
Citation: Bakosi, J.; Constans, M.;

Horváth, Z.; Kovács, Á.; Környei, L.;

Charest, M.; Pandare, A.; Rutherford,

P.; Waltz, J. Complex-Geometry 3D

Computational Fluid Dynamics with

Automatic Load Balancing. Fluids

2023, 8, 147. https://doi.org/

10.3390/fluids8050147

Academic Editors: Federico Piscaglia,

Jérôme Hélie and D. Andrew

S. Rees

Received: 28 March 2023

Revised: 2 May 2023

Accepted: 4 May 2023

Published: 6 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Complex-Geometry 3D Computational Fluid Dynamics with
Automatic Load Balancing
József Bakosi 1,*, Mátyás Constans 1, Zoltán Horváth 1, Ákos Kovács 1, László Környei 1, Marc Charest 2,
Aditya Pandare 2 , Paula Rutherford 2 and Jacob Waltz 2

1 Széchenyi Egyetem, University of Győr, 9026 Győr, Hungary
2 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
* Correspondence: bakosi.jozsef@sze.hu

Abstract: We present an open-source code, Xyst, intended for the simulation of complex-geometry
3D compressible flows. The software implementation facilitates the effective use of the largest
distributed-memory machines, combining data-, and task-parallelism on top of the Charm++ runtime
system. Charm++’s execution model is asynchronous by default, allowing arbitrary overlap of com-
putation and communication. Built-in automatic load balancing enables redistribution of arbitrarily
heterogeneous computational load based on real-time CPU load measurement at negligible cost. The
runtime system also features automatic checkpointing, fault tolerance, resilience against hardware
failure, and supports power- and energy-aware computation. We verify and validate the numerical
method and demonstrate the benefits of automatic load balancing for irregular workloads.

Keywords: computational fluid dynamics; finite element method; Charm++; automatic load balancing;
unstructured grids; high-speed flows

1. Motivation and Significance

We are developing an open-source software tool, Xyst, (https://xyst.cc, accessed
on 27 March 2023), for large-scale computational fluid dynamics on top of the adaptive
runtime system, Charm++ (http://charmplusplus.org, accessed on 27 March 2023). Our
target application areas include aerodynamics and flows around buildings with complex
structures, e.g., in urban environments. Common features of these problems are flow
around complex 3D geometries and large variations in length scales that must be accurately
resolved. This requires computational meshes that can explicitly resolve complex-geometry
features, yielding O(108)–O(109) cells, demanding compute resources in O(104) CPUs as
routine simulations. Complex geometries necessitate unstructured meshes; however, any
unstructured algorithm requires storage of the mesh connectivity, which increases the use
of indirect addressing compared to structured-grid codes, which limits performance. Many
techniques have been developed in aerospace engineering to reduce indirect addressing,
such as formulating the numerical method in terms of edges instead of elements [1,2] and
derived data structures [3–5] to quickly access proximity information.

The above requirements drive method, algorithm, and software design decisions,
such as the choice of the distributed-memory parallel computing paradigm, demanded
by large problems that do not fit in the memory of a single computer. To enable fast and
automatic generation of meshes around complex 3D geometries (and to simplify algorithm
development), we use tetrahedra-only meshes and adopted an edge-based finite element
formulation. Practicality also requires good scalability to thousands of CPUs and the
effective use of large computing clusters. Historically, the desire to adequately resolve large
variations in physical scales is frequently made more efficient by solution-adaptive mesh
refinement, commonly used to increase mesh resolution only where and when necessary.
However, mesh refinement in a distributed-memory environment is only practical with

Fluids 2023, 8, 147. https://doi.org/10.3390/fluids8050147 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8050147
https://doi.org/10.3390/fluids8050147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-0163-7321
https://xyst.cc
http://charmplusplus.org
https://doi.org/10.3390/fluids8050147
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8050147?type=check_update&version=2

Fluids 2023, 8, 147 2 of 11

an effective parallel load balancing strategy. In addition, there may exist many other
algorithm features, desired for specific applications (coupled to fluid flow), which result in
a priori unknown distributions of computational costs across a single parallel computation.
Examples are the complex equation of state evaluations, combustion, radiation, atmospheric
cloud physics, and particle clustering.

To fulfill the above requirements and to prepare for applications with unknown par-
allel load imbalances, instead of the message passing interface (MPI), we have built Xyst
on top of Charm++ [6]. Charm++ is an open source runtime system built on the funda-
mental attributes of (1) overdecomposition, (2) asynchronous message-driven execution,
and (3) migratability. Charm++ enables asynchronous communication and task-parallel
execution and provides automatic load balancing based on real-time CPU load measure-
ment. Charm++ is a general parallel programming framework in C++ supported by an
adaptive runtime system and an ecosystem of libraries. It enables users to expose and
express parallelism in their algorithms while automating many of the requirements for high
performance and scalability. It permits writing parallel programs in units that are natural
to the domain without having to deal with processors and threads, increasing productivity.
Xyst is built from the ground up on top of Charm++ to enable exploiting all features of the
runtime system, such as automatic overlap of computation and communication, automatic
checkpointing and fault tolerance, energy-consumption-aware computation, and automatic
load balancing, which is independent of the source of the load imbalance, e.g., due to CPU
frequency scaling or mesh refinement.

The purpose of this paper is to provide a high-level discussion of the method and
to briefly demonstrate Charm++’s capabilities in conjunction with a flow solver: we dis-
cuss basic verification and validation of the algorithm implemented and demonstrate
the effectiveness of automatic load balancing via an example problem where we induce
heterogeneous parallel load imbalance. Since the implemented method is not new, we do
not discuss it in much detail. For details on the numerical method, the reader is referred
to [1,2,5,7]. There are two novel contributions of this paper:

1. The software implementation in Xyst enables the exploitation of the advanced features
of the Charm++ runtime system with a fluid solver;

2. The implementation is public and open source.

To our knowledge, no open-source software exist with the above features. Details on
the advanced features of the Charm++ runtime system and their specific use in Xyst is out
of scope here and will be discussed elsewhere. Our specific goal here is to communicate
the message that a documented, tested, open-source, edge-based finite element solver,
well-suited for the simulation of high-speed compressible flows targeting large problems
at large scales, in complex 3D geometries is publicly available. Our hope is to provide an
example open-source partial differential equations solver for complex-geometry problems
using Charm++ that can then be taken in various directions of computational physics.

2. Software Description

The algorithm in Xyst is an edge-based finite element method for unstructured tetrahe-
dra meshes. The method and its implementation are well-suited for high-speed compress-
ible flows [5] in complex engineering calculations targeting the largest supercomputing
clusters available. The method implemented extends that of developed by Waltz [7,8], to use
the asynchronous-by-default distributed-memory task-parallel programming paradigm,
enabled by the Charm++ runtime system. Below, we give the equations solved and a brief
overview of the numerical method. For more details, see [7].

Fluids 2023, 8, 147 3 of 11

2.1. The Equations of Compressible Flow

The equations solved are the 3D unsteady Euler equations, governing inviscid com-
pressible flow:

∂U
∂t

+
∂Fj

∂xj
= S, U =

ρ

ρui
ρE

, Fj =

ρuj

ρuiuj + pδij
uj(ρE + p)

, S =

Sρ

Su,i
SE

, (1)

where the summation convention on repeated indices has been applied, and ρ is the density,
ui is the velocity vector, E = uiui/2 + e is the specific total energy, e is the specific internal
energy, and p is the pressure. Sρ, Su,i, and SE are source terms that arise from the application
of the method of manufactured solutions, used for verification; these source terms are zero
when computing practical problems. The system is closed with the ideal gas law equation
of state p = ρe(γ− 1), where γ is the ratio of specific heats. Though the ideal gas law is
used here, any arbitrary (i.e., analytic or tabulated) equation of state can be used to relate
density and internal energy to pressure.

2.2. The Numerical Method

The system (1) is solved using an edge-based finite-element method for linear tetra-
hedra [1,2,5,7,8]. The unknown solution quantities are the conserved variables U, located
at the nodes of the mesh. The solution at any point within the computational domain is
represented as:

U(~x) = ∑
v∈Ωh

Nv(~x)Uv (2)

where Ωh is the tetrahedron containing the point ~x, Uv is the solution at vertex v, and Nv(~x)
is a linear basis function associated with vertex v and element Ωh.

Applying a continuous Galerkin lumped-mass approximation, see, e.g., [5], to Equa-
tion (1) yields the following semidiscrete form of the governing equations for a vertex v:

dUv

dt
= − 1

Vv ∑
j

[
∑

vw∈v
Dvw

j Fvw
j + ∑

vw∈v
Bvw

j

(
Fv

j + Fw
j

)
+ Bv

j Fv
j

]
(3)

where vw represent all edges connected to v, Vv is the volume surrounding v, Fvw
j is the

numerical flux between v and w, and Fv is a boundary flux. The flux coefficients on the
right of Equation (3) are defined as:

Dvw
j =

1
2 ∑

Ωh∈vw

∫
Ωh

(
Nv ∂Nw

∂xj
− Nw ∂Nv

∂xj

)
dΩ, (4)

Bvw
j =

1
2 ∑

Γh∈vw

∫
Γh

NvNwnj dΓ, Bv
j = ∑

Γh∈v

∫
Γh

NvNvnj dΓ (5)

where Dvw
j is the area-weighted normal of the dual face separating v and w, Ωh ∈ vw

represents all elements containing edge vw, and Γh denotes a boundary surface (triangle)
element. For a detailed derivation of Equation (3), see [7]. The first integral in Equation (4)
is evaluated for all edges vw within the domain, while the other two in Equation (5) apply
to boundary edges vw and boundary vertices v. This scheme is guaranteed to be locally
conservative, as Dvw

j is anti-symmetric. The numerical flux Fvw
j is evaluated at the midpoint

between v and w. Note that the above formulation can be viewed as either an edge-based
finite element method on tetrahedra elements or a node-centered finite volume method on
the dual mesh of arbitrary polyhedra. In Equation (3), the fluxes are computed using the
Rusanov flux, which approximates the flux between v and w as [9]

Dvw
j Fvw

j = Dvw
j

(
Fv

j + Fw
j

)
+
∣∣∣Dvw

j

∣∣∣λvw(Uw −Uv) (6)

Fluids 2023, 8, 147 4 of 11

where λvw = max(λv, λw) is the maximum wave speed, defined as:

λv =

∣∣∣∣∣∣uj
Dvw

j∣∣∣Dvw
j

∣∣∣
∣∣∣∣∣∣+ cv (7)

where cv is the speed of sound at vertex v. Up to this point, the method is numerically
stable and first-order accurate [5]. To achieve higher-order accuracy, a piecewise limited
reconstruction of the primitive variables [10] is employed on each edge vw as in a 1D finite
volume method:

ûv = uv +
1
4

[
(1− k)φ(rv)δ1 + (1 + k)φ

(
1
rv

)
δ2

]
(8)

ûw = uw − 1
4

[
(1− k)φ(rw)δ3 + (1 + k)φ

(
1

rw

)
δ2

]
(9)

with

δ1 = 2xvw
i

∂uv

∂xi
− δ2, δ2 = uw − uv, δ3 = 2xvw

i
∂uw

∂xi
− δ2 (10)

where xvw
i = xw

i − xv
i , rv = δ2/δ1, and rw = δ2/δ3. This scheme corresponds to a piecewise

linear reconstruction for k = −1 and a piecewise parabolic reconstruction for k = 1/3. The
function φ can be any total variation diminishing limiter function, and we use that of van
Leer [10]. The solution is advanced using a multi-stage explicit scheme of the form:

Uv,k = Uv,0 − αk∆t · dUv

dt

∣∣∣∣k−1
(11)

where k is the current stage, m is the total number of stages, ∆t is the time step size, and
αk = 1/(1 + m− k). Explicit Euler time stepping is obtained for m = 1 and the classical
second-order Runge–Kutta method with m = 2. We use m = 3, which is third-order
accurate for smooth problems and linear advection but not necessarily for the nonlinear
Euler equations; nevertheless, it reduces the absolute error compared to m = 2. The time
step size is adaptive and obtained by finding the minimum value for all mesh points at
every time step as:

∆t = C min
∀v

(Vv)1/3

λv (12)

where C ≤ 1 is the Courant number, and Vv is the nodal volume of the dual-mesh associated
with point v.

3. Illustrative Examples

This section presents three examples of the method and software capabilities via
verification, validation, and automatic load balancing.

3.1. Verification

We verify the accuracy of the numerical method and the correctness of its imple-
mentation by computing a problem whose analytical solution is available. The method
is second-order accurate for smooth solutions and first-order accurate for discontinuous
problems. Of the several solutions derived by Waltz and co-workers [11], we compute the
vortical flow case, which is useful to test velocity errors generated by spatial operators in
the presence of vorticity. The source term S and the exact solution for each flow variable
are given in [11], repeated here for completeness:

Fluids 2023, 8, 147 5 of 11

ρ = 1

ui(xi) =

 αx1 − βx2
βx1 + αx2
−2αx3

p(x3) = p0 − 2ρα2x2

3

e = p(x3)ρ(γ− 1),

(13)

and the source terms to be used in Equation (1) are defined as:

Sρ = 0

Su,i =

 ρ
(
α2 − β2)x1 − 2ραβx2

ρ
(
α2 − β2)x2 + 2ραβx1

0

SE = uiSu,i +

8ρα3x2
3

γ− 1
.

(14)

The simulation domain is a cube centered around the point xi = (0, 0, 0). The initial
conditions are sampled from the analytic solution. We set Dirichlet boundary conditions
on the sides of the cube, sampling the analytic solution. The numerical solution does
not depend on time and approaches steady state due to the source term, which ensures
equilibrium in time. As the numerical solution approaches a stationary state, the numerical
errors in the flow variables converge to stationary values, determined by the combination of
spatial and temporal errors, which are measured and assessed. We computed the solution
with α = β = 1 on three different meshes, listed in Table 1. Time integration was carried
out in the range t = 0 . . . 1 with a fixed time step of ∆t = 0.002 for the coarsest mesh, which
was successively halved for the finer ones.

Table 1. Meshes for the vortical flow case, where h is the average edge length.

Mesh Points Tetrahedra h

0 132,651 750,000 0.02
1 1,030,301 6,000,000 0.01
2 8,120,601 48,000,000 0.005

Figure 1 shows the initial and final velocity fields on center planes through the origin,
which confirms the steady-state nature of the problem. Shown also are the steady state
pressure and energy fields. Table 2 lists and Figure 2 depicts the L1 errors in the computed
flow variables along with the measured convergence rates. The L1 error in each field
variable is computed as:

L1 = ||ε||1 =
∑n

v=1 Vv
∣∣Ûv −Uv

∣∣
∑n

v=1 Vv (15)

where n is the number of points and Ûv and Uv are the computed and exact solutions at
mesh point v. The convergence rate p is then calculated as:

p =
log||ε||m+1

1 − log||ε||m1
log hm+1 − log hm (16)

where m is a mesh index. The measured convergence rate in all variables approaches 2.0,
as expected.

Fluids 2023, 8, 147 6 of 11

Table 2. L1 errors and convergence rates for the vortical flow problem. The convergence rates in the
last line are computed from Equation (16) based on the errors from the 48 M and 6 M meshes.

Mesh L1(ρ) L1(u1) L1(u2) L1(u3) L1(e)

750 K 6.07× 10−5 6.68× 10−5 4.16× 10−5 7.98× 10−5 1.24× 10−3

6 M 1.85× 10−5 1.63× 10−5 9.71× 10−6 2.00× 10−5 3.57× 10−4

48 M 5.08× 10−6 3.93× 10−6 2.25× 10−6 4.89× 10−6 9.84× 10−5

p 1.86 2.05 2.11 2.03 1.86

Figure 1. Initial and final velocity (a,b), pressure (c), and total energy (d) for the vortical flow problem.

10
-3

10
-2

10
-1

log(h)

10
-6

10
-5

10
-4

10
-3

10
-2

lo
g

(L
1
)

L
1
(ρ)

L
1
(u

1
)

L
1
(u

2
)

L
1
(u

3
)

L
1
(e)

2nd order

Figure 2. L1 errors of the density, velocity components, and internal energy in the vortical flow
problem.

Fluids 2023, 8, 147 7 of 11

3.2. Validation

To demonstrate the solver in a 3D complex-geometry case, we computed the well-
documented aerodynamic flow over the ONERA M6 wing, see, e.g., [12]. The available
experimental data of the pressure distribution along the wing allow validation of the
numerical method. The initial conditions prescribed a Mach number of 0.84 and the
velocity with an angle of attack of 3.06◦. At the outer surface of the domain, characteristic
far-field boundary conditions are applied, while along the wing surface, symmetry (free-
slip) conditions are set.

Since we know that the solution of this problem does not depend on time, the most
efficient ways to compute it are to use implicit time marching or local time stepping [5], of
which we implemented the latter, allowing to take larger time steps for larger computa-
tional cells. Local time stepping is implemented by defining a separate timestep for each
gridpoint v:

∆tv = C
(Vv)1/3

λv (17)

and advancing the solution in every point using its own time step size ∆tv. The numerical
solution is marched until a steady solution reached. The stopping criterion is determined
by a sufficiently small value of the 2–norm of the density residual as

||∆ρ||2 = ||ρn+1 − ρn||2 < 10−7 (18)

The computational mesh consists 710,971 tetrahedra and 131,068 points. The surface
mesh is shown in Figure 3 together with the converged computed pressure contours
on the upper and lower surfaces of the wing. Figure 4 shows how the density residual
converges to steady state. The wall-clock time for this computation was about 2 min using
32 CPUs. The distribution of the computed pressure coefficient, Cp = (p− p∞)/(ρ∞u2

∞/2),
is compared to experimental data [13] at various semispans in Figure 5. Here, the ∞
subscript denotes the farfield conditions and u is the length of the velocity vector.

Figure 3. Upper (a) and lower (b) sides of the surface mesh used for the ONERA M6 wing calculation.
Computed pressure contours on the upper (c) and lower (d) surface.

Fluids 2023, 8, 147 8 of 11

0 500 1,000 1,500 2,000 2,500 3,000
time steps

10
-7

10
-6

10
-5

10
-4

10
-3

lo
g

 ||
∆

ρ|
| 2

Figure 4. Convergence history of the ONERA wing computation.

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-C
p

x/c

experiment
computation

Surface pressure coefficient at 20% semispan

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-C
p

x/c

experiment
computation

Surface pressure coefficient at 44% semispan

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-C
p

x/c

experiment
computation

Surface pressure coefficient at 65% semispan

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-C
p

x/c

experiment
computation

Surface pressure coefficient at 80% semispan

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-C
p

x/c

experiment
computation

Surface pressure coefficient at 90% semispan

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-C
p

x/c

experiment
computation

Surface pressure coefficient at 95% semispan

Figure 5. Computed and experimental surface pressure coefficient at different semispans of the
ONERA wing. Here, c denotes the length in x = x1 of the wing cross section at the semispan location.

Fluids 2023, 8, 147 9 of 11

3.3. Automatic Load Balancing

With respect to solving partial differential equations on meshes, there is no magic
using Charm++ compared to MPI: the computational domain is still decomposed and
communication of partition-boundary data is still explicitly coded and communicated.
However, an important difference compared to the usual divide-and-conquer strategy
of domain decomposition is that Charm++ also allows combining this data-parallelism
with task parallelism. As a result, various tasks (e.g., computation and communication)
are performed independently, in arbitrary order, and are overlapped due to Charm++’s
asynchronous-by-default paradigm. For an example of how task-parallelism can be speci-
fied in Charm++ with a different Euler solver, see [14].

Another unique feature of Charm++ compared to MPI is built-in automatic load-
balancing. Charm++ can perform real-time CPU load measurement and, if necessary, can
migrate data to under-loaded processors to homogenize computational load. This can be
beneficial independent of its origin, i.e., adaptive mesh refinement, complex local equations
of state, and CPU frequency scaling, or simply if some work units have a different number
of boundary conditions to apply compared to others. Multiple load-balancing strategies are
available in Charm++ and using them requires no extra programming effort: the feature is
turned on by a command-line switch. Load balancing costs are negligible (compared to the
physics operators) and can be beneficial for irregular work loads at any problem size, from
laptop [15] to cluster [14].

We computed the Sedov problem [16], widely used in shock hydrodynamics, to test
the ability of numerical methods to maintain spherical symmetry. In this problem, a source
of energy is defined to produce a shock in a single computational cell at the origin at
t = 0 as:

ui(xi) = 0 (19)

ρ(xi) = 1 (20)

e(xi) =

{
1.0× 10−4 xi 6= 0
2.78× 106 xi = 0

(21)

p(xi) =

{
0.67× 10−4 xi 6= 0
1.85× 106 xi = 0

(22)

In this smulation we use γ = 5/3. These initial conditions correspond to pressure ratios of
O(108)–O(1010) across a single element at the origin and are specified so that the source
of energy produces a shock location of x = 1 at t = 1. Thus, the 1D solution in time is
a spherically spreading wave starting from a single point. We used a 3D computational
domain that is an octant of a sphere, with the mesh consisting of 23,191,232 tetrahedra and
3,956,135 points. The computed density is compared to the semi-analytic solution at t = 1
in Figure 6.

0 0.2 0.4 0.6 0.8 1 1.2
distance from origin

0

1

2

3

4

d
en

si
ty

computation

semi-analytic

(b)

Figure 6. Surface density (a) and its radial distribution (b) at t = 1 from the Sedov calculation.

Fluids 2023, 8, 147 10 of 11

To exercise Charm++’s built-in load balancing, we modified the Sedov problem by
adding extra computational load to the function that computes the pressure based on den-
sity and internal energy: if fluid density > 2.0 then sleep (1 ms). This increases
the cost of the equation of state evaluation, whose location propagates in space and time,
which induces load imbalance across multiple mesh partitions in parallel. Figure 7 and
Table 3 show the effect of load balancing on wall-clock time: in this particular case, the
extra load would make the simulation about 36× more expensive. This is made 6.1× faster
using load balancing.

We emphasize that we wrote no load-balancing code: we simply ensure overde-
composition (in this case, we used 6399 mesh partitions on 32 CPUs) and turn on load
balancing; the runtime system measures real-time CPU load and automatically performs
object migration to homogenize the load. While this example was run on a single computer,
experience shows that the benefits of such load balancing can be even greater on large
distributed-memory machines [14].

0 100 200 300 400 500
time step

0

50

100

150

200

w
al

l
cl

o
ck

 t
im

e
/

ti
m

e
st

ep
,
s

no extra load, no lb
extra load, no lb
extra load, lb

Figure 7. Measured wall-clock time of each time step during the Sedov calculation without extra load,
as well as with extra load with and without load balancing. The area below each curve is proportional
to the total computational cost.

Table 3. Timings for the Sedov problem with and without load balancing.

Case Extra Load Total Time, s Speed-Up

0 no 825 -
1 yes 30,276 -
2 yes 4958 6.11×

4. Impact and Conclusions

We presented an open-source code, Xyst (https://xyst.cc, accessed on 27 March 2023),
for the simulation of compressible flows. The software implementation with documentation,
testing, code quality assessment, and reproducible examples is made publicly available.
Xyst enables the use of advanced runtime system features not directly available for other
flow solvers using MPI, which would often require advanced computer science expertise
and significant ongoing nontrivial software maintenance effort in production. Xyst can be
used to solve complex-geometry engineering problems involving 3D compressible flows at
large scales. Building on the publicly available source code can also be used as a basis of
multiphysics simulations.

Using Charm++ (http://charmplusplus.org, accessed on 27 March 2023) as its parallel
programming paradigm, the implementation enables combining data-, and task-parallelism
in an asynchronous-by-default execution model. Using a single software abstraction on
both shared-, and distributed-memory machines enables performance and scalability.
Automatic load balancing, built into Charm++, enables redistribution of heterogeneous
computational load based on real-time CPU load measurement. The runtime system
also features automatic checkpointing, fault tolerance, resilience against hardware failure,
and supports power- and energy-aware computation without extra effort required from
the application programmer.

https://xyst.cc
http://charmplusplus.org

Fluids 2023, 8, 147 11 of 11

Author Contributions: Conceptualization, A.P. and J.W.; Methodology, J.B., M.C. (Marc Charest), A.P.
and J.W.; Software, J.B., M.C. (Marc Charest) and A.P.; Validation, J.B., M.C. (Marc Charest), P.R. and
J.W.; Investigation, J.B.; Resources, M.C. (Mátyás Constans), Á.K., L.K., P.R. and J.W.; Data curation,
J.W.; Project administration, J.B.; Funding acquisition, Z.H. All authors have read and agreed to the
published version of the manuscript.

Funding: Co-funded by the European Union, this work has received funding from the European
High Performance Computing Joint Undertaking (JU) and Poland, Germany, Spain, Hungary, and
France under grant agreement number: 101093457. This work was also partially supported by the U.S.
Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory
is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the
U.S. Department of Energy (Contract No. 89233218CNA000001).

Data Availability Statement: The source code and data presented in this study are openly available
at https://xyst.cc under “Examples”.

Acknowledgments: We thank Hong Luo and Weizhao Li of North Carolina State University for
the fruitful discussions regarding local time stepping, the ONERA wing meshes and the experimen-
tal data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luo, H.; Baum, J.D.; Löhner, R.; Cabello, J. Adaptive Edge-Based Finite Element Schemes for the Euler and Navier-Stokes

Equations. In Proceedings of the 31st Aerospace Sciences Meeting, Reno, NV, USA, 1–14 January 1993.
2. Luo, H.; Baum, J.D.; Löhner, R. Edge-based finite element scheme for the Euler equations. AIAA J. 1994, 32, 1183–1190. [CrossRef]
3. Waltz, J. Derived data structure algorithms for unstructured finite element meshes. Int. J. Numer. Methods Eng. 2002, 54, 945–963.

[CrossRef]
4. Löhner, R.; Galle, M. Minimization of indirect addressing for edge-based field solvers. Commun. Numer. Methods Eng. 2002,

18, 335–343.
5. Löhner, R. Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods; Wiley and Sons Ltd.:

Chichester, UK, 2008.
6. Acun, B.; Gupta, A.; Jain, N.; Langer, A.; Menon, H.; Mikida, E.; Ni, X.; Robson, M.; Sun, Y.; Totoni, E.; et al. Parallel Programming

with Migratable Objects: Charm++ in Practice. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’14), New Orleans, LA, USA, 16–21 November 2014; pp. 647–658. [CrossRef]

7. Waltz, J.; Morgan, N.; Canfield, T.; Charest, M.; Risinger, L.; Wohlbier, J. A three-dimensional finite element arbitrary Lagrangian-
Eulerian method for shock hydrodynamics on unstructured grids. Comput. Fluids 2013, 92, 172–187. [CrossRef]

8. Waltz, J. Microfluidics simulation using adaptive unstructured grids. Int. J. Numer. Methods Fluids 2004, 46, 939–960. [CrossRef]
9. Davis, S.F. Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput. 1988, 9, 445–473. [CrossRef]
10. Hirsch, C. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics; Wiley and Sons:

Chichester, UK; New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada; Singapore, 2007.
11. Waltz, J.; Canfield, T.; Morgan, N.; Risinger, L.; Wohlbier, J. Manufactured solutions for the three-dimensional Euler equations

with relevance to Inertial Confinement Fusion. J. Comput. Phys. 2014, 267, 196–209. [CrossRef]
12. Luo, H.; Baum, J.; Löhner, R. A Fast, Matrix-Free Implicit Method for Compressible Flows on Unstructured Grids. J. Comput.

Phys. 1998, 146, 664–690. [CrossRef]
13. Schmitt, V.; Charpin, F. Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers, Experimental Data Base for

Computer Program Assessment; Report of the Fluid Dynamics Panel Working Group 04; Technical rep4ort, AGARD AR-138;
1979. Available online: https://www.sto.nato.int/publications/AGARD/AGARD-AR-138/AGARD-AR-138.pdf (accessed on
27 March 2023).

14. Bakosi, J.; Bird, R.; Gonzalez, F.; Junghans, C.; Li, W.; Luo, H.; Pandare, A.; Waltz, J. Asynchronous distributed-memory
task-parallel algorithm for compressible flows on unstructured 3D Eulerian grids. Adv. Eng. Softw. 2021, 160, 102962. [CrossRef]

15. Li, W.; Luo, H.; Bakosi, J. A p-adaptive Discontinuous Galerkin Method for Compressible Flows using Charm++. In Proceedings
of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020.

16. Sedov, L. Similarity and Dimensional Methods in Mechanics, 10th ed.; Elsevier: Amsterdam, The Netherlands, 1993. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://xyst.cc
http://doi.org/10.2514/3.12118
http://dx.doi.org/10.1002/nme.453
http://dx.doi.org/10.1109/SC.2014.58
http://dx.doi.org/10.1016/j.compfluid.2013.12.021
http://dx.doi.org/10.1002/fld.753
http://dx.doi.org/10.1137/0909030
http://dx.doi.org/10.1016/j.jcp.2014.02.040
http://dx.doi.org/10.1006/jcph.1998.6076
https://www.sto.nato.int/publications/AGARD/AGARD-AR-138/AGARD-AR-138.pdf
http://dx.doi.org/10.1016/j.advengsoft.2020.102962
http://dx.doi.org/10.1016/C2013-0-08173-X

	Motivation and Significance
	Software Description
	The Equations of Compressible Flow
	The Numerical Method

	Illustrative Examples
	Verification
	Validation
	Automatic Load Balancing

	Impact and Conclusions
	References

