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Using the defect theory, Panton [1] matches the approximately constant angular
momentum in the bulk of the TC flow to that of the wall layers.

(v) =1 (Vo) )
In the outer bulk region, the angular momentum in his theory is expressed as:
¥) =) + (1;—:) (1) (S1)
where V; = Q- r; is the inner rotor velocity (measuring bob)
(y,) 1isthe constant angular velocity; (y;) is a first-order correction
Vg 1is the circumferential velocity, and a time average is indicated by ( )
In the limit of Re ———— o, the ratio of the rotor velocity (1;—:) - 0.
Therefore, it is the introduction of the defect term ();) that facilitates matching with

the wall layer.

On the inner wall, the angular momentum decreases as (1;V;) — (y),

where the (7;V;) is the angular momentum, which is induced by wall motion.
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Upon scaling with friction velocity u, and the viscous length scale §,, , ascaled angular mo-

+ . . . + _ (r-m)
mentum (Y ) can be defined as a function of the scaled wall distance y = . as
v
follows:
+ _ riVi=(y)
= — 2
Yo T (52)
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Figure S1. Taylor—Couette flow with the inner cylinder rotating and the outer fixed cylinder

As Panton [1] suggested, the most important results come from mathematically matching the

angular momentum laws of the core and wall regions. There is an overlap region where both

the wall representation )/+(y+) and the core representation Iy) are valid. Where [, =

(Vo)
(rivy)

— ¥
and Fl(y) = (Ti"l/i)'

Matching these values in the overlap region leads to:
+ ﬁ) —1-T — (ﬁ) :
0I(G)=1-T = (5) N (S3)

(r-ry

where [ is a function of the outer variable Y = T) while y* is a function of
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Proceeding according to Panton [1], differentiating both sides of Eq. (3) by Y in the overlap

. . oyt _Ar . :
region and using the relation T = . results in the relation
4
Ly ar, 1
Y dy* dY «a

where o is a constant independent of Y and y".
Panton [1] suggested that for a boundary layer in the Taylor Couette cell, a should reduce to
the universal von Karman constant K in the zero curvature limit. Solving this expression results

in the identical set of the equation of Y+ and I' 1 that Panton (1992) obtains as:

y*=—-In(y*) y*- o (S5)

However, the substitution of Equations (54) and (S5) into our modified form of Equation (S3)

gives
(1-T) == InRe; + C; + G (S6)
rd
where Re, = uv

Repeating the same calculation at the coated stationary outer wall surface in the X direction

with:

)/+ — M (S8)

Tiug
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First considering the existence of an overlap region where both representations are valid,
Equation (S) can be substituted into Equation (S7). Then, using the modified theory of
Srinivasan’s work [2] by introducing a finite averaged slip velocity (Vg;,) thatis related to the
local viscous stress at the outer CDC’s wall by the Navier slip hypothesis as

dVg
Voip) = (52)
P X/ x=0
avyg
where b is the effective slip length due to the superhydrophobic coating and ax is the
X=0
time-averaged velocity gradient at the wall.

The distance away from the outer ( coated ) wall expressed in wall units is

Xt = —(T‘;f” (S8)

If the velocity in the viscous sublayer close to the outer wall is shifted by a constant value,

according to Min & Kim [3], so that (V9+> =Xt +bt and dfi‘;_ef = 1, the Navier slip
hypothesis upon scaling reduces to :

Vsiip = b™ (S9)
where VS-ll-ip = Vi—lrip and bt = %

There is an overlap region where both the wall representation ()/) E-X) and the core

representation I (X ) are valid.

Matching the values in this region yields:
" +bH)=1-T, -+ (S10)

Repeating the argument given in the Y direction for the coated wall layer on the outer cylinder

X

gives two more overlaps laws (X =71, — 7"), X = P
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u
X*=x-—=XRe,and y* :(y_)
v (rour)
This leads to the following matched expression
I, = %ln(X) + C; X-0 (S11)
yt=-n(XH)+C X-oo» (S12)

B

Substitute (12) and (13) in eqn. (11) leads to another friction velocity relation

r, 2= %lnReT +Cs+Cy+b* (S13)

Uz
Finally, the Equations (S7) and (S14) are added together to eliminate ', and using

-1
Vi _ (ﬁ)z
Ur 2

We obtain the modified skin friction law in the presence of slip that is used as Equation (514)

\/Cz =M In(Re;) + N + b+ (S14)
f

1 1
where, M = (; + E) and N=C+Cy+C3+C4 are constants that depend only on the

curvature of the TC cell. These constants can be determined from friction measurements with

non-coated surfaces and plotted in Prandtl-von Karman coordinates.

References

1. Panton, R.L. Panton 1992-Scaling laws for the angular momentum of a completely turbulent couette flow. C. R. Acad. Sci. Ser. II
1992, 315, 1467-1473.

2. Srinivasan, S.; Kleingartner, J.A.; Gilbert, J.B.; Cohen, R.E.; Milne, A.J.B.; McKinley, G.H. Sustainable drag reduction in turbulent
Tay-lor-Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 2015, 114, 014501.

3. Choi, C.H,; Ulmanella, U.; Kim, J.; Ho, C.M.; Kim, C.]. Effective slip and friction reduction in nanograted superhydrophobic mi-
crochannels. Phys. Fluids 2006, 18, 087105.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



