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Abstract: The present article addresses the topic of grid motion computation in Arbitrary Lagrange–
Euler (ALE) simulations, where a fluid mesh must be updated to follow the displacements of
Lagrangian boundaries. A widespread practice is to deduce the motion for the internal mesh nodes
from a parabolic equation, such as the harmonic equation, introducing an extra computational cost
to the fluid solver. An alternative strategy is proposed to minimize that cost by changing from
the parabolic equation to a hyperbolic equation, implementing an additional time derivative term
allowing an explicit solution of the grid motion problem. A fictitious dynamic problem is thus
obtained for the grid, with dedicated material parameters to be carefully chosen to enhance the
computational efficiency and preserve the mesh quality and the accuracy of the physical problem
solution. After reminding the basics of the ALE expression of the Navier–Stokes equations and
describing the proposed hyperbolic equation for the grid motion problem, the paper provides the
necessary characterization of the influence of the fictitious grid parameters and the analysis of the
robustness of the new approach compared to the harmonic reference equation on a significant 2D test
case. A 3D test case is finally extensively studied in terms of computational performance to highlight
and discuss the benefits of the hyperbolic equation for ALE grid motion.

Keywords: Arbitrary Lagrange–Euler; fluid grid motion; hyperbolic fictitious grid problem

1. Introduction

Modeling the interaction between a fluid flow and a moving structure is essential
in understanding a wide range of physical phenomena. In particular, it addresses prob-
lems coming from biology, such as the modeling of the cardiovascular system [1,2], as
well as many industrial problems coming, for instance, from aeronautics [3,4] or nuclear
industry [5–7].

Fluid–structure interaction classically requires coupling an Eulerian description for
the fluid flow and a Lagrangian description for the structural motion. In many practical
situations, the optimum between accuracy, numerical performance, and versatility is
achieved through so-called partitioned coupling techniques, implementing a dedicated
solver for both fluid and structure components [8–11]. Whatever the chosen coupling
framework, a way to connect Eulerian and Lagrangian descriptions on the fluid–structure
interface must be defined. The embedded boundary techniques, where meshes for fluid and
structure are topologically disconnected [12,13] provide a set of robust approaches which
do not constrain the fluid grid after discretization. The above fluid–structure connections
are written in an approximate form, yielding specific issues related to the accuracy of the
fluid solution in cells cut by the structural interface [14] that is out of the scope of the present
research. On the contrary, following the structural motion for the best representation of
fluid phenomena close to the wall precisely imposes switching from a strictly Eulerian
description to an intermediate description allowing a moving grid for the fluid. The
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expansion of the interface motion from the structure to the points inside the fluid domain
is arbitrary, with the primary objective of preserving the shapes of the fluid cells along the
simulation, thus leading to the Arbitrary Lagrangian-Eulerian (ALE) description of the
fluid flow [15].

Using the ALE description, an additional equation is introduced to deduce the motion
of the whole fluid grid from the moving boundary conditions. A harmonic equation can
easily be implemented for moderate structural motion. For larger displacements, more
advanced techniques such as the biharmonic equation [16] or a fictitious elastic model for
the grid [17,18] give more robust results. Several comparisons are available in the literature
on the mesh motion techniques [19,20] and their impact on the fluid–structure solution [21].
These approaches, however, have all in common the need for an additional solver for the
fluid grid introducing an extra computational cost in the fluid solver, related in particular
to the solution of a parabolic problem defined on the complete fluid domain.

The purpose of the current paper is thus to propose a new and computationally
efficient way to manage the grid problem. It is first implemented for the moderate dis-
placement case, and the article does not aim specifically at enhancing the robustness of
the grid motion in the case of large displacements. The proposed approach can, however,
easily be derived for any grid motion equation, including those mentioned above, and
designed to address the sizeable structural motion case. The idea is to transform the initial
parabolic equation into a hyperbolic equation by adding a second-order time derivative
that can then be solved with an explicit time integration scheme avoiding any large linear
system solution. The computational advantages of the new grid motion algorithm are
evaluated on test cases involving the resolution of a simple incompressible flow governed
by the Navier–Stokes equation and obtained with TrioCFD open-source software (version
1.8.4, sourced from https://github.com/cea-trust-platform/TrioCFD-code, accessed on 22
August 2022, provided by CEA under BSD license) [22,23]. The physical solution of the
tests will not be discussed since the behavior of the code on moving fluid grids is already
fully validated for a wide range of flows, including turbulent flows [24,25], and the solution
does not depend on the actual grid motion provided the aspect ratio of all cells remain in
an acceptable range. On the contrary, the focus is given in the following to assessing the
specific behavior of the grid motion resulting from introducing the dynamic term in the
arbitrary equation. The proposed grid motion is analyzed in terms of both mesh quality
evolution over time and computational efficiency.

The outline of this paper is as follows. Section 2 recalls the principle of the ALE
description and its application to Navier–Stokes equations governing the incompressible
flow of interest in the paper on a moving mesh. It also recalls the parabolic harmonic
equation used for the mesh motion, taken as the reference method, and some short elements
describing the time discretization of Navier–Stokes equations implemented in TrioCFD
software (version 1.8.4, CEA, Saclay, France) Section 3 explicitly introduces the alternative
hyperbolic equation for the mesh motion, with the details of its discretization in both space
and time. Finally, Sections 4–6 introduce test cases of growing complexity. The simplest
case in Section 4 aims at thoroughly understanding and characterizing the influence of
the parameters appearing in the new hyperbolic mesh equation. The robustness of the
methodology is assessed in Section 5 in a well-known geometric configuration taken from
the literature. Finally, Section 6 provides extensive computational performance comparisons
in a 3D configuration to highlight the practical benefits of the proposed work.

2. Reminder of Navier–Stokes Equations in ALE Representation

The Navier–Stokes equations are written on a fluid domain Ω f and the moving motion
of the boundary Γi requests, as mentioned above, an ALE description first introduced in
the next section, before recalling both the fluid flow governing equations and the mesh
motion equation.

https://github.com/cea-trust-platform/TrioCFD-code
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It is worth noticing here that the notation Γi classically used to designate a portion
of the boundary of domain Ω f must not be confused with the fluid circulation, also often
referenced to with the same symbol.

2.1. ALE Kinematic Description

The ALE description can be found in different sources [15,26,27]. Let Ω f (t) be the fluid
domain in motion and Ω̂ f a reference domain. An ALE map application A is defined as

A : Ω̂ f × [0, T] → Ω f (t)
(x̂, t) 7→ (x, t) = At(x̂). (1)

Application A is a diffeomorphism that allows for equivalence in the definition
of fields between the reference domain and the moving domain. The mesh velocity is
w = ∂

∂tAt, F = ∇x̂At is the transformation gradient and its determinant is J = det (F).
Defining q a field in the moving domain Ω f (t) and q̂ in the referential domain Ω̂ f , both
fields are related by

∀x ∈ Ω f (t), q(x, t) = q̂ ◦ A−1
t (x) = q̂(A−1

t (x)), (2)

∀x̂ ∈ Ω̂ f , q̂(x̂, t) = q ◦ At(x̂) = q(At(x̂)). (3)

The ALE derivative in time ∂
∂t |A is introduced as

∂q
∂t

∣∣∣
A
(x, t) =

∂q̂
∂t

(A−1
t (x), t) =

∂q̂
∂t

(x̂, t). (4)

Finally, the following relation between the Eulerian time derivative and the ALE time
derivative holds

∂q
∂t

∣∣∣
A
(x, t) =

∂q
∂t

(x, t) + (w(x, t) · ∇)u(x, t). (5)

2.2. Standard Navier–Stokes Equations

The fluid is assumed to be homogeneous, Newtonian, and incompressible. The flow is
characterized by its velocity u : Ω̂ f × [0, T]→ Rn and its pressure p : Ω̂ f × [0, T]→ R and
governed by the following Navier–Stokes equations (in Eulerian form) ∇ · u = 0 in Ω̂ f ,

ρ f
∂u
∂t

+ ρ f (u · ∇) u−∇ · σ f (u, p) = 0 in Ω̂ f .
(6)

where ρ f is the density of the fluid, σ f = −pId + 2µ f ε(u) is the fluid Cauchy stress tensor
with µ f the fluid dynamic viscosity and ε(u) = 1

2 (∇u +∇uT).

2.3. Navier–Stokes Equation in ALE Form

The ALE form of the Navier–Stokes equations is based on the relation between the Eu-
lerian and ALE (5). Introducing the ALE time derivative (still in Eulerian coordinate) yields

w = EXT(w|Γi
),

∇ · u = 0 in Ω f (t),

ρ f
∂u
∂t

∣∣∣
A
+ ρ f (u−w) · ∇u−∇ · σ f (u, p) = 0 in Ω f (t).

(7)

where EXT denotes any reasonable extension operator of the velocity at the interface Γi
in the fluid domain. This formulation is called non-conservative form, from which the
conservative form can be derived (see [2,26])
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w = EXT(wΓi ),
∇ · u = 0 in Ω f (t)

ρ f
∂Ju
∂t

∣∣∣
A
+ J
[
∇ ·

(
u⊗ (u−w)ρ f

)
−∇ · σ f (u, p)

]
= 0 in Ω f (t).

(8)

Developing the expression and using the definition of σ f give the final expression
used for discretization

w = EXT(wΓi ),
∇ · u = 0 in Ω f (t),

ρ f
∂Ju
∂t

∣∣∣
A
+ J
[
(ρ f
[
(u · ∇)u− (w · ∇)u

]
− µ f ∆u +∇p

]
= 0 in Ω f (t).

(9)

2.4. Additional Mesh Equation

Among the numerous techniques found in the literature to expand the motion imposed
by a Lagrangian border to a fluid grid, one frequently encountered and easy to implement
is the Harmonic equation, appearing in many fluid–structure interaction studies [9,28]. The
velocity is computed by solving the system{

−∆w = 0 in Ω f (t),
w = wΓi on Γi(t).

(10)

This equation currently exhibits two main drawbacks. The first one is that it does
not support large displacements, potentially leading to excessively deformed mesh cells.
This can be avoided by switching to a biharmonic equation [16] or a fictitious elastic
model affected by the grid [17,18,20]. These solutions are significantly more challenging
to implement than the harmonic equation and a comparison between these models is
available in [19]. Addressing this topic is outside the scope of the current paper. The
second problem, common to all approaches above relying on parabolic equations, is, on the
contrary, the specific object of the article and comes from the need for the implicit solution
of an additional solver over the complete fluid grid. It induces an additional computational
cost of the same order of magnitude as the cost related to the physical solver, and the
article’s purpose is thus reduce it drastically under the obvious constraint of preserving the
accuracy of the physical solution.

2.5. Discretization of Navier–Stokes Equations

The current introductive section is closed by providing insights regarding the solu-
tion of the ALE Navier–Stokes equations, implemented in TrioCFD open-source software
(version 1.8.4, CEA, Saclay, France) [22]. Space discretization of (9) is based on the hybrid
Finite Element-Volume method for tetrahedral grids [23]. The discretization operators are
given by D, M, A, L(u), and G, corresponding to the discrete divergence, the mass matri-
ces, non-linear diffusion and gradient matrix operators. The expression of these matrices
can be found in [29]. Time discretization is performed through an implicit Euler scheme.
System (9) then writes

∇ · un+1 = 0 in Ω f (t),

M
Jn+1un+1 − Jnun

∆t f
+ Jn+1

[
(L(un)un+1 − L(un)wn+1

−Aun+1 + Gpn+1
]
= 0 in Ω f (t).

(11)

With un+1, wn+1, pn+1 the discrete fluid velocity, mesh velocity, and pressure respectively.
The time step for the fluid is ∆t f . In TrioCFD, a multi-step technique projection-

correction [30,31] is use to solve the system (11).
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In order to reduce the computation cost of solving a parabolic equation for the grid
motion, the proposed alternative is to transform it into a hyperbolic equation that can be
explicitly solved.

2.6. Hyperbolic Equation for the Grid Motion

Starting from the parabolic harmonic equation, a hyperbolic equation is derived by
adding a second-order time dependency, transforming the grid motion problem from a
quasi-static problem to a wave propagation problem with imposed displacement at the
boundary. The new equation writes

∂2w
∂t2 − c2

g∆w = 0 in Ω f (t), (12)

where cg is the wave velocity.
This approach inherits from structural dynamics and introduces new pseudo-physical

parameters to adjust and control the dynamic response of the grid, namely the fictitious
density ρg and the fictitious stiffness kg of the grid. These parameters are related to the

wave velocity through the relation cg =

√
kg
ρg

, yielding

ρg
∂2w
∂t2 − kg∆w = 0 in Ω f (t). (13)

Finally, a damping coefficient dg is added to the model to help control its response
further so that the complete hyperbolic equation to consider for the grid is

ρg
∂2w
∂t2 + dg

∂w
∂t
− kg∆w = 0 in Ω f (t),

w = wΓi on Γi(t),
w = 0 on ∂Ω f (t) \ Γi(t),

(14)

with wΓi a specified velocity of the moving border.

2.7. Weak Form of the Hyperbolic Grid Motion Problem

Introducing V = H1(Ω) and V =
(

H1(Ω)
)3, the weak form of the previous problem

is classically obtained by multiplying (14) by a test function v ∈
(

H1
0(Ω f )

)3 and integrating
on the domain, resulting in

ρg

∫
Ω f

∂2w
∂t2 · v dx + dg

∫
Ω f

∂w
∂t
· v dx + kg

∫
Ω f

∆w · v dx = 0. (15)

Using the Green formula and assuming v|∂Ω f
= 0 yields the expected weak form to be

discretized in the next section:
Find w ∈ V with w = wΓi on Γi, such that

∀ v ∈
(

H1
0(Ω f )

)3, ρg

∫
Ω f

∂2w
∂t2 · v dx + dg

∫
Ω f

∂w
∂t
· v dx + kg

∫
Ω f

∇w : ∇v dx = 0. (16)

2.8. Space Discretization

Given a triangulation Th of the domain Ω f with h ∈]0, 1] a distance referring to the
level of refinement, Th is associated to a vector subspace Vh ⊂ V which is the approximation
of the space solution such that

lim
h→0

Vh = V. (17)
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A P1 finite element approximation and the corresponding shape functions {φi}i=1,...,Nh
are used to define Vh a space of dimension Nh

Vh = {vh ∈ C0(Ω) | vh|τ ∈ P1 ∀τ ∈ Th}. (18)

One approximate field then can be expressed by a projection onto the created subspace
with the new unknowns (αh,1(t), . . . , αh,Nh

(t))

∀(t, x) ∈ ([t0, tmax]×Ω f ), wh(t, x) =
Nh

∑
i=1

αh,i(t)φi(x). (19)

Each unknown is a vector corresponding to the three directions of space,
αh,i = (αx

h,i, α
y
h,i, αz

h,i)
T . Injecting the decomposition (19) of wh into the weak form (16)

produces

ρg

∫
Ω f

∂2

∂t2

( Nh

∑
i=1

αh,iφi

)
· v dx + dg

∫
Ω f

∂

∂t

( Nh

∑
i=1

αh,iφi

)
· v dx

+kg

∫
Ω f

∇
( Nh

∑
i=1

αh,iφi

)
: ∇v dx = 0.

(20)

Using the linearity of the differential operators and setting v = 1φj with j = 0, . . . , Nh

ρg

Nh

∑
i=1

∂2

∂t2 αh,i · 1
∫

Ω f

φiφj dx + dg

Nh

∑
i=1

∂

∂t
αh,i · 1

∫
Ω f

φiφj dx

+kg

Nh

∑
i=1

αh,i · 1
∫

Ω f

∇φi · ∇φj dx = 0.

(21)

This introduces the mass, damping, and stiffness matrices defined as

(
Mh
)

ij =
(

Dh
)

ij =
∫

Ω
φiφjdx,(

Kh
)

ij =
∫

Ω
∇φi · ∇φjdx.

(22)

Space discretization is then concluded by writing the system (21) in matrix form

ρg

 Mh 0 0
0 Mh 0
0 0 Mh

 ∂2

∂t2 W + dg

 Dh 0 0
0 Dh 0
0 0 Dh

 ∂

∂t
W

+kg

 Kh 0 0
0 Kh 0
0 0 Kh

W = 0.

(23)

With the solution vector W

W =

 (αx
h,i)

T
i=1,...,Nh

(α
y
h,i)

T
i=1,...,Nh

(αz
h,i)

T
i=1,...,Nh

. (24)

2.9. Time Discretization

The time interval of interest [0, T] is subdivided into smaller intervals such that
t0 = 0 < t1 < . . . < tN = T with ∆t = tn+1 − tn. For the sake of clarity, the following
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notations are now used: Wn = W(tn), Ẇn = ∂
∂t Wn and Ẅn = ∂2

∂t2 Wn. Matrix system (23)
now writes for one space direction and at time tn+1

ρg MhẄn+1 + dgDhẆn+1 + kgKhWn+1 = 0. (25)

Time derivatives are approximated using the Central Difference explicit scheme from
the Newmark family  Wn+1 ≈ Wn + ∆tẆn + ∆t2

2 Ẅn,

Ẇn+1 ≈ Ẇn + ∆t
2
[
Ẅn+1 + Ẅn

]
.

(26)

This yields a solution procedure in three steps.
(1) Prediction step: : Please confirm if the bold should be retained. same as below

compute the explicit displacement and a prediction of the mid-step velocity

Ẇn+ 1
2 = Ẇn + ∆t

2 Ẅn,
Wn+1 = Wn + ∆tẆn+ 1

2 .
(27)

(2) Equilibrium solution: compute acceleration from

ρg
(

Mh +
∆t
2

Dh
)
Ẅn+1 = −

(
dgDhẆn+ 1

2 + kgKhWn+1). (28)

The solution is explicitly provided when the matrices Mh and Dh, which have here
the same consistent expression (see Equation (23)), are made diagonal through a classical
lumping process.

(3) End-of-step velocity update

Ẇn+1 = Ẇn+ 1
2 + ∆tẄn+1. (29)

2.10. Stability Condition for the Explicit Time Integration

The computation of a stability condition of the problem (25) classically involves an
eigenvalue problem that is difficult to compute. A sufficient condition for the maximum
time step is given by the Courant–Friedrich–Lewy condition (CFL, see, for instance [32])
for a one-dimensional propagation problem

∆tmax ≤
h
cg

. (30)

Using the relation cg =

√
kg
ρg

yields

∆tmax < αh

√
ρg

kg
, (31)

with α ∈]0, 1[ a security coefficient, needed to account for the approximate evaluation of
the characteristic dimension h of the mesh cells when switching to the multidimensional
case. Such a discretization strategy introduces two issues to consider carefully regarding
numerical performance.

First, in the general case, during the simulations, the grid stability time step will be
smaller than the time step prescribed for the physical fluid problem. In order to avoid
penalizing the physical solution with the new grid problem formulation, a subcycling
algorithm is implemented.

Second, even if only a matrix-vector product is now required at each time step for the
grid motion problem, which is the precise point of switching to a hyperbolic equation, the



Fluids 2023, 8, 156 8 of 22

solution of the grid problem is likely to remain computationally costly if too many subcycles
are performed due to a low stability time step. This issue is addressed through the optimal
choice of the fictitious mass, stiffness, and damping coefficients from Equation (14). The
goal is then to maximize the stability time step with respect to the physical fluid time step
while controlling the grid’s dynamic response and preserving the mesh quality.

3. Basic Pseudo-1D Test to Characterize the Influence of Fictitious Material Coefficients
3.1. Test Setup

This first test case is straightforward and corresponds to the pseudo-1D compression
of a rectangular fluid domain of length Lx = 0.5 m and height Ly = 0.1 m. Boundary
conditions for the fluid problem are homogeneous Dirichlet conditions for the fluid velocity
u at the left (In) and homogeneous Neumann conditions at the right (Out). The setup and
the boundary conditions are illustrated in Figure 1. For the grid problem, Equation (14),
the compression corresponds to imposing a non-homogeneous Dirichlet condition on the
left border and a homogeneous Neumann condition on the walls (up and down border).
The domain is first compressed by imposing the motion of the left border with a maximal
displacement of 0.05 m, and it is then stretched back to its original configuration at the
same velocity. The period of the border motion is 0.1 s. Figure 2 shows the compression of
the domain during a single period.

Lx(0.5 m)

Ly(0.1 m)In Out

Wall

Wall

Figure 1. Geometry for the pseudo-1D compression test case.

(a) (b) (c)
Figure 2. Mesh motion in the first test case during a single period of 0.1 s. (a) Initial condition at
t = 0 s. (b) Maximum compression of the domain at t = 0.05 s. (c) Return of the domain to the initial
position t = 0.1 s.

3.2. Analysis of the Influence of the Damping Coefficient

For a dynamic system like the one built for the new grid motion problem, the damping
is expected to affect the wave traveling in the domain and can be tuned to have them vanish
more or less quickly.

For this first analysis, mass and stiffness coefficients are chosen to ρg = 1000 kg·m−3

and kg = 106 Pa so that the wave velocity is set to cg = 32 m·s−1. This relatively low value
compared to standard structural dynamics allows clear visualization of the grid motion
waves in the computational domain, as illustrated in Figure 3. The effect of the damping
coefficient is then relatively straightforward since a value close to zero (dg = 1 N·m−1·s) on
the left results in significant compression/traction waves traveling in the grid, whereas as
a significant value (dg = 105 N·m−1·s) efficiently cancels the waves and retrieves a quasi-
static motion of the grid in response of the moving boundary. When targetting quasi-static
grid motion, a damping coefficient near the stiffness coefficient is the best choice.
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Figure 3. Evolution of the mesh velocity (in m·s−1) as a function of the damping coefficient dg.
(Left): dg = 1 N·m·s−1. (Right): dg = 105 N·m·s−1. Time t = {0.002, 0.015, 0.023, 0.03} s from top
to bottom.

3.3. Analysis of the Influence of the Mass and Stiffness Coefficients

Stiffness controls the forces exerted on the mesh nodes in response to the deformation
of the mesh cells. Too low a stiffness will concentrate the deformation close to the moving
walls, and too high a stiffness will enhance the grid’s dynamic response and lower the
stability time step given by the CFL condition. As introduced in the previous paragraph,
significant stiffness values are suitably associated with significant damping to prevent grid
oscillations far from the imposed motion.

Figure 4 displays the largest internal angle for each mesh triangle at the maximum
compression of the domain ( time t = 0.05 s) for three values of the stiffness coefficients
kg ∈ {104, 106, 108} Pa and the same density coefficient (ρg = 104 kg·m−3). A high
maximum internal angle for a triangle corresponds to an element with a bad aspect ratio.
It could therefore impact the quality of the physical solution or even lead the simulation
to stop. It is easily observed that the lowest stiffness coefficient excessively localizes the
deformation close to the moving wall as expected. The global mesh motion becomes
acceptable with the intermediate stiffness value, and the improvement provided by the
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highest value thus does not compensate for the additional penalization induced on the
stability time step, ten times smaller following Equation (31).

Figure 5 shows the results for the same configurations as above, but at the final time,
where the moving wall is back at its initial location. The observations are the same as
before; only the mesh cells are elongated instead of crushed. At this time, only the highest
stiffness coefficient leads to the grid returning to its initial shape. A slight residual shift
is observed with a softer grid (kg = 106 Pa), suggesting a low-frequency oscillation of the
grid if the simulation is continued. However, the amplitude of the latter is moderate and
does not affect the quality of the physical solution, highlighting the choice left to the users
for the optimum trade-off between numerical performance (i.e., highest possible stability
time step) and controlled grid motion.

(a) (b) (c)

Figure 4. Largest angle by element (in degrees) at maximum compression between several grids
with different stiffness. The stiffness coefficient increases from the the left to the right. (a) Maximum
compression; stiffness kg = 104 Pa. (b) Maximum compression; stiffness kg = 106 Pa. (c) Maximum
compression; stiffness kg = 108 Pa.

(a) (b) (c)

(d)

Figure 5. Largest angle by element (in degrees) at its return to the initial position (t = 0.1 s) for
different stiffness coefficients affected to the grid. The stiffness coefficient increases from the left and
to the right. The last subpicture shows the initial grid mesh. (a) Return to the initial position; stiffness
kg = 104 Pa. (b) Return to the initial position; stiffness kg = 106 Pa. (c) Return to the initial position;
stiffness kg = 108 Pa. (d) Initial mesh.

Finally, Figure 6 shows the influence of the density coefficient affected the grid, with
values ρg ∈ {103, 104, 105} kg·m−3 used jointly with a stiffness coefficient kg = 106 Pa.
In this case, the chosen density has a minimal effect on the shapes of the mesh cells at
maximum grid compression, which can be attributed to the relatively slow wall motion.



Fluids 2023, 8, 156 11 of 22

It must, however, be recalled that increasing the grid density also improves the stability
time step.

(a) (b) (c)

Figure 6. Largest angle by element (in degrees) at maximum compression between several grids with
different density. The density increases between the left and right grid. (a) Maximum compression
for grid ρg = 103 kg·m−3. (b) Maximum compression for grid ρg = 104 kg·m−3. (c) Maximum
compression for grid ρg = 105 kg·m−3.

4. 2D Test Case Derived from Turek’s Benchmark with Imposed Motion

The previous section analyzed the influence of the different parameters of
Equation (14), emphasizing the importance of the damping coefficient and a well-chosen
stiffness. It is essential to choose the stiffness carefully to obtain both a qualitative grid
movement and the least restrictive CFL condition. Thus, this section compares two grids,
one soft and one stiff, with the results obtained from the harmonic Equation (10).

4.1. Presentation of the Turek Test Case

The Turek benchmark is a classical validation test case for fluid–structure interaction
solvers [33,34]. In this test case, the fluid flows around an elastic obstacle clamped to a rigid
stationary cylinder (see Figure 7). The fluid domain length is L = 2.5 m, and its height is
H = 0.41 m. The cylinder center coordinates are (0.2, 0.2) m, and its radius is 0.05 m. The
elastic structure, denoted by Γi has length l = 0.35 m and height h = 0.02 m.

Γi

l(0.35 m)
h(0.02 m)

(0.2, 0.2)

(a)

H(0.41 m)In

Wall

L(2.5 m)

Out

Wall

(b)
Figure 7. Geometry for the Turek test case. (a) Zoom on the beam part. (b) The entire geometry of
the domain.

4.2. Boundary Conditions and Parameters

The fluid is initially at rest, Γi is flexible, and points on its lateral boundary are imposed
a simple harmonic displacement of the form wΓi =

(
0, φ(x)

)
, with

φ(x) = γ
k

∑
i=1

αi
sup |Vi|

Vi(x) cos(ωit), (32)

where γ is the amplitude of the displacement, x the longitudinal coordinate, Vi(x) is the
i-th bending mode of vibration of an Euler-Bernoulli beam with clamped-free boundary
conditions, and Ni = sup(|Vi(x)|, x ∈ [0, l]) its infinite norm, ωi the angular frequency, t
the time and ∑k

i=1 αi = 1. The elastic obstacle is referred to as the beam from now on.
Two sets of properties are considered for the hyperbolic grid motion: one called soft

and the other called stiff. The damping coefficients are set according to the previous analysis,
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and all the parameters are summarized in Table 1. A locally refined grid with 104 triangles
is used. Two different local sizes are defined in the meshing process: a small local size of
25× 10−4 m for elements close to the beam and a large global size 25× 10−3 m elsewhere.
The fluid time step, ∆t f , is fixed to 2× 10−4. The grid time step varies between 1× 10−5 s
and 2× 10−5 s for the soft grid and between 1× 10−6 s and 2× 10−6 s for the stiff grid (ten
times lower in agreement with the same density and a stiffness multiplied by 100 for the
soft grid).

Table 1. Grids parameters of the Turek test case.

ρg kg dg ∆t

Stiff grid 103 108 107 ∼
[
1× 10−6, 2× 10−6]

Soft grid 103 106 106 ∼
[
1× 10−5, 2× 10−5]

4.3. Analysis through a Comparison with the Harmonic Grid Motion

In this section, the dynamics of the two grids (stiff and soft) is analyzed through a
comparison with the motion of the harmonic grid, described by Equation (10). As a first
step, only the first bending mode of vibration of the clamped-free beam (i.e., k = 1 in
Equation (32)) is considered. The displacement amplitude is set to γ = 0.15 m, and the
imposed frequency is ω/(2π) = 10 Hz. Figure 8 illustrates the dynamics of the beam at
different time steps.

(a) (b)
Figure 8. Turek test case with imposed displacement. Motion of the stiff grid. (a) Displacement of the
beam at t = 0.025 s. (b) Displacement of the beam at t = 0.075 s.

Figure 9 plots the evolution of the minimum of the Jacobian determinant, J. The
evolution of J represents a criterion of the quality of the mesh. Thus, the decrease of J
denotes a degradation of the quality of the meshes. For the stiff grid, the curve fits perfectly
with the minimum of the Jacobian determinant obtained with the harmonic equation. For
the soft grid, a shift is observed. The minimum values of the curve are lower than that of
the harmonic equation, which indicates a moderate extra-degradation of the grid quality.
However, the minimum of the Jacobian determinant remains periodic and comes back close
to 1 after each period, so the grid motion remains consistent with the harmonic equation.

Figure 10 plots the normalized minimum area cell’s grid evolution. As before, the
stiff grid fits perfectly with the harmonic mesh movement, while the soft grid presents a
shift. Soft grid cells have a smaller minimum area than harmonic grid cells. As a result, the
soft grid is less accurate when the beam reaches its maximum amplitude. Despite this, the
cells do not degenerate and return to their original shape at the end of each period, so the
soft grid remains consistent for computations. Similarly, both quantities suggest that the
motion of a still grid is close to the harmonic grid behavior.
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Figure 9. Evolution of the minimum of the Jacobian determinant, J, for the soft (left) and stiff (right)
grids over three oscillation periods of the first bending mode of vibration of the clamped-free beam.
The dashed lines correspond to the evolution of J for the harmonic grid.
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Figure 10. Evolution of the normalized minimum cells grid area for the soft (left) and stiff (right)
grids over three oscillation periods of the first bending mode of vibration of the clamped-free beam.
The dashed lines correspond to the evolution of J for the harmonic grid.

Figures 11 and 12, show how grid behavior evolves as beam motion is varied. The dis-
placement imposed on the beam is calculated by considering the two first vibration modes
of the clamped-free beam, i.e., k = 2 in Equation (32). The amplitude of the displacement is
γ = 0.15 m, the imposed frequency are ω1/(2π) = 10 Hz and ω2/(2π) = 20 Hz, and the
weight coefficients α1 = 0.7 and α2 = 0.3. Observations remain the same. The comparison
with the harmonic grid remains unchanged even when additional vibration modes are
considered, i.e., k > 2 in Equation (32).
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Figure 11. Evolution of the minimum of the Jacobian determinant, J, for the soft (left) and stiff (right)
grids over three oscillation periods of the bending mode of vibration of the clamped-free beam. The
dashed lines correspond to the evolution of J for the harmonic grid.
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Figure 12. Evolution of the normalized minimum cells grid area for the soft (left) and stiff (right) grids
over three oscillation periods. The dashed lines correspond to the evolution of J of the harmonic grid.

5. 3D Test Case for Computational Performance Analysis

The previous section discussed the effect of fictitious material coefficients in Equa-
tion (14) on the grid motion resulting from the hyperbolic problem. Afterward, the purpose
of this section is to discuss the computational performance benefits of the proposed ap-
proach on significant meshes. A 3D configuration and intermediate mesh sizes (i.e., up to
2 million cells) are chosen to simultaneously exhibit reliable measures and tendencies for
computational times and allow the consideration of several meshes and set of parameters
in a reasonable time.

5.1. Description of the Test Case and Computational Parameters

The problem is three-dimensional, consisting of two coaxial cylinders separated by a
fluid layer initially at rest. The external cylinder is rigid and fixed. The inner cylinder is
flexible, and as in the previous section, points on its lateral boundary are imposed, on the
ey direction, a simple harmonic displacement of the form

φ(x) = γ sin(πx/L) cos(ωt), (33)

corresponding to the first bending mode of vibration of an Euler-Bernoulli beam with
pinned-pinned boundary conditions. The radii are R1 = 0.06 m and R2 = 0.02 m, and the
lengths are L1 = 0.8 m and L2 = 0.7 m, the setup is illustrated in Figure 13. The simulations
are performed with an imposed displacement of amplitude γ = 0.15 m and a forcing
frequency ω/(2π) = 10 Hz. Figure 14 shows the displacement of the pinned-pinned
cylinder.

L1(0.8 m)

R
1 (0.06 m

)R
2 (0.02

m
)

L2(0.7 m)

Figure 13. Geometry for the 3D test case.
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Figure 14. Motion of the pinned-pinned inner cylinder. (a) Beam at its maximum compression
upward at t = 0.025 s (mesh velocity in m·s−1). (b) Beam at its maximum compression downward at
t = 0.075 s (mesh velocity in m·s−1).

The case is solved with TrioCFD using a classic and efficient combination of solvers
and algorithmic options for this problem, with results discussed in the next section. The
time integration is here implicit for the velocity. The velocity problem is solved through the
GMRES algorithm implemented in the program, whereas the pressure problem solution is
obtained through the Preconditioned Conjugate Gradient (PCG) algorithm from the PETSc
library (see https://petsc.org, accessed on 22 August 2022). The latter is used for the grid
motion computed with the harmonic equation. All the simulations are performed using
parallel processing and 8 Core Processing Units.

5.2. Analysis of the Computational Performance for the Grid Problem Solution

As a preamble to this section, it is essential to remark that the fraction of the total
time of the simulations taken by the grid motion problem depends on many parameters
associated with the solution of Navier–Stokes equations. It is, in particular, influenced
by the choice between implicit and explicit time integration for the convective velocity
problem. Moreover, the approach proposed in the current paper could also indifferently be
applied to other sets of ALE equations, such as Euler equations for compressible fluids, with
again another ratio between the time needed to update the grid and the total computation
time. Hence, the focus is more oriented toward the performance of the grid motion solver
itself, even if some insights regarding the influence of the fictitious grid parameters on the
performance of the global fluid problem solution are also provided.

Four meshes with respectively 0.5, 1., 1.5, and 2. million tetrahedra are considered
for the fluid domain. For the sake of simplicity, two already defined sets of fictitious grid
parameters are selected for the cases with mesh motion solved by the new hyperbolic
equation. They are labeled soft and stiff according to Table 1 in Section 4.2. Indicative time
step ratios between the chosen fluid solver and the hyperbolic grid problem are given
in Table 2. The fictitious speeds of sound for both grids, needed in the next section, are
32 m·s−1 and 316 m·s−1, respectively.

Table 2. Indicative time step ratios between the fluid problem and the hyperbolic problems for the
selected fictitious grid parameters.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Nb elements 0.5× 106 106 1.5× 106 2× 106

∆t f 5.39× 10−4 3.14× 10−4 3.00× 10−4 2.88× 10−4

∆t soft grid 1.11× 10−5 7.94× 10−6 6.95× 10−6 6.46× 10−6

∆t stiff grid 1.11× 10−6 7.94× 10−7 6.95× 10−7 6.46× 10−7

Ratio soft grid 49 40 43 45

Ratio stiff grid 486 395 431 446

https://petsc.org
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5.2.1. Study of the Critical Time Step Ratio Preserving the Performance of the Hyperbolic
Grid Motion Solver

The first key topic of assessing regarding the computational relevance of the pro-
posed hyperbolic solver of the grid motion problem is the critical time step ratio with
the physical fluid problem, above which the original parabolic harmonic problem is less
time-consuming.

This is independent of the considered fluid problem. The respective time steps for
the physical problem set the steps when the harmonic grid problem is solved, and the
hyperbolic problem parameters need to be chosen in the same stability domain , so that
forced ratios between them are studied, with values 1, 10, 100 and 1000. Results are given in
Figure 15 for the most refined mesh. Time is measured in terms of average time associated
with the grid motion computational task per physical time step, labeled Mean CPU time per
∆t f on the plots.
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(b)
Figure 15. Evolution of the average time (in s) per fluid time step needed to solve the grid motion
with respect to the time step ratio between the physical problem and the hyperbolic problem. The
reference time associated to the parabolic harmonic equation is obviously independent from the ratio.
(a) Results for the coarsest mesh 1. (b) Results for the most refined mesh 4.

The critical time step ratio for the hyperbolic approach increases with the problem’s
size and starts around 150 for the coarsest mesh to obtains close to 200 for the most refined
one. This increase is related to the different evolution of the computational cost of the
grid solver along with the mesh size for parabolic and hyperbolic approaches (see next
section) and is likely to continue for bigger meshes, to the advantage of the hyperbolic grid
motion. Given the ratios’ values in Table 2, the chosen fluid problem seems detrimental to
the proposed approach. Only the soft grid appears competitive with the harmonic equation
for the considered meshes. It is, however, only the consequence of the favored simplicity of
the current test case, implementing, in particular, no initial flow or turbulence modeling.
For instance, with an additional imposed flow at the average velocity of 2 m·s−1, the time
step ratio resulting from the CFL condition would instead be given by the ratio between
the speed of the sound in the grid problem and the average velocity in the physical fluid
problem. In the proposed geometry, this would produce a ratio of 16 for the soft grid and
158 for the stiff grid, improving the competitiveness of the hyperbolic approach. Increasing
the flow velocity to 5 m·s−1, thus entering the turbulent regime in the proposed geometry,
and adding a transient turbulence model such as Large Eddy Simulation (see [35] among
numerous references) would remain within very classical problems in the field of CFD
simulation. It would further enhance the interest for the hyperbolic equation to solve
the grid problem, with time step ratios going down to around 6 and 63 for the soft and
stiff grids, respectively. The time step ratio is finally likely to go down to 1 and below if
the proposed approach were to be applied to compressible flows, for which the parabolic
harmonic equation then appears very penalizing for the ALE grid motion. The statements
above are summarized in Table 3.
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Table 3. Competitiveness of the hyperbolic grid motion with respect to harmonic grid motion
depending on the main features of various ALE problems in the proposed geometry.

Problem features Simple laminar problem,
fluid initially at rest

Low velocity initial
flow (around 1 or

2 m·s−1), laminar regime

Higher velocity initial
flow (>5 m·s−1),
turbulent regime

Extension to
compressible fluid

models

Characteristic time
step ratio 40 to 500 and more 15 to 300 5 to 60 Down to 1 or below

Competitiveness of
hyperbolic equation

Critical (relevant for soft
grid parameter, better with

bigger meshes however)

Improved (for a
wider range of grid

parameters)
Strong Crucial

5.2.2. Evolution of the Computational Cost of the Grid Solver with the Mesh Size

Figure 16 provides a simple comparison of the evolution with the mesh size of the
computational time needed to update the grid. Time is measured in the same manner as in
the previous section. Although being established in the critical domain for competitiveness
in terms of CFD features (see Table 3), this plot shows a significant advantage for the
hyperbolic equation with soft grid parameters compared to the harmonic reference equation.
The slope is already four times lower with the hyperbolic equation, and the evolution is
likely to remain linear for bigger meshes due to only simple matrix-vector operations to
perform. On the contrary, the evolution for the harmonic equation involving the solution
of a linear system can be expected to be above linear, potentially increasing the gap in favor
of the hyperbolic equation.
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Figure 16. Evolution of the average time (in s) needed to solve the grid motion along with the
mesh size.

5.2.3. Study of Total Computation Time

The total computation time is analyzed based on a run with the most refined mesh
and 200 time steps for a final time of 0.0576 s. It corresponds to approximately half a period
of the cylinder’s oscillation and is sufficient to obtain stable and reliable average costs per
computational task involved in the resolution.

Figure 17 gives the evolution for each time step of the costs of the three main tasks,
namely the evaluation of the displacements of all the grid points, named Grid Motion, the
solution of the pressure problem ensuring the incompressibility of the fluid, named Pressure,
and the implicit solution of the velocity problem, named Velocity. The plot for the sequence
of 200 time steps yields three main observations:

1. the costs for tasks Grid motion and Velocity are very stable,
2. the most important cost is related to the Pressure task, and it exhibits some oscillations

during the initial steps; this can be attributed to the velocity discontinuity at the initial
step of the calculation,

3. a stabilized regime is achieved after a certain number of steps (around 30).
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Figure 17a exhibits a singular short peak around 75 time steps, but it is difficult to
characterize since it involves the Pressure task with the parabolic grid motion only and
to a lesser extent the Grid Motion task for the stiff grid only. This particular behavior
would require extensive analysis and does not modify the main conclusions drawn in the
following so that it is decided to focus on the other main aspects of the plot, shown in
Figure 17b,c.

Regarding the initial phase in Figure 17b, the higher cost for the Pressure task at the
beginning of the simulation comes from an increased number of iterations to reach conver-
gence for the PCG algorithm, mainly due to the initial velocity jump to be accommodated
by the pressure solver ensuring the incompressibility of the fluid. The hyperbolic equation
for the grid problem amplifies this phenomenon, adding to the physical discontinuity a
transient phase in the grid motion needed to propagate the discontinuous velocity from the
boundary to the entire mesh. During this phase, the quality of the cells near the boundary
can be degraded, and with it the conditioning of the matrix of the pressure system, resulting
again in an increase in the number of iterations needed for the convergence of the PCG
algorithm. The duration of the initial transient phase in terms of computational costs is
logically all the more critical as the grid is soft.

Table 4 gathers the average times per time step for the three computational tasks
introduced above and the total time. Results differ slightly whether the initial transient
phase is taken into account or not. Given the stability of the computational costs after the
first 50 steps (except for the singular artifact seen around 75 steps affecting the various
approaches differently), it appears legitimate to focus preferably on the stabilized regime to
discuss the performance of the hyperbolic approach compared to the parabolic harmonic
reference.

As expected, given the time step ratios between the fluid problem and the hyperbolic
grid problem for the soft and stiff grids, respectively, only the former is competitive for the
proposed test case. It then effectively cancels the cost of the grid motion while preserving
the costs of the other computational tasks. The variation in the cost of the Pressure task in
this case compared to the case with the harmonic grid motion is insignificant and results
only from the residual oscillations in the convergence of the PCG algorithm for the Pressure
task seen in Figure 17c.

However, the effect of the strategy implemented for the grid motion on the cost of
the Pressure computational task, seen in the initial transient phase in Figure 17b, was not
expected at this level. This has limited consequences in the present situation, and this
effect will vanish for more extended simulations when the stabilized regime is preserved.
It should be kept in mind and watched for problems that may exhibit other velocity
discontinuities, for instance, from the structural behavior in fluid–structure interaction.
This topic disappears if compressible flows are considered instead of an incompressible
flow requesting an implicit solver for Pressure.

Table 4. Computational times per time step in s and percentage of the total time for the different tasks.

Harmonic Grid Soft Grid Stiff Grid

With initial
transient

Stabilized regime
only

With initial
transient

Stabilized regime
only

With initial
transient

Stabilized regime
only

Grid Motion 0.69 (19%) 0.69 (23%) 0.17 (5%) 0.14 (6%) 1.50 (32%) 1.23 (35%))

Pressure 1.96 (54%) 1.30 (44%) 2.39 (68%) 1.20 (52%) 2.21 (47%) 1.29 (27%)

Velocity 0.98 (27%) 0.97 (33%) 0.98 (28%) 0.97 (42%) 0.98 (21%) 0.96 (28%)

Total 3.63 2.96 3.53 2.30 4.68 3.48
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Figure 17. Evolution of the average computational times (in s) per main task and per time step during
the simulation. (a) Results for the full sequence of 200 time steps; (b) Results for the first 50 time steps
(i.e., initial transient). (c) Results for the last 50 time steps (i.e., stabilized regime).

6. Recommended Strategy for the Optimal Choice of Parameters Introduced by the
Hyperbolic Grid Motion

It is noteworthy that the new set of parameters introduced by the hyperbolic grid
motion approach requests a prior appropriation and learning phase from the end-users to
achieve optimal computational performance. This is a one-time investment that does not,
in the general case, compete with the global efficiency of the approach. The relevant clues
are provided in Sections 3–5, and once some optimal values are obtained for one problem,
they are likely to serve as efficient default parameters for many cases in the same range
of physics. In addition, over time, some understanding will be acquired about the grid’s
response as a dynamic structural system, accelerating the calibration steps for new cases
out of the range of already performed simulations.

It is pertinent to leverage the two significant observations made in the previous
sections to initiate the appropriation process. However, the overall objective should be to
determine fictitious material parameters that maximize grid stability while maintaining
physical solution quality, namely, the fluid cell shape:

1. Sections 3.3 and 5.2.3 show that the quality of the mass and stiffness parameters is
related to the motion of the structural boundaries, including both amplitude and
velocity,



Fluids 2023, 8, 156 20 of 22

2. Figure 16 shows that the efficiency of the hyperbolic approach for the grid motion
increases with mesh refinement.

It is, therefore, strongly advised to conduct the first optimization of the fictitious
parameters on a coarse version of the problem of interest. It will run quickly and likely
exhibit sufficiently representative features in terms of structural motion to produce a robust
set of mass and stiffness parameters. The performance in the last case will only be better
than the one for the preliminary test.

Finally, it is reminded that tuning the fictitious damping is the way to kill any un-
wanted oscillation of the grid resulting from artificial wave propagation and that it has no
influence on the stability thanks, to the formulation provided in Section 2.8.

7. Conclusions

This work introduces a new computationally efficient method for computing fluid
grid motion from moving boundary conditions. Second-order time derivatives are used
to transform the initial parabolic equation into a hyperbolic equation. The grid equation
is resolved by employing an explicitly time-integrated scheme without addressing any
additional large linear system. The respective influence of the fictitious grid parameters
introduced with the hyperbolic equation, along with the global robustness of the proposed
approach, are analyzed in detail with two dedicated small-size test cases. The new method’s
performance concerning the parabolic reference approach for the grid motion is finally
extensively studied through a last three-dimensional test case of significant size. The
proposed strategy is practically able, with the right choice of parameters, to efficiently
reduce and almost cancel the computational cost of updating the ALE fluid grid. The
benefits are visible even for a test case whose chosen simplicity is placed in the critical
domain for the competitiveness of the hyperbolic grid problem.

Considering that the merits of the hyperbolic model for the grid motion in ALE
simulation are demonstrated in the current paper, the prospect for continuing this work
is to address the related topic of the robustness of the grid motion in response to large
boundary displacements. The basic process is to change the reference parabolic equation
for more advanced models available in the literature and then transform it into another
hyperbolic problem following the same steps as in the present article. Among the candidates
for the following parabolic models, two, in particular, show great potential. On the one
hand, the biharmonic equation [19] can significantly enhance the preservation of the shapes
of the grid cells for large displacements, especially close to the moving boundary. It
comes, however, with the need for quadratic finite element approximation within the
grid problem solver, making it more complex to implement. Such a discretization is,
for instance, currently unavailable with TrioCFD software (version 1.8.4, CEA, Saclay,
France). On the other hand, replacing the harmonic equation with a mechanical problem
introducing an entirely fictitious material better accounting for shear stress is also likely to
enhance the robustness of the grid motion. If linear elastic materials are the first logical
target, hyperelastic materials, such as Ogden material [36], should also be considered in
a second step as a way to handle considerable grid deformation. Full mechanical models
have the advantage of easy implementation with linear finite element approximation but
also introduce additional parameters controlling the dynamics of the grid motion when
converted into the hyperbolic framework, yielding the need for specific characterization in
the same manner as performed in the present research.
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