22)–(24), which describe the combination of the previous two flows.

The proposed model of a vortex fluid allowed us to describe the stationary profile
of the mean velocity in turbulent Couette flow. For this purpose, we used the Boussinesq
approximation for the Reynolds shear stress tensor. In this simple case, we have obtained
a closed system of equations for the time-averaged values vx and wz, which correctly
describes turbulent flow. In particular, we have shown that by optimizing the parameters
λT and α in (34), it is possible to describe both experimental and DNS-produced profiles of
mean velocity for turbulent Couette flow.

The experimental data and the results of the DNS (Figures 6 and 7) show that an
increase in Re leads to a decrease in the slope of the velocity profile in the central region
of the channel and a faster decay in the near-wall region. In the proposed model, the
scale of the profile change in the near-wall region is unambiguously determined by the
parameter λT, which is proportional to the eddy viscosity coefficient (see Figures 6 and 7).
The parameter α (which is determined by the speed of walls v and the velocity of the
vortex tubes rotation ωz) mainly adjusts the slope of the profile in the central region of the
channel. Thus, an important achievement of this model is that, within the framework of the
equations for a vortex fluid, the developed turbulence in the near-wall region is described
by a constant eddy viscosity coefficient that essentially simplifies the transition layer model.
In addition, the comparisons of calculated velocity profiles and experimental data for the
Couette flows in channels with smooth and rough walls (Figure 8) show that the shape of
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the velocity profile for rough wall channels remains the same, only the slope and the rate of
near-wall decay are changed. This shows that the model with constant eddy viscosity also
works in the case of channels with rough walls. An increase in wall roughness is simply
described by an increase in the eddy viscosity coefficient.

Therefore, we emphasize that within the framework of the proposed model, the
constant coefficient of eddy viscosity unambiguously characterizes the turbulent motion
of the fluid and is determined by the maximum flow velocity (Reynolds number) and the
boundary conditions (surface roughness) on the channel walls.

6. Conclusions

Thus, we considered various types of steady state flow in the channel between two plates
moving relative to each other based on the equations describing the vortex motion of viscous
fluid. We obtained several solutions corresponding to different stationary laminar flows.

It is especially important that the considered model of a vortex fluid made it possible
to describe the turbulent Couette flow in the Boussinesq approximation. The calculated
average velocity profiles are in good agreement with the experimental data and the results
of the DNS. This shows that within the framework of these equations, near-wall turbulence
is described by a constant coefficient of eddy viscosity. This model allows a fairly simple
interpretation of the average velocity profiles and simple estimates of the eddy viscosity
coefficient based on experimental measurements.

In the future, the model of vortex viscous fluid is planned to be applied to describe
the plane Poiseuille flow and mixed Poiseuille–Couette flow.
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