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Abstract: By using complex potentials, some light is shed on the analogy between the singularity
problems arising in fluid and fracture mechanics—in particular, those concerning plane irrotational
flows around sharp obstacles and plane elasticity in cracked bodies. Applications to two equivalent
geometries are shown: a thin plate transversally immersed in a uniform flow and a crack subjected to
uniform out-of-plane shearing stress at infinity (Mode III). The matching between the fluid velocity
field and the shearing stress field is consistent with the hydrodynamic analogy. Aside from the
Reynolds criterion for the natural laminar-to-turbulent transition, a velocity-intensity factor criterion
is defined to predict the forced turbulent-to-vortex-shedding fluid-flow transition (forced transitional
flow) generated by a transversal plate obstacle. It is interesting to remark that the velocity-intensity
factor presents physical dimensions intermediate between those of a velocity and a kinematic viscosity.
In addition, it will be demonstrated that size affects the occurrence of natural-to-forced transitional
phenomena in fluids, in a strict analogy to the scale-dependent ductile-to-brittle failure transitions
in solids.

Keywords: hydrodynamic analogy; stress intensification; velocity intensification; ductile-to-brittle
failure transition; turbulent-to-vortex shedding flow transition; scale effects

1. Introduction

The analogy between plane elasticity and incompressible plane flow problems is
well-known—both phenomena being governed by analogous field equations [1,2]. From
a different point of view, dimensional analysis [3] allows one to define dimensionless
numbers both in hydraulics and in fracture mechanics: as the Reynolds number, Re,
predicts the laminar-to-turbulent transition in different fluid-flow situations [4], so the
brittleness number, s, governs the ductile-to-brittle transition in solids [5].

Concerning the analogy between plane problems, viscous flows can be regarded as
the fluid dynamics equivalent of nonlinear phenomena in solid mechanics. In the case of
extreme ductility, i.e., when E∗/E→ 0 (E∗ being the Young’s modulus of the hardening
material and E the Young’s modulus of the elastic material), the stress-function representing
the yielded region becomes biharmonic [6,7]. Such perfectly plastic behavior appears to be
similar to that of plane creeping flows—dominated by viscous forces—where a biharmonic
equation for the stream function comes from assuming very small Reynolds numbers,
Re→ 0 , in the Navier–Stokes equation [8,9].

On the other hand, anti-plane shear problems in linear elasticity are governed by the
Laplace equation [10]. Something analogous happens at the other extreme of plane flow,
i.e., for irrotational and inviscid flows, where a velocity potential fulfilling the Laplace
equation can be defined [11]. The outlined analogy has been further emphasized by the
hydrodynamic analogy between potential flow and elastic torsion problems, where the
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shearing stress field of a linear elastic beam is represented by the velocity field of an ideal
fluid, i.e., inviscid and incompressible, over its cross-section [12].

In this context, the hydrodynamic analogy can represent a heuristic device for visu-
alizing the stress intensification around the tips of cracks or sharp re-entrant corners. In
other terms, a thin or sharp-edged obstacle transversally immersed in a plane potential
flow corresponds to a Griffith crack subjected to an anti-plane mode of deformation.

There are crack problems where yielding and inelastic effects are confined to a small-scale
region (compared to crack and body sizes) around the crack tip [6,7,10,13]. Under these
conditions, linear elastic fracture mechanics is adequate to address the problem of stress
redistribution in the cracked body. Similarly, in low-viscosity flows after an obstacle,
viscous effects such as vorticity—a prerequisite for turbulence—are confined to a thin
boundary layer around the surface of the object, and to a wake behind it. Outside such
boundary layers and wakes, the flow is treated as inviscid and irrotational, being accurately
described by potential flow theory [1,14,15].

When a certain critical condition is reached, stressed bodies collapse, whereas laminar
flows transit to turbulence. In both cases, there is a phase change or medium separation, in
the form of newly created fracture surfaces in solids and breakdown of streamlines, leading
to an eventual transition to turbulence in fluid flows.

When a structure is initially uncracked or crack-insensitive, failure by plastic-flow
collapse intervenes when the applied stress reaches the material yield strength. Fracture, or
separation collapse, occurs instead in a cracked structure, where lower applied stresses are
sufficient to extend the crack due to the stress intensification near the crack tip [3,10,13].

As regards pipe flows, the laminar-to-turbulent transition occurs ‘naturally’, i.e., with-
out any forcing obstacle, when a critical Reynolds number, ReC, is reached (experimental
observations show that ReC = 2300 [4]). However, the laminar-to-turbulent transition can
be also forced at low Reynolds numbers, i.e., for Re < ReC, by obstacles introduced into
the flow [16,17]. Namely, low inlet velocities are sufficient to trigger a local transition to
turbulence behind an obstacle for nominally laminar flows.

Although flow instabilities may occur in the wake behind obstacles of any shape, the
presence of sharp edges gives rise to sudden fluid accelerations and decelerations, where
the inertia of the moving fluid will favor a consequent fluid separation and vortex shedding
from the bluff body. Analogously to the lines of force near the crack tip, streamlines
converge and diverge rapidly around sharp-edged obstructions, resulting in a locally
intensified fluid velocity. Hence, a velocity-intensity factor, K, may be properly introduced
using a fracture mechanics approach. It is expected that, above a certain limit value KC,
the inertial forces due to sudden changes in the flow direction cause the breakdown of
streamlines, and consequently, vortex shedding. Such a critical value, KC, may be regarded
as analogous to the fracture toughness.

The purpose of the present paper is to emphasize the analogy between the two
problems of linear elastic fracture mechanics and of potential flow illustrated in Figure 1,
namely, the uniform flow past a transversal thin plate and the plane cracking under uniform
out-of-plane loading. By this strong analogy, a new dimensionless number emerges in the
following, which can govern the turbulent-to-vortex-shedding fluid-flow transition.
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Figure 1. Uniform plane flow of remote velocity v∞ past a transversal flat plate (a); crack subjected to
uniform out-of-plane shearing stress τ at infinity (b).

2. Potential Flow around a Transversal Thin Plate

Let us consider the sourceless and irrotational plane flow of an ideal fluid of density
ρ, whose velocity vector is v = vx ex + vy ey. Recall that, for a sourceless incompressible
plane fluid flow of velocity v, the continuity equation

.
ρ +∇ · (ρv) = 0 reduces to

∂ vx

∂x
+

∂ vy

∂y
= 0 ⇐⇒ vx =

∂ψ

∂y
; vy = −∂ψ

∂x
(1)

where ψ is the stream function representing the trajectories of particles in the flow.
In addition, let us recall that a plane flow is called irrotational, or potential, provided that

ω =
∂ vy

∂x
− ∂ vx

∂y
= 0 ⇐⇒ vx =

∂ϕ

∂x
; vy =

∂ϕ

∂y
(2)

where ω is the vorticity and ϕ is the velocity potential.
Hence, for the sourceless and irrotational plane flow of an ideal fluid, both ψ and ϕ

exist and fulfill the Cauchy–Riemann conditions for analytic functions [18]:

∂ϕ

∂x
=

∂ψ

∂y
;

∂ϕ

∂y
= −∂ψ

∂x
(3)

Therefore, the calculation of such a flow field is reduced to finding the associated
complex potential Z(z) ≡ ϕ(x, y) + iψ(x, y) fulfilling appropriate boundary conditions (the
complex number z = x + i y identifies the position vector x = xex + yey).

The velocity components are straightforwardly obtained by exploiting the complex
differentiability of the complex potential:

dZ
dz
≡ Z′ =

∂ϕ

∂x
+ i

∂ψ

∂x
= vx − ivy (4)

Z′ being the complex conjugate velocity, whence vx = Re Z′ and vy = −Im Z′.
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Although the complex potential theory seems to be a simplification, it applies to the
external inviscid flow around solid surfaces for laminar flows of low-viscosity fluids (e.g.,
air and water), whereas vorticity and other viscous effects are confined to a thin boundary
layer and to the wake.

Let us consider a plane flow past a transversal thin plate installed in a straight channel
(Figure 2a). The fluid domain is represented by the strip −b < x < b between the channel
walls at x = ±b, excluding a segment −a < x < a, for y = 0, occupied by the extremely
thin transversal plate. The fluid flows in the positive y-direction with inlet velocity v∞.
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streamlines (b).

The complex potential associated with the external flow around the plate is found to
be [19]

Z = −iv∞
√

z2 − a2 (5)

The boundary condition at the surface of the plate is stated as an impenetrability condition:

v·n = vy = 0 for y = 0,−a < x < a (6)

where ey = n is the unit vector normal to the plate surface.
Let us recall that the no-slip condition for fluid layers adherent to the plate, v = 0, can-

not be applied, since the complex potential theory treats the flow as inviscid, i.e., frictionless.
At large distances from the plate, the flow must be asymptotic to the uniform

stream. Hence,
vx = 0, vy = v∞ for |z| → ∞ (7)

The complex conjugate velocity

Z′ = − iv∞z

(z2 − a2)
1/2 (8)
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fulfills the boundary condition (6), since Z′ is real for y = 0 and −a < x < a, and
therefore, vy = −Im Z′ vanishes. The boundary condition at infinity (7) is met as well,
being Z′ ∼= −iv∞, and then vx = Re Z′ = 0, vy = −Im Z′ = v∞ for |z| � a. There-
fore, Equation (5) is really the complex potential associated with the flow field shown in
Figure 2b.

Function Z′ in Equation (8) is singular at z = ±a, leading to unbounded flow velocities
at both plate extremities. Therefore, the study of the velocity field in the extreme vicinity
becomes very important, since it may be related to vortex shedding in the wake behind
the plate.

By placing the origin of the coordinate system at the plate edge z = a through the
transformation ζ = z− a, Equation (8) takes the form

Z′ = − iv∞(ζ + a)

[ζ(ζ + 2a)]1/2 (9)

The flow field near the edge is obtained from the limit expression of Z′ as |ζ| → 0

Z′ = − iK√
2πζ

(10)

where
K = v∞

√
πa (11)

Using polar coordinates, ζ = reiϑ, the near-edge solution (10) can be written as

Z′ =
K√
2πr

(
− sin

ϑ

2
− i cos

ϑ

2

)
(12)

Then, the velocity components (Figure 3) exhibit the expected r−1/2 singularity at
sharp edges [20,21]:

vx = Re Z′ = − K√
2πr

sin
ϑ

2
(13a)

vy = −Im Z′ =
K√
2πr

cos
ϑ

2
(13b)
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3. Turbulent-to-Vortex-Shedding Fluid-Flow Transition

The continuity equation for incompressible flows imposes the deviation of streamlines
around the impenetrable plate, which results in a velocity intensification at the extremities.
Hence, the velocity-intensity factor, K, is a likely candidate to rule the local turbulent-to-vortex-
shedding transition. It is worth noting that the velocity-intensity factor (Equation (11)) presents
the following physical dimensions: [K] = [L]3/2 [T]−1, which are intermediate between
those of a velocity, [v] = [L] [T]−1, and a kinematic viscosity, [µ] = [L]2 [T]−1.

Noticeably, the inviscid flow solution (Equation (5)) is found to be symmetrical up-
stream and downstream with respect to the plate (Figure 4a), whereas, as a viscosity effect,
the real fluid is no longer able to follow the plate’s contour, resulting in an asymmetric flow
pattern featured by large-scale eddies downstream from the plate: this region of eddying
motion is usually known as the wake. However, the singularity r−1/2 and the amplifying
factor K of the near-edge field are expected to be still valid for real fluids.
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When the values of K are sufficiently small, the inertial forces are negligible and the
streamlines converge behind the plate. However, the boundary layer separates symmet-
rically from both sides of the plate, and two eddies are formed, which rotate in opposite
directions and remain unchanged in position. In the current condition, the length of the
wake is limited. Behind it, the main streamlines converge as depicted in Figure 4b.

Above a certain critical value, K = KC, the arrangement becomes unstable: vortex
shedding is expected to take place, where vortices are created at the back of the plate and
detach periodically from either side, thereby forming the so-called von Karman vortex
street illustrated in Figure 4c.

The critical value KC would denote a fluid property to be determined by specific
experiments and could be identified as shedding toughness, which is analogous to the
well-known fracture toughness for solids. Based on Equation (11), the inlet flow velocity
vcr

∞ for the onset of vortex shedding is predictable by a Griffith-like criterion:

vcr
∞ =

KC√
πa

(14)

In other terms, the critical velocity vcr
∞ required to force the transition to vortex shed-

ding at low Reynolds numbers, Re < ReC, i.e., in nominally laminar flows, is inversely
proportional to the square root of the plate half-width, vcr

∞ ∝ a−1/2. In reality, such behav-
ior would be unphysical, since turbulence starts to develop naturally when the critical
Reynolds number ReC is reached.

The variation in the critical velocity versus plate width is illustrated in Figure 5 by
the solid curve, that separates laminar from turbulent flow conditions in the domain
(a, v∞). The horizontal straight line represents the critical velocity vµ

∞ for the onset of
Reynolds turbulence:

vµ
∞ =

ReCµ

D
(15)

where µ is the kinematic viscosity and D = 2b is the channel width.

Fluids 2023, 8, x FOR PEER REVIEW 9 of 15 
 

 

Figure 5. Turbulent-to-vortex-shedding transition in the space of parameters (inlet flow velocity v∞ 

versus plate half-width a): for a > a0, vortex shedding precedes Reynolds turbulence (which takes 

place for a < a0). 

It can be said that the scale effect highlighted by Equation (16) is due to the mismatch 

between two fluid properties with different physical dimensions: the kinematic viscosity, 
[𝜇] = [𝐿]2[𝑇]−1, and the shedding toughness, [𝐾𝐶] = [𝐿]3 2⁄ [𝑇]−1. A strong analogy with 

fracture mechanics exists, where scale effects in fracture testing are mainly due to the co-

existence of two generalized forces with different physical dimensions: the stress, [𝜎] =

[𝐹][𝐿]−2, and the stress-intensity factor, [𝐾] = [𝐹][𝐿]−3 2⁄  [5,7]. 

4. Effect of the Channel Width 

The complex potential of Equation (5) is associated with an unbounded flow velocity 

around the plate edge, implying that channel walls are supposed to be far enough from 

the plate not to affect the flow around it. Namely, confinement effects have been so far 

considered solely via the Reynolds number. As a matter of fact, when the channel shrinks 

or when the plate size increases, the walls exert an enhanced influence on the flow field 

near the plate edges. In such a case, some corrections to the flow solution may be properly 

introduced. 

The wall proximity effect due to the channel width can be considered by including a 

shape factor 𝑌 in the 𝐾 solution: 

𝐾 =  𝑌𝑣∞√π𝑎  (17) 

such that 𝐾 approaches the value of Equation (12) as 𝑎 𝑏 → 0⁄ , i.e., for a channel width 

much larger than the plate width, and it diverges as 𝑎 𝑏 → 1⁄ . 

The shape factor 𝑌 is a dimensionless function of the 𝑎 𝑏⁄  ratio that can be obtained 

by numerical investigations. 

Equation (17) can be expressed in the form 

𝐾 = 𝑣∞√2b 𝑓(𝑎 𝑏⁄ ) (18) 

where 𝑓 (
𝑎

𝑏
) = (

𝜋𝑎

2𝑏
)

1 2⁄

𝑌. 

Equation (18) provides a critical inlet velocity to force the transition to vortex shed-

ding, where the wall effects are explicitly taken into account: 

Figure 5. Turbulent-to-vortex-shedding transition in the space of parameters (inlet flow velocity v∞

versus plate half-width a): for a > a0, vortex shedding precedes Reynolds turbulence (which takes
place for a < a0).



Fluids 2023, 8, 114 8 of 14

The intersection of the curves given by Equations (14) and (15) defines a transition length:

a0 =
1
π

(
KCD
µReC

)2
(16)

ruling out the competition between Reynolds turbulence and vortex shedding.
For a < a0, when the vcr

∞ curve overcomes the horizontal line vµ
∞, Reynolds turbulence

precedes vortex shedding behind the plate. As a matter of fact, the flow does not sense
plates of size smaller than a0, and only Reynolds turbulence is possible. The limit plate size
a0 that a laminar flow can sustain safely represents the obstacle sensitivity, i.e., the smaller
is a0, the more obstacle-sensitive is the flow. Thus, the flow is sensitive to the presence of
plates with a > a0, which can drive the transition to vortex shedding at critical velocities
vcr

∞ lower than vµ
∞, i.e., for Reynolds numbers Re lower than ReC.

From Equation (16), we can see that a decrease in the channel width, D, provides
a decrease in the limit value a0. Namely, bringing the channel walls closer to the plate
enhances the vortex formation and shedding behind the plate, whereas the Reynolds
turbulence tends to anticipating the vortex shedding if the channel is sufficiently wide. This
confinement effect seems to be analogous to the wall effect, as reported in numerical studies
on the flow past a bluff body installed in a channel [17,22,23]. Those investigations show
that reduced separation between the body and the channel wall facilitates the appearance
of twin vortices in the wake.

It can be said that the scale effect highlighted by Equation (16) is due to the mismatch
between two fluid properties with different physical dimensions: the kinematic viscosity,
[µ] = [L]2[T]−1, and the shedding toughness, [KC] = [L]3/2[T]−1. A strong analogy
with fracture mechanics exists, where scale effects in fracture testing are mainly due to
the co-existence of two generalized forces with different physical dimensions: the stress,
[σ] = [F][L]−2, and the stress-intensity factor, [K] = [F][L]−3/2 [5,7].

4. Effect of the Channel Width

The complex potential of Equation (5) is associated with an unbounded flow velocity
around the plate edge, implying that channel walls are supposed to be far enough from
the plate not to affect the flow around it. Namely, confinement effects have been so far
considered solely via the Reynolds number. As a matter of fact, when the channel shrinks
or when the plate size increases, the walls exert an enhanced influence on the flow field
near the plate edges. In such a case, some corrections to the flow solution may be properly
introduced.

The wall proximity effect due to the channel width can be considered by including
a shape factor Y in the K solution:

K = Yv∞
√
πa (17)

such that K approaches the value of Equation (12) as a/b→ 0 , i.e., for a channel width
much larger than the plate width, and it diverges as a/b→ 1 .

The shape factor Y is a dimensionless function of the a/b ratio that can be obtained by
numerical investigations.

Equation (17) can be expressed in the form

K = v∞
√

2b f (a/b) (18)

where f
( a

b
)
=
(

πa
2b
)1/2Y.

Equation (18) provides a critical inlet velocity to force the transition to vortex shedding,
where the wall effects are explicitly taken into account:

vcr
∞ =

KC

f (a/b)
√

2b
(19)
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By exploiting Equation (15), Equation (19) takes a dimensionless form:

vcr
∞

vµ
∞

=
s

f (a/b)
(20)

where the dimensionless number

s =
KCb1/2

µ
(21)

can be called the shedding number, in full analogy with the brittleness number that governs
the ductile-to-brittle transition in elastic–plastic cracked bodies [5,22]. In this case, two
different failure modes are possible: (i) plastic collapse of the solid, when the strength of
the material, τP, is overcome and the crack is considered as a weakening of the body’s
cross-section without including any local effect; (ii) crack propagation determined by the
achievement of the fracture toughness, KIIIC, of the material. For the brittleness number,
s = KIIIC

τP b1/2 , both the mechanical properties of the material and the characteristic size of
the solid are relevant. It is possible to demonstrate that brittle failure occurs only with
relatively low fracture toughness values, high material strengths, and/or large structural
sizes [5,23].

On the other hand, by considering the shedding number (Equation (21)), a reverse
scale effect becomes manifest: vortex shedding occurs only with relatively low shedding
toughness values, high kinematic viscosities, and/or small channel widths.

The competition between natural and forced (turbulent to vortex shedding) transitions
is investigated as a function of the blockage ratio, ξ = a/b. The condition for vortex
shedding is represented by a set of curves in the (ξ, υ) diagram—v = v∞/vµ

∞ being the
normalized inlet velocity—by varying the shedding number s in Equation (20), whereas
the condition for Reynolds turbulence is represented by a single horizontal straight line
v = 1 (see Figure 6).
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Figure 6. Turbulent-to-vortex-shedding transitions as a function of the blockage ratio ξ = a/b (a);
scale effect changing the shedding number s (b). The curves were plotted using the shape factor
Y = [sec(πa/2b)]1/2.

These curves separate distinct regions, each corresponding to a different flow regime.
It is evident that vortex shedding occurs only for blockage ratios above the limit value ξ0
(see Figure 6a).

As is shown in Figure 6b, the diverging vortex-shedding curves overcome the hori-
zontal line υ = 1 for most blockage ratios ξ = a/b, when s is sufficiently high. This means
that the Reynolds turbulence tends to anticipate and obscure the vortex shedding even for
high a/b ratios, if the channel width b is sufficiently large.
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This scale effect is also revealed by the quadratic scaling of the obstacle sensitivity
(Equation (16)) with the channel width, a0 ∝ b2, whereby for fixed ratios a/b and by
increasing b, the Reynolds turbulence tends to become the dominating mechanism [22,24].

5. Viscosity at the Edges of the Obstacle

Considering real fluids, potential flow solutions must take into account the effects
of viscosity within the boundary layer, where a velocity profile develops and truncates
the singularity near sharp edges [25]. This is analogous to considering, in the framework
of fracture mechanics, the plastic phenomena occurring at small distances from the crack
tip, which relieve the elastic singularity. Hence, the concept of plastic-zone extension
resembles that of boundary-layer thickness [26], defined as the distance of the solid surface
to the boundary between viscous flow and external flow. An alternative parameter is the
boundary layer displacement, δ, which is defined as the distance at which the potential
flow has to translate to produce the same mass flow rate as the real fluid [27,28]. Due to the
slowing down of the real fluid in the boundary layer, this ideal flow essentially encounters
an effective obstacle larger by δ, namely, an extended fictitious plate with aeff = a + δ.

Hereafter, an Irwin-like approach [29] is proposed to estimate the critical boundary-
layer thickness ahead of the edge of the plate. The singular velocity distribution vy(ϑ = 0)
given by Equation (13b) is truncated by viscosity, and a flat profile vy = vδ for x ≤ δ is
simply assumed (Figure 7a). Consequently, the condition vy = vδ = K/(2πδ)1/2 gives the
first approximation of the boundary layer’s thickness.

δ =
1

2π

(
K
vδ

)2
(22)

Fluids 2023, 8, x FOR PEER REVIEW 12 of 15 
 

 

Figure 7. Ideal 𝑣𝑦 velocity distribution truncated by viscosity (solid line) ahead of the plate edge 

with first-order estimate 𝛿 of the boundary layer thickness (a); real 𝑣𝑦 velocity distribution (ABCD 

curve) with second-order estimate 𝛿 = 2𝛿 of the boundary layer thickness: The cross-hatched areas 

represent the mass flow rate redistribution, resulting in a fictitious plate wider by 𝛿 (b). 

Furthermore, if it is assumed 𝑣𝛿 = 𝑣∞
𝜇 , 𝛿𝐶 comes to coincide with the obstacle sensi-

tivity 𝑎0 (see Equation (16)): 

𝛿𝐶  = 𝑎0 =
1

𝜋
(

𝐾𝐶𝐷

𝜇𝑅𝑒𝐶
)

2

 (25) 

This correspondence is analogous to that emerging in fracture mechanics between 

the size of the characteristic microcrack for the material and the size of the plastic zone at 

crack propagation [30]. 

Finally, considering the two problems represented in Figure 1, the aforementioned 

analogies are summarized in Table 1. 

 

 

Table 1. Summary of the main analogies. 

 

Linear elastic constitutive laws: 

 

𝜏𝑥𝑧 = 𝐺
𝜕𝑤

𝜕𝑥 

𝜏𝑦𝑧 = 𝐺
𝜕𝑤

𝜕𝑦 

                 

 

𝑤 = displacement along the z-axis 

 

 

Potential flow 

(outside boundary layers and wakes): 

𝑣𝑥 =
∂𝜑

∂𝑥

𝑣𝑦 =
𝜕𝜑

𝜕𝑦

                        

 

𝜑 = velocity potential 

 

 

Indefinite equilibrium equation: 
 
𝜕𝜏𝑥𝑧

𝜕𝑥 
+

𝜕𝜏𝑦𝑧

𝜕𝑦 
= 0        

 

 

Continuity equation: 

 
𝜕𝑣𝑥

𝜕𝑥 
+

𝜕𝑣𝑦

𝜕𝑦 
= 0          

 

Figure 7. Ideal vy velocity distribution truncated by viscosity (solid line) ahead of the plate edge
with first-order estimate δ of the boundary layer thickness (a); real vy velocity distribution (ABCD
curve) with second-order estimate δ̃ = 2δ of the boundary layer thickness: The cross-hatched areas
represent the mass flow rate redistribution, resulting in a fictitious plate wider by δ (b).

This estimate is not strictly correct because the conservation of mass rate appears
to be violated. When the effect of viscosity is considered, velocities must redistribute in
order to satisfy the conservation of mass rate. Namely, the singular velocity distribution
is translated along the x-axis, so that the integral of the redistributed velocities (curve
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ABCD in Figure 7b) is equal to the integral of the aforementioned singular distribution.
The integral of vy between the plate edge and the point x = δ gives

∫ δ

0
Kdx/

√
2πx = 2δvδ (23)

where Equation (22) is exploited.
Therefore, the left-hand hatched area of Figure 7b is δvδ. Additionally, the right-hand

hatched area, obtained with a translation by δ, is equal to that of the rectangle A’ABB’,
since both of them are complementary to the area underneath the curve BD, so that the
conservation of mass is satisfied. Thus, a more accurate evaluation of the thickness of the
boundary layer is δ̃ = 2δ. Finally, we obtain the following expression for the thickness of
the boundary layer when vortex shedding starts:

δ̃C =
1
π

(
KC
vδ

)2
(24)

Furthermore, if it is assumed vδ = vµ
∞, δ̃C comes to coincide with the obstacle sensitiv-

ity a0 (see Equation (16)):

δ̃C = a0 =
1
π

(
KCD
µReC

)2
(25)

This correspondence is analogous to that emerging in fracture mechanics between the
size of the characteristic microcrack for the material and the size of the plastic zone at crack
propagation [30].

Finally, considering the two problems represented in Figure 1, the aforementioned
analogies are summarized in Table 1.

Table 1. Summary of the main analogies.

Linear elastic constitutive laws:
τxz = G ∂w

∂x
τyz = G ∂w

∂y
w= displacement along the z-axis

Potential flow
(outside boundary layers and wakes):

vx =
∂ϕ
∂x

vy =
∂ϕ
∂y

ϕ = velocity potential

Indefinite equilibrium equation:
∂τxz
∂x +

∂τyz
∂y = 0

Continuity equation:
∂vx
∂x +

∂vy
∂y = 0

Combining the above equations gives:
∇2w = 0⇒ w = Im ZIII/µ
where ZIII is an analytic function
From the constitutive laws, it follows:
τxz = Im Z′III
τyz = Re Z′III

Combining the above equations gives:
∇2 ϕ = 0⇒ ϕ =Re Z
where Z is an analytic function
From the velocity potential, it follows:
vx = ReZ′

vy = −Im Z′

Boundary conditions:
Stress-free crack surfaces:
τyz = 0 for y = 0, −a < x < a
Boundary conditions at infinity:
τxz = 0, τyz = τ for |z| → ∞

Boundary conditions:
Impenetrable plate surfaces:
vy = 0 for y = 0, −a < x < a
Boundary conditions at infinity:
vx = 0, vy = v∞ for |z| → ∞

Westergaard solution:

ZIII = τ
√

z2 − a2 ⇒ Z′III = τz/
(
z2 − a2)1/2

Complex potential:

Z = −i v∞
√

z2 − a2 ⇒ Z′ = −i v∞z/
(
z2 − a2)1/2
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Table 1. Cont.

Stress field near the crack tip:
τxz = − KIII√

2πr
sin ϑ

2

τyz = KIII√
2πr

cos ϑ
2

where KIII = τ
√

πa

Flow field near the plate edge:
vx = K√

2πr
sin ϑ

2

vy = − K√
2πr

cos ϑ
2

where K = v∞
√
πa

Fracture sensitivity:
a0 = K2

IIIC/πτ2
P

Obstacle sensitivity:
a0 = D2K2

C/πµ2ReC
2

Plastic flow collapse:
τ = τP for a < a0
Crack propagation:
KIII = KIIIC for a ≥ a0

Reynolds turbulence:
Re = ReC for a < a0
Vortex shedding:
K = KC for a ≥ a0

Size-scale effects of interacting failure modes
(τcr = critical applied stress for crack propagation):
τcr
τP

= s
g(a/b)

Brittleness number s = KIIIC
τP b1/2

Size-scale effects of interacting transitional flows
(vcr

∞ = critical inlet velocity for vortex shedding):
vcr

∞
vµ

∞
= s

f (a/b)

Shedding number s = KC b1/2

µ

6. Conclusions

The solutions to plane elasticity or to plane fluid-flow problems are often reduced to
find the associated complex potentials that satisfy the appropriate boundary conditions.
In the framework of the hydrodynamic analogy, calculating the linear elastic stress field
associated with Mode III crack loading and the potential flow field past a transversal thin
plate represent two equivalent problems.

Furthermore, in both cases, a phase change—either ductile-to-brittle or turbulent-to-
vortex-shedding transition—intervenes at a critical point, when a sort of driving force
exceeds its critical value.

Failure by general yielding occurs when the applied uniform out-of-plane shearing
stress at infinity τ exceeds the material yield strength τP. This failure mode is analogous to
the laminar-to-turbulent transition of pipe flows, which begins when the Reynolds number
Re exceeds its critical value ReC = 2300. This analogy appears between τP and the critical
inlet velocity, vµ

∞ = ReCµ/D. If the strip or the channel width is fixed, the analogy can be
expressed in terms of material or fluid properties, as the ability of the material to sustain
applied stresses or the ability of the fluid to sustain laminar flows.

On the other hand, unstable crack propagation from a pre-existing defect occurs
when the stress-intensity factor is equal to the Mode III fracture toughness, KIII = KIIIC.
Analogously, vortex shedding is expected to take place in fluid flow when the velocity-
intensity factor is equal to the shedding toughness, K = KC, thereby forming the so-called
von Karman vortex street. As Mode III fracture toughness, KIIIC, expresses the ability of the
material to resist fracture in the presence of cracks, so the shedding toughness, KC, would
express the ability of the fluid to resist generation and shedding of vortices behind obstacles.
In addition, as the dimensional mismatch between strength and toughness involves a scale-
dependent ductile-to-brittle failure transition in solids, so a scale-dependent turbulent-to-
vortex-shedding fluid flow transition is driven by the difference in physical dimensions
between the kinematic viscosity and the shedding toughness.

Future research work might concern the experimental measurement of KC, which
could be helpful, together with the shedding number s, in investigating the competition
between different mechanisms in the turbulent-to-vortex-shedding transition. In this
framework, it is interesting to recall that, by considering the shedding number, vortex
shedding occurs only with relatively low shedding toughness values, high kinematic
viscosities, and/or small channel sizes. This scale effect in fluid mechanics turned out to
be the reverse of the scale effect that can be detected in solid mechanics by considering
the brittleness number: in fact, a truly brittle failure occurs only for relatively low fracture
toughness values, high material strengths, and/or large structural sizes.
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