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Abstract: Linear stability analysis of a combined convective flow in an annulus is performed in the
paper. The base flow is generated by two factors: (a) different constant wall temperatures and (b) heat
release as a result of a chemical reaction that takes place in the fluid. The nonlinear boundary value
problem for the distribution of the base flow temperature is analyzed using bifurcation analysis. The
linear stability problem is solved numerically using a collocation method. Two separate cases are
considered: Case 1 (non-zero different constant wall temperatures) and Case 2 (zero wall tempera-
tures). Numerical calculations show that the development of instability is different for Cases 1 and 2.
Multiple minima on the marginal stability curves are found for Case 1 as the Prandtl number increases.
Concurrence between local minima leads to the selection of the global minimum in such a way that
a finite jump in the value of the wave number is observed for some values of the Prandtl number.
All marginal stability curves for Case 2 have one minimum in the range of the Prandtl numbers
considered. The corresponding critical values of the Grashof number decrease monotonically as the
Prandtl number grows.

Keywords: linear stability; convective flow; bifurcation analysis; collocation method

1. Introduction

Temperature gradients can arise in a fluid as a result of the presence of internal heat
sources. The density of heat sources can be constant, depending on one or several spatial
coordinates, or can be a nonlinear function of the temperature. Examples include, but
are not limited to, neutron irradiation in thermonuclear reactors [1], biomass thermal
conversion [2,3], and convection in the Earth’s mantle [4]. These examples also repre-
sent multiphysics problems where different physical mechanisms are coupled. There are
three different approaches to the solution of complex problems in science and engineer-
ing: (a) experimental studies, (b) numerical modeling, and (c) stability analysis. Stability
theory is used in an attempt to answer the question: when and how does the given base
flow become unstable? Tools and methods of stability analysis are varied, ranging from
stochastic analysis [5] to a deterministic approach [6] based on Lyapunov theory [7]. In the
present paper we use a linear stability approach to analyze a convective flow in the region
bounded by two vertical coaxial cylinders.

Hydrodynamic instability of a flow results in either a new laminar flow with more
complicated structure (as for the case of the Taylor–Couette flow between two rotating
cylinders [8]) or a rapid transition to turbulence (examples include, but are not limited to,
pipe Poiseuille flow [9] or rapidly accelerated and decelerated pipe flows [10]). In appli-
cations for aerodynamics (stability of a flight of an airplane) or for hydraulic engineering
(waterhammer phenomenon in rapidly decelerating flows) instability should be avoided
or, at least, controlled. There are applications, however, where instability is desirable. One
example of such a situation is biomass thermal conversion [2] where thermal instability
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results in more intensive mixing and, possibly, more efficient energy conversion. Our
objective is the present paper is to analyze the factors that may enhance instability.

The linear stability of a convective flow in a plane vertical channel caused by internal
heat sources with constant density is analyzed in [11]. It is shown in [11] that depending
on the value of the Prandtl number, two types of instability exist: (a) shear instability and
(b) buoyant instability. Similar results are obtained later in [12]. The effect of different
boundary conditions for the temperature on the stability characteristics is explored in [13].
Stability analysis of convective flows with constant density of heat sources in cylindrical ge-
ometry is conducted in [14–16]. The calculated linear stability characteristics are compared
with experimental data in [16] for the case of heat sources of constant density in a pipe.
Reasonable agreement is found in terms of the form of unstable perturbation and critical
values of the Grashof number. Linear stability of a combined flow caused by external
pressure gradient, uniform volumetric heating, and different constant wall temperatures in
a vertical fluid layer are analyzed in [17]. Multiple local minima observed on the marginal
stability curves facilitate instability.

As mentioned above, different forms of the distribution of heat sources are of interest
in applications. One example is related to the flow where a light beam is passing through
the fluid in such a way that all absorbed energy is released in the form of heat [18]. In this
case the density of heat sources is an exponential function of the transverse coordinate.
Such a distribution of heat sources is recently analyzed in [19] for the purpose of designing
water-flow building facades with the objective to obtain solar energy. Other examples of
flows with non-uniform density of heat sources are considered in [20–22].

Identification and use of new sources of energy are crucial for the development of
our society. One promising alternative to classical sources of energy is biomass thermal
conversion [23–25]. Since the problem includes different physical effects (chemical re-
actions, convection) and the corresponding models contain many parameters (see, for
example, [26]), numerical modeling can be time-consuming. Linear stability analysis can
be used as an alternative to numerical or experimental investigations in an attempt to iden-
tify the factors that affect the conversion process. Linear stability analyses of chemically
reacting fluid are conducted in [27]. It is assumed in [26,27] that the density of internal
heat sources is a nonlinear function of the temperature. This fact introduces an additional
challenge for the base flow solution—the corresponding boundary value problem becomes
nonlinear with one, two, or no solutions (depending on the value of the parameter that
characterizes the thermal effect of the chemical reaction). Linear stability analysis is usually
performed for the parameter range corresponding to two solutions. Thus, the “correct”
base flow solution should be selected for stability analysis.

The study performed in the present paper is different from the other linear stability
studies of a chemically reacting fluid in the following aspects: (a) bifurcation analysis is
performed to identify the number of solutions of the nonlinear boundary value problem
for the base flow temperature distribution and its structure; (b) the results from part (a)
are used to choose the corresponding base flow solution for linear stability analysis; (c)
convection is generated by two factors—internal heating of the fluid as a result of the
chemical reaction and temperature difference between the walls; (d) it is found that the
temperature gradient due to the difference between the wall’s temperatures is an additional
destabilizing factor; (e) a new instability mode has been observed for Pr = 7. The paper is
organized as follows. Mathematical formulation of the problem is presented in Section 2.
Bifurcation analysis for the nonlinear boundary value problem is performed in Section 3
with the objective to identify the structure and number of solutions in the parameter space.
Results from Section 3 are used to select the base flow solution. The linear stability problem
for the base flow is formulated in Section 4. Numerical results of linear stability calculations
for different values of the parameters of the problem are presented in Section 5. In addition,
two cases are considered where the wall temperatures are either equal to zero or not.
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2. Mathematical Formulation of the Problem

Consider a flow of a viscous incompressible fluid in the region D = {R1 < r̃ < R2,
0 ≤ ϕ < 2π,−∞ < z̃ < +∞} between two concentric cylinders (see Figure 1). Linear
stability analysis of the base flow (the base flow velocity distribution is shown in Figure 1
in red) is performed in the paper. The system of cylindrical polar coordinates (r̃, ϕ, z̃) with
the origin at the axes of the cylinders is used to describe the flow. The following convention
is used throughout: the variables with tildes are dimensional while the variables without
tildes are dimensionless.

Figure 1. Sketch of the domain of the flow. The base flow velocity is shown in red.

Convective flow in the annulus formed by the cylinders is caused by two factors:
(a) different constant temperatures ±T0 of the walls r = R and r = 1, respectively, that
cause a temperature gradient in the radial direction and (b) heat release due to chemical
reaction that takes place in the fluid. Internal heat sources generate convection in the
vertical direction. Here R = R1/R2, r = r̃/R2. The distribution of the density of the heat
sources follows the Arrhenius’ law [28]:

Q = Q0e−E/(R0T̃). (1)

The notations are as follows: E is the activation energy, R0 is the universal gas constant,
Q0 is a constant, and T̃ is the absolute temperature. The dimensionless form of the system
of the Navier–Stokes equations under the Boussinesq approximation is used in the analysis:

∂v
∂t

+ Gr(v · ∇)v = ∇p + ∆v + Tek, (2)

∂T
∂t

+ Grv · ∇T =
1

Pr
∆T +

F
Pr

eT , (3)

∇ · v = 0. (4)

The Boussinesq approximation is explained in detail in many papers (see, for
example, [29–33]). The main assumptions are (a) non-uniformity of fluid density caused
by changes in pressure is small and is neglected, (b) non-uniformity of density caused
by non-uniform temperature distribution is assumed to be small, so that the density is
given by

ρ̃ = ρ(1− βT̃), (5)

where ρ is a constant and β is the coefficient of the thermal expansion. The detailed
derivation of the dimensionless form of Equations (2)–(4) is found elsewhere (see, for
example, [32]) and is not shown here for brevity. Here v is the velocity of the fluid, T is the
temperature, p is the pressure, and ek = (0, 0, 1). To simplify the mathematical formulation
of the source term we use the Frank-Kamenetskii transformation [28]. The transformation
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consists of the following steps: (a) expand the exponent in a Taylor series in (1) and (b)
keep only the linear terms of the expansion. As a result, a more convenient form of the
source term is obtained (see (3)). Such a transformation is rather accurate for the range of
parameters of interest in (1), see [28,34].

Some chemical reactions taking place in a fluid lead to heat generation and to formation
of a product which has density different from the density of a reagent. Changes in the
density caused by the changes in temperature and concentration lead to convection in the
reacting fluid. Different formulations of the problem are available depending on the type of
a chemical reaction or on the relative role of the thermal effect of the reaction. If the thermal
effect fo the reaction is large, one can neglect the dependence of internal heat generation
from the concentration of the reagent. In this case, convection occurs due to internal heat
sources distributed in the fluid in accordance with (1). This is the assumption considered in
the present paper.

To transform the system of the Navier–Stokes equations with convection to the di-
mensionless form we choose the following scales, respectively, for length, h = R2, time,
h2/ν, velocity, gβ2hR0T2

0 /(νE), temperature, R0T2
0 /E, and pressure, ρgβhR0T2

0 /E. Here
ρ is the density of the fluid, g is the acceleration due to gravity, and ν is the viscosity of
the fluid. The following dimensionless parameters are introduced: the Grashof number,
Gr = gβR0T2

0 h3/(ν2E), the Prandtl number, Pr = ν/κ, and the Frank-Kamenetskii pa-
rameter, F = [(Q0Eh2)/(κR0T2

0 )] exp [−E/(R0T0)], where κ is the thermal diffusivity. The
meaning of the dimensionless parameters is as follows. The Grashof number represents the
ratio between the buoyancy force (due to non-uniformity in the temperature) and viscous
force. The Prandtl number characterizes the properties of the fluid (the ratio of the viscosity
and thermal conductivity). Finally, the Frank-Kamenetskii parameter represents internal
heating of the fluid due to the chemical reaction that takes place in it. There exists a steady
solution of (2)–(4) of the following structure:

v0 = (0, 0, W0(r)), T0 = T0(r), p0 = p0(z). (6)

The flow (6) is known as the fully developed flow in the literature [35]. It can be imple-
mented in a middle portion of a sufficiently tall vertical annulus with a large aspect ratio.
One example of the comparison of the linear stability characteristics with experimental data
for aspect ratio of 38.6 is given in [36] where it is shown, in particular, that the measured
wavelegth of the cells is in good agreement with theoretical predictions obtained for an
annulus of infinite length. Steady-state equations for the functions W0(r), T0(r), and p0(z)
are obtained from (2)–(6) and have the form

W
′′
0 +

W
′
0

r
+ T0 = C, (7)

T
′′
0 +

T
′
0

r
+ FeT0 = 0, (8)

where C = dp0/dz.
The boundary conditions are

W0(R) = 0, W0(1) = 0, T0(R) = −1, T0(1) = 1. (9)

We assume that there are lids that cover the annulus at ±∞ so that∫ 1

R
rW0(r) dr = 0. (10)

Nonlinearity in the boundary value problem (7)–(10) appears only in the heat Equation (8).
Bifurcation analysis performed in the next section shows that the number of solutions
of the problem (8) and (9) for the temperature T0(r) depends on the value of the Frank-
Kamenetskii parameter F.
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3. Bifurcation Analysis

Consider the boundary value problem

T′′0 (r) +
T′0(r)

r
+ FeT0(r) = 0, (11)

T0(R) = −1, T0(1) = 1, (12)

where F > 0 and 0 < R < 1. Let us consider the auxiliary initial value problem (11),

T0(1) = 1, T′0(1) = β. (13)

Acting in a similar way as in [37,38], the change of variables r = e−τ , T0(r) = w(τ) + 2τ
reduces (11), (13) to the initial value problem

w′′(τ) + Few(τ) = 0, w(0) = 1, w′(0) = −2− β. (14)

By calculations, the function

w(τ) = ln
4e1+τ

√
(2+β)2+2Fe((2 + β)2 + 2Fe

)[
−2− β +

√
(2 + β)2 + 2Fe +

(
2 + β +

√
(2 + β)2 + 2Fe

)
eτ
√

(2+β)2+2Fe
]2

solves (14) in the interval (−∞,+∞), and thus the function

T0(r) = ln
4er−2+

√
(2+β)2+2Fe((2 + β)2 + 2Fe

)[
2 + β +

√
(2 + β)2 + 2Fe +

(
− 2− β +

√
(2 + β)2 + 2Fe

)
r
√

(2+β)2+2Fe
]2 (15)

solves (11), (13) in the interval (0,+∞).
Let R be a fixed number in the interval (0, 1). Suppose that a function T0(r) is defined

by (15); then, the equation T0(R) = −1 defines the bifurcation curve ΓR in the (F, β)-
plane, which determines all solutions to (11), (12). We see that T0(R) = −1 if and only if
GR(F, β) = 0, where

GR(F, β) := 4e2R−2+
√

(2+β)2+2Fe((2 + β)2 + 2Fe
)

−
[

2 + β +
√
(2 + β)2 + 2Fe +

(
− 2− β +

√
(2 + β)2 + 2Fe

)
R
√

(2+β)2+2Fe
]2

.

Hence, ΓR =
{
(F, β) ∈ R2 : F > 0, β ∈ R, GR(F, β) = 0

}
. By numerical analysis, the

curve ΓR is ⊃-shaped and has a turning point (F∗, β∗) from right to left. Thereby, (11), (12)
has exactly two solutions if F ∈ (0, F∗), exactly one solution if F = F∗, and has no solutions
if F > F∗.

In Figure 2, the bifurcation curve ΓR is depicted for R = 0.5. The vertical straight line
F = 8 and the curve ΓR intersect at the points P1 = (8,−12.238) and P2 = (8,−1.4237);
the point P∗ = (10.847,−6.3181) is a turning point of ΓR. In Figure 3, three solutions of
(11), (12) are presented: the green solution corresponds to the point P1, the blue solution
corresponds to the point P2, and the brown solution corresponds to the point P∗. In Figure 4,
the bifurcations curves ΓR and their turning points are depicted if R = 0.1i, i ∈ {1, 2, . . . , 8}.
In Figure 5, the dependence of F∗ on R is presented for R = 0.1j, j ∈ {1, 2, . . . , 9}, where
(F∗, β∗) is a turning point of ΓR.
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Figure 2. The curve ΓR for R = 0.5.

0.2 0.4 0.6 0.8 1.0
r

-2

-1

1

2

3

T0HrL

Figure 3. Three solutions of (11), (12) for R = 0.5.

0 20 40 60 80

-100

-80

-60

-40

-20

0

20

F

Β

Figure 4. Evolution of the curves ΓR for R = 0.1j, j ∈ {1, 2, . . . , 9}.
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Figure 5. The dependence of F∗ on R.

4. Linear Stability Analysis

Bifurcation analysis conducted in the previous section allows one to determine (for
each R) the range of values of F for which there exists a steady solution of (11) and (12),
namely, 0 < F < F∗, where F∗ is given by Figure 5. In addition, it helps to select the base
flow temperature distribution (the physically realizable solution is shown in Figure 3 in
blue and has the smallest norm).

Consider a perturbed flow of the form

v(r, z, t) = u(r) e−λt+ikz,

T(r, z, t) = θ(r) e−λt+ikz, (16)

p(r, z, t) = q(r) eλt+ikz,

where u(r) = (u(r), 0, w(r)), k is the wave number, and λ = λr + iλi is a complex eigen-
value. Base flow (6) is said to be linearly stable if all λr > 0, and linearly unstable, if at
least one λr < 0. Previous studies [39] have shown that the most unstable perturbation
is axisymmetric for relatively small gaps (including the case R = 0.7 considered in the
present paper) so that we restrict ourselves to axisymmetric perturbations. Substituting (16)
into (2)–(4) we obtain

u′′ +
u′

r
− k2u− u

r2 = q′ + ikGrkuW0 − λu, (17)

w′′ +
w′

r
− k2w + θ = ikq + iGr(uW ′0 + ikθW0)− λw, (18)

1
Pr

(θ” +
θ′

r
− k2θ + eT0 θ) = Gr(uT′0 + ikθW0)− λθ, (19)

u′ +
u
r
+ ikw = 0. (20)

The boundary conditions are

u(R) = 0, u(1) = 0, w(R) = 0, w(1) = 0, θ(R) = 0, θ(1) = 0. (21)

Equations (17), (18) and (20) are transformed to one ordinary differential equation of order
four by eliminating q and w from (17), (18) and (20). The obtained equation is coupled
with (19). In addition, two extra boundary conditions for the function u are required:

u′(R) = 0, u′(1) = 0. (22)

Conditions (22) follow from (20) and (21). The functions u(ξ) and θ(ξ) for the corresponding
boundary value problem are approximated as follows:

u(ξ) =
N

∑
n=0

an(1− ξ2)2Tn(ξ), θ(ξ) =
N

∑
n=0

bn(1− ξ2)Tn(ξ), (23)
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where ξ = 2r/(1− R)− (1 + R)/(1− R) and Tn(ξ) is the Chebyshev polynomial of the
first kind. The collocation method is used to discretize the obtained problem where the
collocation points are

ξ j = cos(π j/N), j = 0, 1, · · · , N. (24)

The discretized generalized eigenvalue problem is solved using Matlab routine eig.

5. Numerical Results

Calculations are performed for the following two cases: (a) nonzero boundary con-
ditions (9) for the function T0(r) and (b) zero boundary conditions for the temperature
T0(r). We refer to cases (a) and (b) in the paper as Case 1 and Case 2, respectively. The
values of the Prandtl number that are chosen for calculations (0 < Pr < 15) correspond
to different types of fluids. In particular, gases usually have the Prandtl number of order
0.7. Larger values of the Prandtl number (from 3 to 15) may correspond to biomass slurry
that is typically present during the process of energy recovery from wet waste biomass, as
is shown in [40]. Figures 6–9 plot marginal stability curves for four values of the Prandtl
number and three values of the Frank-Kamenetskii parameter F (Case 1 with unequal wall
temperatures). The stability region is below the curves.

It can be seen from Figures 6–9 that the increase in Pr is associated with continuous
deformation of the marginal stability curves. For small Prandtl numbers (Pr = 0.79 and
Pr = 3 in Figures 6 and 7) all eigenvalues have positive real parts below the curves and
negative real parts above the curves, respectively. On the marginal stability curves in
Figures 6 and 7 one eigenvalue has a zero real part. As the Prandtl number grows, other
eigenvalues may become unstable for a certain range of k while the eigenvalue that was
previously unstable may become stable. The appearance of new unstable eigenvalues
results in the sharp change of the marginal stability curve and the appearance of additional
minima on the marginal stability curves. Note that the second and third minimum appears
on the curves for Pr = 5 and Pr = 7, respectively.

0.6 0.8 1 1.2 1.4 1.6 1.8 2
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400
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650
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F=0.5

F=0.7

Figure 6. Marginal stability curves for Pr = 0.79 (Case 1).
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Figure 7. Marginal stability curves for Pr = 3 (Case 1).
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Figure 8. Marginal stability curves for Pr = 5 (Case 1).
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Figure 9. Marginal stability curves for Pr = 7 (Case 1).

Previous studies [11,15,17,41] have shown that for large Pr marginal stability curves
can have multiple loops where the base flow is unstable with respect to several modes.
Our objective is not to provide detailed description of the marginal stability curves, but to
determine the values of the parameters that correspond to the absolute minimum on the
marginal stability curve. As a result, we provide only envelopes of the marginal stability
curves shown in Figures 6–9.

Similar calculations are performed for Case 2 (zero wall temperatures for the function
T0(r)). The results are shown in Figures 10–13. Comparing Figures 6–9 with Figures 10–13,
we see that there is no deformation of the marginal stability curves for Case 2: all curves
have one minimum.
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Figure 10. Marginal stability curves for Pr = 0.79 (Case 2).
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Figure 11. Marginal stability curves for Pr = 3 (Case 2).
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Figure 12. Marginal stability curves for Pr = 5 (Case 2).
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Figure 13. Marginal stability curves for Pr = 7 (case 2).

The critical Grashof numbers Grc = mink Gr and the corresponding critical wave
numbers kc are shown in Figures 14 and 15, respectively. The “elbows” for the curves in
Figure 14 represent the change of the form of instability (see Figures 8 and 9): the minimum
that appears in the region of smaller k as Pr increases is further lowered as Pr continues
to increase. The second minimum (at k ≈ 1.4) is not so sensitive to the change in Pr (see
Figures 8 and 9). Eventually the two minima coincide: calculations show that for F = 0.3
we have two equal minima (Grc = 482.9 at k = 1.39 and k = 0.4). A further increase in
Pr leads to the critical Grashof numbers in the region of smaller k. As a result, one has a
finite jump from k = 1.39 to k = 0.4 (see Figure 15) and the critical Grashof numbers start
to decrease. Similar changes in Grc and kc take place also for F = 0.5 and F = 0.7. The
appearance of the third minimum on the marginal stability curve (see Figure 9) leads to
another jump in k for the cases F = 0.5 and F = 0.7.
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Figure 14. Critical Grashof numbers versus Pr for Case 1.
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Figure 15. Critical wave numbers versus Pr for Case 1.

Critical values of the Grashof number and the corresponding critical wave num-
bers are shown in Figures 16 and 17 for Case 2 (zero wall temperatures). Comparing
Figures 14 and 15 for Case 1 with the corresponding Figures 16 and 17 for Case 2, we see
different behavior of the instability modes. The critical values of the Grashof number for
Case 2 decrease monotonically as Pr grows, and the critical wave numbers do not change
much in the range of the Prandtl numbers considered: 0 < Pr ≤ 15. In contrast, for Case
1 there is a “plato” phase for each F where the critical Grashof numbers do not change.
Further increase in Pr leads to a decrease of the critical Grashof numbers.
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Figure 16. Critical Grashof numbers versus Pr for Case 2.
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Figure 17. Critical wave numbers versus Pr for Case 2.

6. Discussion

Linear stability analysis of a steady convective flow caused by two factors: (a) internal
heat generation as the result of a chemical reaction and (b) different constant wall tempera-
tures is analyzed in this paper. The flow is considered in a vertical annular fluid layer under
the assumption that the total fluid flux through the cross-section of the layer is equal to zero.
The corresponding boundary value problem for the heat equation is nonlinear. Bifurcation
analysis is performed in the paper to identify the number of solutions of the boundary
value problem depending on the value of the Frank-Kamenetskii parameter, representing
the intensity of heat release as a result of the chemical reaction. In addition, solutions to the
nonlinear boundary value problem are also obtained. The goal of the bifurcation analysis is
to select the correct form of the base flow solution.

The linear stability problem is solved numerically using a collocation method. Two
cases are considered separately: Case 1 (different constant wall temperatures) and Case 2
(zero wall temperatures). Calculations show that linear stability characteristics differ con-
siderably between Case 1 and Case 2. In Case 1, multiple minima of the marginal stability
curves are observed as the Prandtl number increases. Depending on the relative values of
the local minima, the global minimum can be associated with different wave numbers. As a
result, finite jumps in wave numbers are observed as the Prandtl number increases. Critical
Grashof numbers almost do not change in the interval 0 < Pr < P̂r, where P̂r depends on
the Frank-Kamenetskii parameter F. In the region Pr > P̂r the critical Grashof numbers de-
crease monotonically as the Prandtl number increases. Marginal stability curves for Case 2
have one minimum in the range of the Prandtl numbers considered, 0 < Pr ≤ 15, and
the corresponding wave numbers do not change much. The results show that instability
is mainly of hydrodynamical nature for small Prandtl numbers considered in the paper
(Pr = 0.79). It occurs due to the presence of inflection points in the base flow velocity
profile. As the Prandtl number increases, new modes of instability appear; thermal factors
are playing a more important role. The appearance of the new modes is seen from the
marginal stability curves where one or two additional minima are observed as the Prandtl
number grows. Thus, either shear or buoyant instability takes place depending on the
value of the Prandtl number.

In order to analyze the development of instability in the region of the parameter space
where the flow becomes linearly unstable weakly nonlinear theory can be considered. The
approach is based on the use of a multiple scale method where the expansion is constructed
in the neighborhood of the critical point (kc, Grc, λc). It is assumed that the Grashof number
is slightly above the critical value so that the flow is unstable but the growth rate of the
unstable perturbation is small. The result is an amplitude evolution equation for the most
unstable mode (such as the complex Ginzburg–Landau Equation [42]). Weakly nonlinear
models were successfully used in the past to investigate instability above the threshold
for Taylor–Couette flows [43] or shallow water flows [44]. The advantages of the weakly
nonlinear method are as follows. First, the amplitude evolution equation is usually much
simpler to deal with than the full nonlinear formulation of the problem. Second, some of
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the amplitude equations can have a rich variety of solutions from deterministic to almost
chaotic depending on the values of the parameters [42]. Third, previous studies have shown
that amplitude evolution equations can be successfully used for a rather wide range in the
parameter space, even if the multiple scale expansion is considered in a small neighborhood
of the critical point. The authors are currently working on this topic.
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