
Citation: Morente, A.; Goyal, A.;

Wachs, A. A Highly Scalable

Direction-Splitting Solver on Regular

Cartesian Grid to Compute Flows in

Complex Geometries Described by

STL Files. Fluids 2023, 8, 86. https://

doi.org/10.3390/fluids8030086

Academic Editors: Chandrashekhar S.

Jog and Mehrdad Massoudi

Received: 30 December 2022

Revised: 21 February 2023

Accepted: 23 February 2023

Published: 28 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

A Highly Scalable Direction-Splitting Solver on Regular
Cartesian Grid to Compute Flows in Complex Geometries
Described by STL Files
Antoine Morente 1, Aashish Goyal 2 and Anthony Wachs 1,2,*

1 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
2 Department of Chemical and Biological Engineering, University of British Columbia,

Vancouver, BC V6T 1Z3, Canada
* Correspondence: wachs@mail.ubc.ca

Abstract: We implement the Direction-Splitting solver originally proposed by Keating and Minev
in 2013 and allow complex geometries to be described by a triangulation defined in STL files. We
develop an algorithm that computes intersections and distances between the regular Cartesian grid
and the surface triangulation using a ray-tracing method. We thoroughly validate the implementation
on assorted flow configurations. Finally, we illustrate the scalability of our implementation on a
test case of a steady flow through 144,327 spherical obstacles randomly distributed in a tri-periodic
box at Re = 19.2. The grid comprises 6.8 billion cells and the computation runs on 6800 cores of a
supercomputer in less than 48 h.

Keywords: direction-splitting; scalable solver; complex geometry; STL file

1. Introduction

The quest for accurate and fast fluid flow solvers has been an on going concern in the
Computational Fluid Dynamics community for years. Regardless of the complex nature
of the fluid flow such as multiphase, non-Newtonian, with heat transfer or turbulent, the
core of a flow solver involves solving the coupled conservation of mass and conservation
of momentum on a grid with additional source/sink terms related to the complexity of the
flow. With the rise of supercomputing over the last 20 years, high scalability has become
the third important property that modern fluid flow solvers must satisfy. Assuming that
the flow is incompressible, the core of the flow solver solves the Navier-Stokes equations
with additional source/sink terms where the velocity field is constrained to be divergence
free and the pressure is mathematically the Lagrange multiplier that relaxes the velocity
divergence free constraint. The most well known classes of numerical method to solve the
incompressible Navier-Stokes equations are (i) iterative methods a la Uzawa that solve
the coupled set of equations [1,2] and (ii) projection methods that relies on a operator-
splitting technique that first predicts a non-divergence free velocity field through the
solution of the momentum conservation equation for a given pressure field and later
projects the velocity field onto a divergence free space via the solution of a pressure
Poisson problem [3–5]. In the case of pressure correction projection methods, the Laplacian
operator acting on the pressure in the pressure Poisson problem is not strongly diagonally
dominant and therefore the iterative solution of the corresponding linear system with
any preconditioned conjugate gradient algorithm [6] and/or multigrid method [7–9] uses
the major part of the total computing time. This statement applies regardless of the
conventional numerical method (Finite Element, Finite Volume and Finite Difference)
employed to discretize the set of governing equations. However, when a Finite Difference
or a Finite Volume method is implemented on a regular Cartesian grid that represents a
simple flow domain, the Laplacian matrix operator possesses a lot of structure that speeds

Fluids 2023, 8, 86. https://doi.org/10.3390/fluids8030086 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8030086
https://doi.org/10.3390/fluids8030086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0009-0000-2711-2828
https://orcid.org/0000-0002-8545-7688
https://doi.org/10.3390/fluids8030086
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8030086?type=check_update&version=1

Fluids 2023, 8, 86 2 of 28

up the convergence of iterative solvers. But numerical methods on regular Cartesian grids
features many other advantages: the data structure is light and generally based on ijk
indexing, parallelization through domain decomposition method is straightforward and
multi-dimensional discretization schemes are constructed as a sum of one-dimensional
discrete operators. Their main limitation is the simplicity of the flow domain: a rectangle in
two dimensions or a cuboid in three dimensions.

Flows in complex geometries are solved (i) either on a boundary-fitted unstructured
grid [2,10] or (ii) on a regular Cartesian grid with additional spatially distributed forcing
terms or some local modifications of the discretization scheme in the vicinity of the solid
boundaries. The complexity of the geometry is generally related to either a flow domain
with complex external boundaries or a flow domain seeded with fixed obstacles, obstacles
with a prescribed motion or freely moving bodies, and applications are too numerous to be
listed here. In the context of particle-laden flows, our objective is the modelling of freely-
moving rigid particles in a complex fixed geometry such as a porous medium or a complex
network of tubes of variable cross-section. For the sake of brevity, we restrict our interest to
methods on regular Cartesian grids. The first family of methods that consider the fixed or
moving complex boundaries via forcing terms, essentially in the momentum conservation
equation, are all variants of fictitious domain method [11]. The most popular variants are,
among others, the Immersed Boundary method [12,13] and its own sub-variants [14–16],
the Distributed Lagrange Multiplier/Fictitious Domain method [17–20] or the viscosity
penalization method [21,22]. The second family of methods modifies the discretization
scheme in the vicinity of the boundaries and explicitly incorporate the boundary condition
to the scheme. This can be achieved in a conservative way using a Finite Volume embedded
boundary/cut cell method [23–25] or in a non-conservative way using a Finite Difference
method [26]. The modifications associated to the embedded boundary/cut cell method
in the cells cut by the solid boundary are rather advanced and not straightforward to
implement while the modifications associated to the Finite Difference operators close to
the solid boundary that are applied per direction are pretty easy to implement provided
the complex boundary is described on the grid in such a way that one-directional distance
queries can be efficiently answered.

One popular type of operator-splitting technique involves splitting a multi-dimensional
operator such as the diffusive Laplacian operator into a sum of one-dimensional Lapla-
cian operators. This was pioneered by Peaceman and Rachford for the solution of two-
dimensional parabolic problems [27] and later extended to any dimension by Douglas [28].
Such a direction-splitting technique is also referred to as Alternative Direction Implicit
(ADI) in the literature. In the context of projection methods for the incompressible Navier-
Stokes equations, direction-splitting can be applied to the predictor step that solves the
momentum conservation equation for a known pressure field. In fact, when the advective
term is treated explicitly as is often the case, this equation is parabolic and therefore a
fully eligible candidate to ADI (see, e.g., [29]). Consequently, the predictor step becomes
a sequence of one-dimensional problems that can be highly efficiently solved in parallel.
The brilliant idea that Guermond and Minev proposed in 2011 in [30] involves extend-
ing direction-splitting to the pressure Poisson problem via the introduction of a slightly
modified Laplacian operator. The main advantage is that the whole procedure of solving
the incompressible Navier-Stokes equations now relies on a sequence of one-dimensional
parabolic problems for both the velocity and the pressure that are very efficiently solved in
parallel via one-dimensional domain decomposition. The minor drawback is that the veloc-
ity field is very mildly non-divergence free. There is no doubt that Guermond and Minev’s
direction-splitting method is much faster than solving the original three-dimensional pres-
sure Poisson problem (that is elliptic and not parabolic) and in [31] the same authors even
showed that their direction-splitting method scales better in parallel than Fast Fourier
Transform based method. At that point, Guermond and Minev’s direction-splitting method
on regular Cartesian grid can be used as a standard Navier-Stokes solver and combined to
any aforementioned fictitious domain methods to compute the flow in complex geometries.

Fluids 2023, 8, 86 3 of 28

However, Mined published in 2013 with Keating [26] an extension of the direction-splitting
method that he designed with Guermond to complex geometries through the modifica-
tion of the Finite Difference discretization scheme closed to the solid boundaries. This
extension combines different ideas, namely operator-splitting, direction-splitting and one-
dimensional boundary-fitted Finite Difference discretization scheme. The method is both
second-accurate in space and time and scales extremely well on a large number of cores. It
is therefore an ideal method for massively parallel computations of incompressible flows
in complex geometries.

In this paper, we implement the method of Keating and Minev [26] in our numerical
platform PacIFiC and discuss the extension to complex geometries via Standard Triangle
Language (STL) files and very large scale computing over O(10, 000) cores. The rest of the
paper is organized as follows. We shortly summarize in Section 2 the main features of the
Direction-Splitting algorithm. We elaborate in Section 3 on the adopted methodology to
account for boundaries described by triangulated surfaces. We test the whole workflow for
complex geometries described by STL files in various flow configurations in Section 4 and
illustrate the large scale computing opportunities offered by our implementation in Section 5.
We briefly conclude and discuss our future line of research on this topic in Section 6.

2. Numerical Method
2.1. Governing Equations

The transport of mass and momentum in an incompressible fluid domain (Ω f) is
governed by the following set of conservation equations:

∇ · u = 0, in Ω f ,

ρ f
∂u
∂t

+ ρ f (u ·∇)u = −∇p + µ f∇2u + fb, in Ω f ,
(1)

where ρ f , µ f and fb are the fluid density, fluid viscosity and bodyterm, respectively. The
set of conservation equations is coupled with the equation of motion for the rigid bodies
given by:

m
dU
dt

= F + (ρs − ρ f)vpg,

dJpω

dt
= T ,

(2)

where m, vp, g, ρs, Jp, U and ω are rigid body mass, rigid body volume, gravitational vector,
solid density, moment of inertia tensor, rigid body velocity and rigid body angular velocity,
respectively. The contribution of inter-particle collision and hydrodynamic interactions
are included in the force (F) and torque (T) terms in the given equations. In the current
scope of work, we show the computational versatility of our method by assuming all rigid
bodies as fixed obstacles (i.e., U = 0, ω = 0) unless stated otherwise. A full demonstration
and validation of the fluid-solid momentum two-way coupling is provided in a companion
paper to appear soon.

2.2. Numerical Algorithm: Direction Splitting

The non-linear mass and momentum conservation equations are conventionally de-
coupled by the classical projection method. A perturbation form of the pressure-correction
projection method can be written as:

ρ f
∂uε

∂t
+ ρ f (uε ·∇)uε = −∇pε + µ f∇2uε + f b,

∆t∇2φε = ρ∇ · uε,

∆t
∂pε

∂t
= φε − µ f χ∇ · uε,

(3)

Fluids 2023, 8, 86 4 of 28

where ε = ∆t is the perturbation parameter and χ ∈ [0, 1] is the rotational parameter. The
solution of the pressure Poisson problem, i.e., the second equation, in Equation (3) requires
the solution of a linear system by inverting a matrix (heptadiogonal in the context of
Finite Difference/Finite Volume discretization scheme in three dimensions) using efficient
preconditioners such as the algebraic multigrid preconditioners from HYPRE [6]. However,
the computational efficiency of this scheme saturates on massively parallel platforms
(∼ O(1000) cores). Guermond and Minev [30] approximated the Laplacian operator with
−(1− ∂xx)(1− ∂yy)(1− ∂zz), where ∂aa = ∂2/∂a2 and a = x, y, z, to simplify a 3D problem
to three 1D problems. The set of simplified linear equations solved at each time step tn+1

are:

1. Similar to the fractional time stepping technique, we first predict the intermediate
pressure (p∗) at tn+1/2 written as:

p∗,n+
1
2 = pn− 1

2 + φn− 1
2 , (4)

2. Then, we use the predicted pressure and Laplacian approximation to estimate the
updated velocity (un+1).

ρ f
ξn+1 − un

∆t
− µ f (∂xxζn + ∂yyηn + ∂zzun) = f n+ 1

2
b −∇p∗,n+

1
2 − ρ f NL(un−1, un),

ρ f
ζn+1 − ξn+1

∆t
=

µ f

2
∂xx(ζ

n+1 − ζn),

ρ f
ηn+1 − ζn+1

∆t
=

µ f

2
∂yy(η

n+1 − ηn),

ρ f
un+1 − ηn+1

∆t
=

µ f

2
∂zz(un+1 − un).

(5)
The non-linear advective term (NL(un−1, un)) is explicitly approximated with a second-
order Adam-Bashforth discretization with conditional stability of |u∆t/∆x| < 0.35.

NL(un−1, un) =
3
2

un ·∇un − 1
2

un−1 ·∇un−1. (6)

3. Now, we project the updated velocity to a divergence-free space and solve the Poisson
problem. However, the Laplacian approximation makes the solution non-divergence-
free locally near the fluid-solid interface. The correction in the pressure φn+ 1

2 is
calculated using following equations:

θ − ∂xxθ = −
ρ f λmin

∆t
∇ · un+1,

ψ− ∂yyψ = θ,

φn+ 1
2 − ∂zzφn+ 1

2 = ψ.

(7)

The parameter λmin is considered to avoid the instabilities caused by the density
jumps near the fluid-solid interface, computed as:

λmin = min
{

1, min
∀ Ω

{
ρs,i

ρ f

∣∣∣
i∈[1,N]

}}
, (8)

4. Finally, the corrected pressure is taken to update the pressure pn+ 1
2 as follows:

pn+ 1
2 = pn− 1

2 + φn+ 1
2 −

µ f χ

2
∇ · (un+1 + un), (9)

Fluids 2023, 8, 86 5 of 28

where we consider the rotational parameter χ = 1 throughout our study to include
the velocity divergence as it improves the error estimates in terms of H1 norm for
velocity and L2 norm for pressure [32].

The time accuracy of the set of Equations (4)–(7) and (9) is O(∆t2), and we use second-
order spatial discretization using a Finite Volume (FV) method on PacIFiC, an in-house
C/C++ parallelizable library. The reader is referred to our future work for the imple-
mentation and benchmark of the Direction Splitting algorithm for solving the mass and
momentum conservation equations coupled with the rigid body equation of motion.

The corrections on second-order accurate diffusion and divergence stencils due to the
rigid bodies are taken into account using the velocity Dirichlet boundary condition on dΩ
and the intersection distance of fluid grid nodes with dΩ (see Keating and Minev [26] for
more details). The estimation of intersection distance is a two-step process:

• We first check the state of the computational grid node inside or outside the fluid
domain (Ω f), defined by an Indicator function (I):

I(x) =

{
1 x ∈ Ω f

0 x ∈ Ωs
, (10)

where x corresponds to the location of each computational grid node. We impose a
rigid body motion to the nodes with I = 0 (e.g., u = 0 for a non-moving geometry)
and the rest of the grid nodes (i.e., fluid grid nodes, I = 1) are considered for the flow
computation.

• The presence of the interface is detected by the indicator function I. It is the location
between two consecutive nodes where one node belongs to Ω f (I = 1) and the other
node belongs to Ωs (I = 0), or vice versa. The accurate intersection distance of the
neighbouring fluid node from dΩ is further estimated depending on the type of
rigid body.

In case a rigid body shape is represented by an analytical expression such as a sphere,
the intersection distance can be estimated numerically by defining a level set function
for the rigid body. However, the process of finding the distances is more challenging for
complex geometries defined by unstructured triangulated surfaces via STL files. In the next
section, we provide the details of the strategy developed for complex geometries described
by STL files.

3. Influence of Complex Geometries on Spatial Discretization

We extend the range of applications of the Direction Splitting method to complex
geometries that can be described using an unstructured triangulated surface. The STL
(Standard Triangle Language) format is widely used to represent triangulated surfaces. An
STL file lists the vertices of the triangles defining the triangulation and their associated
unit normal. In many fields involving flows in complex geometries, such as bio-fluid
dynamics (e.g., blood flows [33]) or porous media (e.g., petroleum, geology [34]), an STL
file describing the geometry is embedded into a flow solver.

The mapping of complex geometries by unstructured triangulations can be achieved
in two ways: (1) using Computer-aided design (test cases Sections 4.1, 4.2 and 4.4) with
enough information describing the geometry. This usually guarantees a certain quality
of generated triangulation, and (2) using imaging techniques such as CT scans and MRI
(e.g., a complex network of blood vessels, CT scans of rocks; see test case Section 4.3).
The volumetric image created by the stack of cross-sectional images represents the surface
topology, which is discretized in the triangulation using algorithms such as Delaunay,
frontal Delaunay or BAMG.

We now explain the methodology to consider the STL files in our Direction Splitting
(DS) solver to perform flow in complex geometries. We achieve this by imposing a no-
slip boundary condition on the triangulated surface. The framework of the present work

Fluids 2023, 8, 86 6 of 28

relies on using a triangulation embedded in a uniform or non-uniform Cartesian grid.
The domain inside and outside the triangulation corresponds to the fluid domain Ω f and
the solid domain Ωs, respectively (see Figure 1). The surface of the complex geometry
denoted dΩ behaves as a fluid-solid interface separating the grid nodes inside and outside
the triangulation.

Figure 1. Definition of the current framework. The fluid domain and the solid domain are defined by
Ω f and Ωs, respectively. dΩ denotes the fluid-solid interface.

In order to explore flow configurations with an STL file, the numerical algorithm briefly
presented in Section 2 requires the computation of indicator function (I) and intersection
distances at each computational grid node. Unfortunately, STL geometries are a collection
of triangulated surfaces, and the level set function cannot be easily defined. So, we calculate
the intersection distance by resolving the intersection of a triangulated surface and a
line connecting two grid nodes located on opposite sides of the triangulated surface.
Figure 2 shows the considered STL with the computational grid nodes, the position of
each node is defined with x(i, j, k), where i, j and k are the indexes in each x, y and z
direction, respectively.

Figure 2. STL file of a blood vessel positioned in a cuboid computational domain. The blue dots
correspond to the field (i.e., ux, uy, uz, p) nodes.

3.1. Indicator Function

We consider two grid nodes x1 = (x1, y1, z1) and x2 = (x2, y2, z2) as described in
Figure 3; x1 is located inside of the blood vessel (x1 ∈ Ω f) whereas x2 is located outside of
the vessel (x2 ∈ Ωs). The approach employed here is inspired by the ray-tracing techniques
widely used in computer graphics. The ray is defined for each grid node as the segment
connecting the node and its projection onto the xz plane. We then compute the number of
intersections between the ray and the set of triangles contained in the STL file. Assuming
that the geometry inlet and outlet are defined on two parallel planes orthogonal to the x

Fluids 2023, 8, 86 7 of 28

axis, if the number of intersections is odd, the node belongs to the fluid domain, or to the
solid domain otherwise. In Figure 3, the segment connecting x1 and (x1, 0, z1) intersects
three times the triangulation, so I(x1) = 1 while the segment connecting x2 and (x2, 0, z2)
intersects four times the triangulation and thus I(x2) = 0. The sequence of instructions
leading to the computation of I is listed in the Algorithm 1 below.

Algorithm 1 Computation of the indicator function (I) on a grid of size Nx × Ny × Nz.

1: for i=1:Nx do
2: for j=1:Ny do
3: for k=1:Nz do
4: xR1 ← (x(i), y(j), z(k)) . we build the two extremities of the ray
5: xR2 ← (x(i), 0, z(k))
6: for s ∈ T do . assuming T is the set containing the triangles
7: if intersection(s,xR1 ,xR2) then
8: nint ← nint + 1 . number of intersections
9: end if

10: end for
11: if nint is even then
12: I(i, j, k)← 0
13: else if nint is odd then
14: I(i, j, k)← 1
15: end if
16: nint ← 0
17: end for
18: end for
19: end for

Figure 3. Ray-tracing approach employed for two nodes located at (x1, y1, z1) and (x2, y2, z2):
(a) front and (b) top-left views of the blood vessel.

Fluids 2023, 8, 86 8 of 28

3.2. Fluid-Solid Interface Distances

We consider two neighbouring nodes along any direction: for example (xi, yj, zk) and
(xi, yj+1, zk) or (xi, yj, zk) and (xi+1, yj, zk) as seen in Figure 4. The diffusion and divergence
stencils have to be modified if the STL surface, i.e., the fluid-solid interface, is detected
between two neighbouring nodes. We achieve this by computing the distance between the
node located in the fluid domain and the intersection between a segment connecting the
two nodes and the triangle located between the fluid and solid nodes. If the interface is
located between two nodes aligned in the x,y or z direction, we denote that distance dx, dy
or dz respectively (Figure 4). This approach ensures that the no-slip boundary condition is
imposed at the interface.

Figure 4. Computation of the distances between the grid node and the intersecting triangles in both
x and y directions denoted respectively dx and dy.

3.3. Optimization of the Method

The computation of the indicator function and distances requires in terms of imple-
mentation to loop through the whole set of triangles to determine how many of them
intersect a given ray (indicator function) or which triangle is located between a given pair
of solid and fluid nodes (computation of distances). The computation of these geometric
quantities is performed only once at a pre-step before the simulation as we assume that the
rigid boundaries defined by STL files do not move, but the the associated computing time
can be significant for very large triangulations (usually more than 105 triangles). Given the
two following observations:

• The rays used to compute the indicator function are by definition parallel to the y axis.
• For a given pair of nodes, the node-triangle distance is computed along a line either

parallel to the x, y or z axis.

We can reduce the list of triangles to loop through by introducing evenly sized sub-
divisions of the computational domain along the three directions. Each subdivision is an
axis-aligned cuboid that contains a subset of the triangulation, as depicted in Figure 5. For
the sake of simplicity, we sketched here subdivisions of the domain in two dimensions only.
For a given node, the rectangles of interest are the ones located in the subdivision, along the y
direction if we need to compute the indicator function, or along x,y or z if we need to compute
a node-triangle distance. The size of the subdivision in each direction shall be chosen large
enough such that no interference with the intersection function (ray-triangle) occurs.

Fluids 2023, 8, 86 9 of 28

Figure 5. (a) Subdivision of the computational domain along y into 5 subdivisions: Hx1 , . . . , Hx5 . If a
node belongs to Hx3 , the loop over the set of triangles is reduced to the triangles belonging to Hx3 .
(b) Subdivision of the computational domain along x into 3 subdivisions: Hy1 , . . . , Hy2 . If a node
belongs to Hy2 , the loop over the set of triangles is reduced to the triangles belonging to Hy2 .

This optimization is possible due to the formalism of the Direction Splitting method
that does not rely on any 3D distance computation which significantly decreases the
computing time of the pre-step. In order to assess the efficiency of this optimization, we
generate an STL file describing a sphere located at the center of a cubic computational
domain. We carry out three simulations to measure the computing time of the pre-step. The
three simulations correspond to three levels of STL refinement with 20× 103, 100× 103 and
200 × 103 triangles respectively for small, medium and large triangulations. The wall time
is measured for multiple realizations using a single computing core for a computational
grid of 501 × 501 × 501 nodes. We subdivide the cubic computational domain into cuboids
of equal size along each direction, Ns is the number of subdivisions in each direction.
Table 1 shows the wall time measurements for multiple combinations of Ns and the number
of triangles. The results clearly highlight the high efficiency of the optimization, reducing
the wall time by a factor of 150, 36 and 17 for the small, medium and large triangulation,
respectively.

Table 1. Wall-time (sec) of the pre-step for small, medium and large triangulations, and an increasing
number of subdivisions, ranging from Ns = 1 to Ns = 20.

Number of Triangles Ns = 1 Ns = 5 Ns = 10 Ns = 20

20 × 103 300.2 18 5.2 2.2

100 × 103 550.7 45.1 35.2 15.2

200 × 103 920.9 108 78.4 55.2

Fluids 2023, 8, 86 10 of 28

4. Numerical Tests in Complex Geometries Described by STL Files

We consider flow configurations where the boundary of the flow domain is defined
by triangulated surfaces. The simulations require the use of Cartesian grids, so the flow
domain is embedded in a larger cuboid domain fully containing the triangulation. Surface
triangulations used in Sections 4.1 and 4.2 are generated and exported as STL files using
the open-source meshing tool Gmsh [35]. The STL file used in Section 4.3 was downloaded
from the digital Rocks portal: https://www.digitalrocksportal.org/projects/79/origin_
data/312/ (accessed on 1 June 2022).

4.1. Poiseuille Flow in a Pipe

We place an axisymmetric cylinder of diameter Dc = 2Rc = 1 and length L = 4 in
a cuboid domain. Periodic boundary conditions are set at x = 0 and x = 4. The flow is
driven by an imposed constant pressure gradient. The associated Reynolds number based
on the centerline velocity is Re = 2.5. Arbitrary no-slip boundary conditions are set on the
remaining faces of the cuboid.

We introduce the two parameters of interest for this test case: the number of grid nodes
along the cylinder diameter Dc/∆x and the number of triangles along the cylinder diameter
Dc/∆ct, with ∆ct the characteristic size of a given triangle defined as the length of the
triangle smallest edge. Dc/∆ct describes the level of refinement of the STL file. As shown in
Figure 6, the triangulation is built by mapping the surface of the cylinder with quadrilateral
elements using a Delaunay algorithm; the triangulation is then simply obtained by dividing
each quadrilateral element into two triangles of the same size. The mapping obtained is
thus composed of triangles of the same size, resulting in a constant value of ∆ct across
the triangulation. This allows us to directly investigate the influence of this parameter
on the results: a potential disparity of the values of ∆ct across the triangulation may
affect the simulation results but this analysis is not considered here. For all remaining
test cases presented in this work, we always manage to generate a triangulation with
relatively evenly sized triangles, so we can reasonably assume a unique value of ∆ct for the
whole triangulation.

Figure 6. STL triangulations of the pipe wall, left to right: Dc/∆ct = 6, 24 and 96.

Simulations are run for Dc/∆x = {6, 12, 24, 48, 96} and Dc/∆ct = {6, 12, 24, 48, 96}.
Figure 7 shows the streamwise component of the velocity ux scaled with the centerline
velocity umax of the solution as a function of the radial distance r/Rc, as well as the
analytical solution us of the Poiseuille flow in an axisymmetric pipe. Each plot corresponds
to one value of the ratio Dc/∆ct = 6, 24 or 96. As seen in Figure 6, for Dc/∆ct = 6
the STL triangulation barely describes the shape of an axisymmetric cylinder, therefore
the computed profiles cannot be expected to converge towards the analytical solution us.
We however observe that the computed profiles show a converging behaviour. As the
STL triangulation describes more and more accurately an axisymmetric cylinder, i.e., for
increasing values of Dc/∆ct = 24 and 96, the profiles show really good agreement with
the analytical solution us. We can also highlight that a monotone behaviour for increasing
values of Dc/∆x is observed for each plot. Finally, for all plots, while the relative difference

https://www.digitalrocksportal.org/projects/79/origin_data/312/
https://www.digitalrocksportal.org/projects/79/origin_data/312/

Fluids 2023, 8, 86 11 of 28

of the profiles corresponding to Dc/∆x = 6, 12 and 24 with respect to the analytical solution
us can be easily noticed, this difference is insignificant for Dc/∆x = 48 and 96.

(a)

(b)

(c)

Figure 7. Influence of the grid refinement Dc/∆x = 6, 12, 24, 48 and 96 on the convergence of the
velocity profiles: (a) Dc/∆ct = 6, (b) Dc/∆ct = 24, (c) Dc/∆ct = 96.

We pursue the analysis by showing in Figure 8 on the same plot the velocity profiles
for different ratios Dc/∆ct, where each plot corresponds to a given value of Dc/∆x (6, 24
or 48) with increasing Dc/∆ct. The results show that for the smallest ratio Dc/∆x = 6, a
good agreement with the analytical solution us can be achieved if the STL triangulation
is well defined enough, for Dc/∆ct > 6. Also, the relative difference with the analytical
solution us decays as Dc/∆ct increases and seems to be reaching a limit. This limits tends
to be more and more shifted towards the analytical solution us as Dc/∆x increases, as this
limit quantifies how well the curvature of the axisymmetric cylinder is described. The
agreement with the solution is increasingly better for Dc/∆x = 24 and Dc/∆x = 48. The
relative difference with the analytical solution us is noticeable for Dc/∆ct = 6 across all
plots, due to the fact that this ratio is critically low for the representation of the curvature of

Fluids 2023, 8, 86 12 of 28

an axisymmetric cylinder. The results associated to Dc/∆x = 96 are not showed here but
an excellent agreement with the solution is obtained, except for Dc/∆ct = 6.

Figure 8. Influence of the triangle characteristic size ∆ct on the convergence of the velocity profiles:
(a) Dc/∆x = 6, (b) Dc/∆x = 24, (c) Dc/∆x = 48.

Figure 9 shows the combined influence of both ratios Dc/∆x and Dc/∆ct. The norm of
the relative error scaled by the velocity of the analytical solution us at the centerline ||ux −
us||2/||umax||2 is reported as a function of Dc/∆x; each line corresponds to simulations
performed with the same STL file. Second order convergence is observed for all Dc/∆ct > 6
until ∆ct < ∆x. For ∆ct > ∆x, the error slightly increases but stagnates, and remains of the
same order of magnitude as the error corresponding to ∆x ' ∆ct. The optimal choice for
∆x and ∆ct is thus defined as ∆x ∼ ∆ct, or at least we shall ensure that ∆ct < ∆x. These
final results determine the level of refinement of the STL files, since usually the ratio Dc/∆x
is chosen beforehand.

Fluids 2023, 8, 86 13 of 28

Figure 9. Combined influence of the ratios Dc/∆ct and Dc/∆x on the convergence of the method.

4.2. Flow in a Wavy Channel

We consider a flow in a bi-periodic channel in x and z directions (Figure 10). The top
wall of the channel is a flat surface, while the bottom wall is a wavy surface parameterized
by the function f (x, z):

f (x, z) = A cos(πx)sin(πz) (11)

We set the amplitude of the wave to A = 0.2. We denote by h the average height of the
channel, while hl and hs denote respectively the largest and smallest vertical amplitude of
the channel bottom wall to top wall. We set the average height of the channel to h = 1, thus
hl = 1.2 and hs = 0.8. The domain size is [0, 2]× [−0.2, 1]× [0, 2] and is embedded into a
cuboid. Periodic boundary conditions are set at x = 0 and x = 2, and at z = 0 and z = 2.
No-slip boundary conditions are applied at the bottom wavy wall and y = 1. The flow is
driven by an imposed constant pressure gradient. Assuming the pressure is normalized by
pre f = ρ f (ν/h)2, the normalized pressure gradient is set to dp

dz
h

pre f
= 300. We introduce a

Reynolds number based on the fluid maximal velocity: Remax = ρ f ||u||∞h/µ f = 31. We
set the time step magnitude such that the maximum CFL number is approximately 0.2.

The previous test case (Section 4.1) established the criteria ensuring a minimisation of
the computational error due to the integration of STL files in the Direction Splitting method:
the STL files used for this simulation are generated such that ∆ct < ∆x.

The purpose of this second test case is to compare the results provided by our solver
with reference data provided by Nek5000 [36], an open-source spectral element code
(SEM) developed at the Mathematics and Computer Science Division of Argonne National
Laboratory. The spatial discretization is based on the spectral element method [37], which
is a high-order weighted residual technique similar to the finite element method. SEM
methods are well known for their accuracy, providing us with reliable reference data
to compare our computed results to. The domain, initially a cuboid, is partitioned into
E = 20× 15× 20 = 6000 hexahedral spectral elements of order N = 8, which corresponds
to the number of Gauss-Legendre-Lobatto (GLL) points per element along each direction.
We use a feature of Nek5000 that allows the modification of the mesh (initially a cuboid)
given some parametrization f (x, z). The modification is applied to the GLL points directly;
the modified mesh based on f is shown in Figure 10b. The simulation is run with Nek5000
until a steady state is reached, with a maximum CFL of 0.1.

Fluids 2023, 8, 86 14 of 28

(a) (b)

Figure 10. (a) STL triangulation corresponding to the semi-wavy configuration in x and y directions
considered for the simulations, (b) computational domain used in Nek5000.

We perform three simulations with the Direction splitting solver, corresponding to
hs/∆x = 24, 48 and 96, and waited for the results to converge to a steady state. We show
in Figures 11–14 snapshots of respectively ux and uy in a plane orthogonal to the z axis
located at z = 1.19, and ux and uz in a plane orthogonal to the y axis located at y = 0.15. ux
is scaled by the infinite norm across the plane of the x component of the reference solution
velocity ||uxNek ||∞, uy is similarly scaled by ||uyNek ||∞ and uz is similarly scaled by ||uzNek ||∞.
The snapshots compare the results provided by the Direction Splitting method with the
reference data (Nek5000). The results show excellent agreement with the reference data.

Figure 11. Contours of ux/||uxNek ||∞ at the steady state on a plane located at z = 1.19 orthogonal to
the z axis. Left: Nek5000, right: Direction Splitting, hs/∆x = 96.

Figure 12. Contours of uy/||uyNek ||∞ at the steady state on a plane located at y = 0.19 orthogonal to
the z axis. Left: Nek5000, right: Direction Splitting, hs/∆x = 96.

Fluids 2023, 8, 86 15 of 28

Figure 13. Contours of ux/||uxNek ||∞ at the steady state on a plane located at y = 0.15 orthogonal to
the y axis. Left: Nek5000, right: Direction Splitting, hs/∆x = 96.

Figure 14. Contours of uz/||uzNek ||∞ at the steady state on a plane located at y = 0.15 orthogonal to
the y axis. Left: Nek5000, right: Direction Splitting, hs/∆x = 96.

We also compare velocity profiles for ux, uy, uz along the lines intersecting the top
wall orthogonally and the points (x1 = 0.5, z1 = 0.75), (x2 = 1.0, z2 = 0.75) and
(x3 = 0.86, z3 = 0.92) (see Figure 15). (x1, z1) and (x2, z2) are chosen because they
are located respectively on the highest and lowest amplitude of the bottom wall, i.e.,
f (x1, z1) = 0.2 and f (x2, z2) = −0.2. uz = 0 at these locations so we select (x3, y3) to be
able to have a comparison for the third component of the velocity.

Figure 15. Definition of the 1D profiles used for the comparison with Nek5000.

Fluids 2023, 8, 86 16 of 28

Figure 16 and 17 show the components ux and uy of the velocity measured along the
line intersecting (x1, z1) and (x2, z2) respectively for each hs/∆x = 24, 48 and 96 and the
solution provided by Nek. ux is scaled by the infinite norm of the x component of the
reference solution velocity ||uxNek ||∞ along each line, uy is similarly scaled by ||uyNek ||∞.
Results in both figures show a converging trend with increasing hs/∆x and very satisfac-
tory agreement with the reference data for ux with a relative error less than 1%. Same
observations can be made for uy although the error is slightly higher, which is due to the
fact that we used linear interpolation to compute the velocity profiles, (x1, z1) and (x2, z2)
do not necessarily coincide with the grid nodes. Same comment applies to the reference
data, (x1, z1) and (x2, z2) are not necessarily located on the GLL points either. The uy
velocity profile exhibit sharper spatial variations than the ux velocity profile, especially in
the vicinity of its maximum value. We explored other methods of interpolation, but the
linear interpolation provided the best results. uz is not shown here since its value is zero
along the two profiles associated to (x1, z1) and (x2, z2) due to the flow symmetry across
the bumps in the z direction. The values of uz are reported to be less than 10−6 for both
profiles and for each hs/∆x.

Figure 16. Profiles of ux,uy and uz for h/∆x = 24, 48, 96 along the wall-normal direction, profile set
at (x1, z1).

Fluids 2023, 8, 86 17 of 28

Figure 17. Profiles of ux,uy and uz for h/∆x = 24, 48, 96 along the wall-normal direction, profile set
at (x2, z2).

Figure 18 shows the same analysis with a non-trivial uz in addition, scaled by ||uzNek ||∞.
Again, the agreement with the reference solution is excellent and a converging trend with
increasing hs/∆x is observed for each component. Concerning the slightly higher relative
error we observe for uy, the same observation regarding the use of linear interpolation can
be made.

4.3. Flow in a Porous Medium: Computation of the Permeability Coefficient in a Sandstone

We study the flow in a sandstone whose structure describes a porous medium. Per-
forming flow simulations in porous materials such as rocks or similar media is relevant
to many applications, such as oil recovery processes, soil infiltration, or pollutant leakage
in geological strata. The permeability of a material describes how much it resists the flow
of fluids. In oil-related industrial applications, an accurate measure of permeability is key
because the greater the permeability, the easier it is to extract oil from the rock.

The objective of this test case is to compute the permeability coefficient of a sandstone
medium. Darcy’s law describes the motion of a fluid through porous media: it states that
the flow rate is linearly proportional to the force driving the fluid. Darcy’s law can be
written as:

Q =
kA(Pout − Pin)

µ f L
(12)

with Q the volumetric flow rate (m3/s), k the permeability of the porous medium (m2), A
the cross-sectional area m2, (Pout − Pin) the pressure drop across the medium (Pa), µ f the

Fluids 2023, 8, 86 18 of 28

fluid viscosity (Pa· s) and L the domain length (m). The permeability coefficient is obtained
by setting a pressure drop and measuring the induced volumetric flow rate.

Figure 18. Profiles of ux,uy and uz for h/∆x = 24, 48, 96 along the wall-normal direction, profile set
at (x3, z3).

The computational domain is a planar 3D micromodel: the STL file is built by adding
thickness to a 2D image in the z direction as shown in Figure 19. The domain occupied
by the sandstone is [0, 1774] × [0, 1418] × [−12.27, 12.27] µm3. We simplify the STL file

Fluids 2023, 8, 86 19 of 28

provided by [34] by consequently reducing its size: we only need to ensure that the criteria
established in Section 4.1 ∆ct < ∆x is satisfied, there is no requirement to choose ∆ct very
small compared to ∆x. Given our framework the initial triangulation was unnecessarily
highly refined, leading to a high computing time for the pre-step at which the indicator
function is computed. Figure 19 shows the STL triangulation used for the simulations, and
we can observe that the triangles are relatively large on the front and back faces orthogonal
to the z axis (Figure 19a) which is of no importance since there are located on a planar
surface. The triangles mapping the pores of the sandstone are evenly sized (Figure 19b)
and verify for all simulations ∆ct < ∆x.

Figure 19. STL triangulation of the sandstone rock used in the simulations: (a) xy view and (b) yz
view showing a single triangle in the z direction.

Using the same approach as that employed in [34] , we embed the triangulation in a
cuboid domain but we append a buffer region to the inlet and outlet of the domain and
shorten the boundaries in the y direction by a thin layer, which makes the implementation
of boundary condition easier as shown in Figure 20. Without a buffer region, it would have
been required to provide an approach detailing how to write certain boundary conditions
(like a pressure drop) when the nodes located on the inlet and outlet boundaries belong
either to the fluid domain or to the solid domain (see Figure 20). Removing a thin layer in
the y direction allows to avoid edge effects of the STL triangulation. The buffer size is 2%
of the x length of the domain, the thin layer size represents 2% as well of the y length of
the domain. The size of the layers has been investigated and no influence on the results
is observed.

We impose a pressure drop along the x direction of the domain: (Pout − Pin) = 100 Pa.
Periodic boundary conditions are set in the z direction and wall boundary conditions are set
on the remaining faces of the cuboid. We define the Reynolds number as Re = ρ f udh/µ f ,
with ud the Darcy velocity (flowrate divided by the inlet/outlet area), and h the thickness
of the domain in the z direction. We set µ f = 10−3 Pa·s and ρ f =1000 kg·m−3. The
corresponding Reynolds number is Re = 0.002.

We perform simulations on 3 different grids: Nx × Ny × Nz = 720× 560× 2, 1440×
1120× 2 and 2880× 2240× 2. Two nodes only are required along the z periodic direction of
the domain. In order to study the influence of the time step magnitude on the permeability
measurement, we use three different time steps: ∆t = 10−6 s, ∆t/2 and ∆t/4. The maximum
CFL number is approximately 0.2. Once the steady state is reached (Figure 21), we compute
the permeability coefficient k. Figure 22 shows the permeability coefficient as a function
of Nx, for ∆t = 10−6 s, ∆t/2 and ∆t/4. Very satisfactory agreement with the permeability
coefficient value reported by the DNS simulations of [34] is observed. Reducing the time
step magnitude for the runs corresponding to the grid Nx × Ny × Nz = 720× 560× 2
did not improve the permeability measurement. This is due to the fact that for this grid
refinement, the smallest gaps of the domain are only meshed across 8 grid nodes, thus

Fluids 2023, 8, 86 20 of 28

spatially underesolving the fluid flow. For the two remaining grids, we observe that
reducing the time step magnitude decreases the relative error. Overall increasing Nx
improves the agreement with the value of k reported by [34].

(a)

(b)

Figure 20. Sketch of the flow configuration: (a) upstream part of the domain without any buffer
region and (b) full domain with inlet and outlet buffer regions and a thin layer removed in the y
direction.

Figure 21. Contours of ||u||2 (in m/s) at the steady state. The STL triangulation is also shown here in
light gray. (a) Whole computational domain, (b) zoomed view of the purple square as shown in (a).

Fluids 2023, 8, 86 21 of 28

Figure 22. Influence of the grid refinement on the permeability coefficient k.

4.4. Motion of a Rigid Spherical Particle in a Curved Pipe

This test includes the motion of a spherical particle in a fixed pipe (Figure 23). The
motion of the sphere is governed by the equation of motion (Equation (2)) combined to a
kinematic equation for the time evolution of the position of the center of mass of the sphere,
i.e., the trajectory of the sphere. Since the sphere never collides with the pipe wall, we do
not need to use any particle-wall collision model. Consequently, the force F and the torque
T in Equation (2) simply correspond to the hydrodynamic force and torque, respectively.
We also assume that the sphere is neutrally buoyant, i.e., ρs = ρ f , and we denote its radius
Rp, therefore the complete set of equations of the sphere motion is:

ρs
4
3

πR3
p

dU
dt

= F =
∫

dΩs
(−pI + µ f (∇u +∇ut)) · ndS,

ρs
8

15
πR5

p
dω

dt
= T =

∫
dΩs

Rpn×
(
(−pI + µ f (∇u +∇ut)) · n

)
dS,

dX
dt

= U,

(13)

where dΩs denotes the sphere surface, dS the elementary surface area, n the outwards oriented
unit normal vector to the sphere surface, .t the transposed operator, I the identity matrix
and X the position of the center of mass of the sphere. F and T are computed by accurate
numerical integration of the fluid stress tensor on the sphere surface. For the purpose of
numerical integration, the sphere surface is discretized in a set of non-overlapping rectangles
of approximately same surface area and a 2D mid-point rule is applied in each rectangle,
leading to second order spatial accuracy. We use the method of level set and triangular
intersections for sphere and STL, respectively, for I and intersection distance calculations
to showcase the applicability of the DS solver in a complex flow configuration with STL
geometries (here the curved pipe) and simple particle shapes (here the sphere).

The cross-section of the pipe is a disk of radius Rc = 1. The y position of the centerline
of the pipe is parameterized by g(x) = A sin(x/2) with A = 1.2Rc = 1.2. The pipe
is embedded into a cuboid computational domain of size [0, 4πRc] × [−2.5Rc, 2.5Rc] ×
[−1.5Rc, 1.5Rc]. Periodic boundary conditions are set at the inlet and outlet of the curved
pipe; wall boundary conditions are set elsewhere. We set Rp = 0.3 and initially locate
the sphere at (xp/Rc, yp/Rc, zp/Rc) = (1, 0.5, 0), slightly below the centerline. The flow
is driven by an imposed constant pressure gradient and the particle is released at rest
at t = 0. We carry out two simulations corresponding to two fluid Reynolds numbers

Fluids 2023, 8, 86 22 of 28

(based on the fluid maximal velocity Re = ρ f ||u||∞2Rc/µ f) of Re = 12 and Re = 115.
The associated particle Reynolds numbers based on the particle maximal velocities Rep =
ρ f ||up||∞2Rp/µ f are respectively Rep = 3 and Rep = 30. The maximum ||u||∞ and
||up||∞ are computed over all time iterations. The ratio of grid nodes per diameter is set
such that 2Rc/∆x = 24. The time step magnitude is set such that the maximum CFL is
0.25. We also test for the same flow conditions a different initial position for the particle
(xp/Rc, yp/Rc, zp/Rc) = (1, 0.1, 0), i.e., more shifted below the centerline, for the case
corresponding to Re = 113. The values of the maximum fluid and particle Reynolds
numbers remain close for both initial positions of the particle, the slight difference (113
compared to 115) is only due to the transient flow and transient trajectory that depend on
the particle initial position.

Figure 23. STL triangulation of the pipe wall used in the simulations.

A snapshot of the flow field is shown in Figure 24. In the absence of buoyancy, the
motion of the particle is entirely governed by the hydrodynamic force and torque exerted
by the fluid flow on the particle. The flow carries the particle, and thus the particle relative
velocity with respect to the fluid is relatively low. This causes a limited footprint of the
particle on the flow, as seen in Figure 24.

Figure 24. Snapshot of ||u||2/||u||∞ for Re = 115 and (xp/Rc, yp/Rc, zp/Rc) = (1, 0.5, 0) as the
initial position of the particle in the pipe.

We report in Figure 25 the y component of the particle position as a function of x in
the xy plane, both scaled with the pipe radius Rc. No particle motion across the z axis was
observed. The pipe is periodic and the particle is relocated at the entrance of the domain
after completing a whole period. Each period is labelled separately as shown in Figure 25;
e.g., Nrep = 3 corresponds to the third crossing in the fluid domain. We observe that for
the lowest Reynolds number Re = 12, even if the particle position is slightly shifted off the
centerline, we can reasonably affirm that the particle follows the center streamline. Across
all periods, the trajectories are identical. Inertial effects play a larger role for Re = 115: the
particle center intersects multiple times the centerline before finally settling in the lower

Fluids 2023, 8, 86 23 of 28

part of the pipe and moving along the same path, with the plots corresponding to Nrep = 5
and 6 overlapping perfectly.

(a)

(b)

Figure 25. Trajectory of the particle in the xy plane, sequenced as periods (colored lines). (a) Re = 12,
(b) Re = 115. The red cross indicates the initial particle position, the bold black lines correspond to
the pipe interface, and the dashed black line correspond to the centerline of the pipe.

We shifted the particle in the y direction towards the lower part of the pipe for the
case corresponding to Re = 113. We can observe that for this initial position the particle
center does not intersect the centerline (Figure 26). After the first period, the particle
repeatedly moves along the same path in the channel. These observations highlight the
strong influence of the particle initial position over the transient of the particle trajectory,
potentially preventing it from any cross-centerline migration. Please note that the steady-
state trajectory of the particle in the pipe is independent of its initial position, as expected.
Indeed, trajectory Nper = 6 in Figure 25b is similar to trajectory Nper = 6 in Figure 26.
While a thorough analysis of the particle trajectory is beyond the scope of the present
paper, we postulate that the off-centered trajectory of the particle in the inertial case
Re = O(100) is the result of the Segre-Silberberg effect [38] combined to the curvature of
the pipe. Investigating the migration potential of a set of particles is key in numerous fields
of application, especially in microfluidics, a field in which we intend to use the method
presented in this work.

Fluids 2023, 8, 86 24 of 28

Figure 26. Trajectory of the particle in the xy plane, sequenced as periods (colored lines), case
Re = 113. The red cross indicates the initial particle position, the bold black lines correspond to the
pipe interface, and the dashed black line correspond to the centerline of the pipe.

5. Massively Parallel Computing: Flow through a Random Array of Spheres

In this test case, we study the flow in a complex configuration of randomly generated
spheres. Data of similar computations have been used recently for estimating and predicting
force fluctuations using probability-driven point-particle model [39] and physics-inspired
neural network [40,41]. The models are advanced in estimating the force fluctuations
and providing an overall framework. Still, they need large datasets due to the curse of
dimensionality and often risk over-prediction of the force coefficients. The particle-resolved
direct numerical simulations of flow past a random array of spheres are computationally
expensive using a solver based on a projection algorithm [19], which only generates O(1000)
data points without losing the computational efficiency on many cores. Our Direction
Splitting algorithm scales till ∼7000 cores contrary to the scaling (∼500 cores) of the
projection algorithm, which motivates us to generate O(100,000) data points from only one
simulation using our DS solver (equivalent to the data points of 100 simulations using a
projection solver).

We randomly generate 144,327 spheres in a computational domain periodic in each
x,y and z direction as illustrated in Figure 27a. The size of the computational domain
is 71.4dp × 84dp × 84dp where dp denotes the sphere diameter. The resulting solid void
fraction is φ = 0.15. We impose a constant pressure gradient in the x-direction to generate a
steady flow at Reynolds number Re = 19.2 where Re is computed with dp and the average
streamwise x velocity component. The rigid spheres are resolved on the computational grid
with 24 grid points per sphere diameter. In a companion paper to appear soon, we have
validated the DS solver for multiple flow configurations, including the flow past a random
array of spheres, and a grid resolution of 20 to 40 points per diameter has proven to provide
converged results for Re < 50. Figure 27b shows a domain section with the computational
grid and randomly generated spheres. The 24 grid points per sphere diameter spatial
resolution results in a total number of grid cells of 1700 × 2000 × 2000 = 6.8 billion,
corresponding to 6.8 billion and 20.4 billion degrees of freedom for pressure (p) and velocity
(u, v, w), respectively. We use 6800 computing cores on the high-performance computing
platform Sockeye available at the University of British Columbia and accordingly distribute
1 million grid cells in each sub-domain, i.e., on each core. A non-dimensional time-step of
10−3 is used for the time iterations, and a steady state is defined when the relative change
of the L2 norm of the flow field drops below 10−3. The computation took less than two
days to complete and such an extremely large data set is unprecedented in the literature
as far as the authors of this paper know. To show that our solver indeed scales very well,
we report in Table 2 weak scaling results. Each node on Sockeye comprises 40 cores and
we compute two additional similar flow configurations (i.e., same Re = 19.2 and same
φ = 0.15) but on a smaller domain where the load of 1 million grid cells per sub-domain is
maintained. We report in the fifth column of Table 2 the average run time per time step for

Fluids 2023, 8, 86 25 of 28

the three flow domains. On 170 nodes, our solver still performs very well and the scalability
is 9.279/12.18 ' 0.76 when compared to the computation on 1 node.

(a) (b)

Figure 27. (a) Computational domain showing all rigid spheres. (b) Sub-domain on a single comput-
ing core showing well-resolved spheres with a grid resolution of 24 grid points per diameter.

Table 2. Weak scaling results in the flow through a random array of spheres at Re = 19.2 and
φ = 0.15.

Number of
Nodes

Number of
Cores

Number of
Cells

Number of
Spheres

Run Time per
Time Step (s)

1 40 40,000,000 849 9.279

8 320 320,000,000 6792 9.924

170 6800 6,800,000,000 144,327 12.18

The large and rich data set we generate in the largest flow configuration with 144,327
spheres enables to plot very accurate probability density functions of force and torque
distributions, and should be able to partly solve the problem of paucity of data when
training advanced data-driven models of force and torque fluctuations.

Figure 28 shows the flow profile around the rigid spheres at a steady state. The
complexity of the overall flow field is not evident due to the large-scale simulation. So
multiple clipped sections, each accounting for 0.4% of the computational domain, are
shown in the sub-figures with the streamlines and flow profile on the orthogonal planes.
The objective of this section is not to carry out a detailed analysis of this unique data set,
which would go far beyond the scope of the present paper, but to illustrate the potential of
our DS solver to perform computations on O(10, 000) cores and O(1010) grid cells. This
opens up unprecedented opportunities to efficiently produce huge data sets of flows past
random arrays of obstacles.

Fluids 2023, 8, 86 26 of 28

Figure 28. Flow visualization in multiple sub-domains at the steady state. The streamlines and rigid
spheres for each sub-domain are shown in the sub-images.

6. Conclusions and Perspectives

We implemented the Direction Splitting method of Keating and Minev in our platform
PacIFiC to solve the incompressible Navier-Stokes equations in a flow domain with a
complex geometry and created a workflow that enables us to import complex geometries via
external STL files. We successfully validated the workflow on various test cases including
a test case where we combine the consideration of fixed boundaries described by a STL
file and a freely moving rigid body described by an analytical function. We also examine
the large scale computing capabilities of the Direction Splitting method in a test case with
complex boundaries that is multiple times larger than the largest single phase flow test
case presented in [31].

Overall, our implementation of the Direction Splitting method that allows the de-
scription of complex geometries via STL files has been shown to be accurate, reliable and
efficient. Such an implementation opens up unprecedented opportunities for large-scale
computing in complex geometries. A companion paper to appear soon aims at providing
more details and additional validation tests on our implementation of the Direction Split-
ting method. Future work in our group will target to use the Direction Splitting solver to
produce data in various particle-laden flow configurations and analyse these data to infer
new physical understanding, as well as coupling it to an Immersed Boundary Method and
a solver for deformable biological capsules in order to compute the transport of red blood
cells in complex network of capillaries [33].

Author Contributions: Conceptualization, A.W.; methodology, A.M. and A.G.; software, A.M., A.G.
and A.W.; validation, A.M. and A.G.; investigation, A.M. and A.G.; resources, A.W.; writing—original
draft preparation, A.M. and A.G.; writing—review and editing, A.W.; visualization, A.M. and A.G.;
supervision, A.W.; project administration, A.W.; funding acquisition, A.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC) via Anthony Wachs’ New Frontiers in Research Fund grant NFRFE-2018-01922.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This research was enabled by support provided by Compute Canada through
Anthony Wachs’s 2020 and 2021 Computing Resources for Research Groups allocation qpf-764-
ac. This research was also supported through computational resources and services provided by
Advanced Research Computing at the University of British Columbia.

Fluids 2023, 8, 86 27 of 28

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Glowinski, R.; Le Tallec, P. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics; Society for Industrial and

Applied Mathematics: Philadelphia, PA, USA, 1989.
2. Glowinski, R. Finite element methods for incompressible viscous flow. Handb. Numer. Anal. 2003, 9, 3–1176.
3. Chorin, A.J. Numerical solution of the Navier-Stokes equations. Math. Comput. 1968, 22, 745–762. [CrossRef]
4. Armfield, S.; Street, R. An analysis and comparison of the time accuracy of fractional-step methods for the Navier–Stokes

equations on staggered grids. Int. J. Numer. Methods Fluids 2002, 38, 255–282. [CrossRef]
5. Guermond, J.L.; Minev, P.; Shen, J. An overview of projection methods for incompressible flows. Computer Methods Appl. Mech.

Eng. 2006, 195, 6011–6045. [CrossRef]
6. Falgout, R.D.; Yang, U.M. HYPRE: A Library of High Performance Preconditioners. In Computational Science—ICCS 2002. Lecture

Notes in Computer Science; Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J., Eds.; Springer: Berlin/Heidelberg, Germany,
2002; Volume 2331. [CrossRef]

7. Ghia, U.; Ghia, K.N.; Shin, C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid
method. J. Comput. Phys. 1982, 48, 387–411. [CrossRef]

8. Thompson, M.C.; Ferziger, J.H. An adaptive multigrid technique for the incompressible Navier-Stokes equations. J. Comput. Phys.
1989, 82, 94–121. [CrossRef]

9. Popinet, S. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 2015, 302, 336–358.
[CrossRef]

10. Eymard, R.; Gallouët, T.; Herbin, R. Finite volume methods. Handb. Numer. Anal. 2000, 7, 713–1018.
11. Wachs, A. Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive,

and non-spherical rigid bodies. Acta Mech. 2019, 230, 1919–1980. [CrossRef]
12. Peskin, C. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [CrossRef]
13. Mittal, R.; Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [CrossRef]
14. Mohd-Yusof, J. Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries; Technical Report,

CTR Annual Research Brief; Stanford University: Stanford, CA, USA, 1997.
15. Roma, A.; Peskin, C.; Berger, M. An adaptive version of the immersed boundary method. J. Comput. Phys. 1999, 153, 509–534.

[CrossRef]
16. Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 2005,

209, 448–476. [CrossRef]
17. Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int.

J. Multiph. Flow 1999, 25, 755–794. [CrossRef]
18. Yu, Z.; Shao, X.; Wachs, A. A fictitious domain method for particulate flows with heat transfer. J. Comput. Phys. 2006, 217, 424–452.

[CrossRef]
19. Wachs, A.; Hammouti, A.; Vinay, G.; Rahmani, M. Accuracy of Finite Volume/Staggered Grid Distributed Lagrange Multiplier/Fictitious

Domain simulations of particulate flows. Comput. Fluids 2015, 115, 154–172. . [CrossRef]
20. Selcuk, C.; Ghigo, A.R.; Popinet, S.; Wachs, A. A fictitious domain method with distributed Lagrange multipliers on adaptive

quad/octrees for the direct numerical simulation of particle-laden flows. J. Comput. Phys. 2021, 430, 109954. [CrossRef]
21. Ritz, J.; Caltagirone, J. A numerical continuous model for the hydrodynamics of fluid particle systems. Int. J. Numer. Methods

Fluids 1999, 30, 1067–1090. [CrossRef]
22. Vincent, S.; Brändle de Motta, J.; Sarthou, A.; Estivalezes, J.L.; Simonin, O.; Climent, E. A Lagrangian VOF tensorial penalty

method for the DNS of resolved particle-laden flows. J. Comput. Phys. 2014, 256, 582–614. [CrossRef]
23. Chung, M.H. Cartesian cut cell approach for simulating incompressible flows with rigid bodies of arbitrary shape. Comput. Fluids

2006, 35, 607–623. [CrossRef]
24. Hartmann, D.; Meinke, M.; Schröder, W. A strictly conservative Cartesian cut-cell method for compressible viscous flows on

adaptive grids. Comput. Methods Appl. Mech. Eng. 2011, 200, 1038–1052. [CrossRef]
25. Meinke, M.; Schneiders, L.; Günther, C.; Schröder, W. A cut-cell method for sharp moving boundaries in Cartesian grids. Comput.

Fluids 2013, 85, 135–142. [CrossRef]
26. Keating, J.; Minev, P. A fast algorithm for direct simulation of particulate flows using conforming grids. J. Comput. Phys. 2013,

255, 486–501. [CrossRef]
27. Peaceman, D.W.; Rachford Jr., H.H. The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math.

1955, 3, 28–41. [CrossRef]
28. Douglas, J. Alternating direction methods for three space variables. Numer. Math. 1962, 4, 41–63. [CrossRef]
29. Yu, Z.; Phan-Thien, N.; Tanner, R. Dynamic simulation of sphere motion in a vertical tube. J. Fluid Mech. 2004, 518, 61–93.

[CrossRef]

http://doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1002/fld.217
http://dx.doi.org/10.1016/j.cma.2005.10.010
http://dx.doi.org/10.1007/3-540-47789-6_66
http://dx.doi.org/10.1016/0021-9991(82)90058-4
http://dx.doi.org/10.1016/0021-9991(89)90037-5
http://dx.doi.org/10.1016/j.jcp.2015.09.009
http://dx.doi.org/10.1007/s00707-019-02389-9
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
http://dx.doi.org/10.1006/jcph.1999.6293
http://dx.doi.org/10.1016/j.jcp.2005.03.017
http://dx.doi.org/10.1016/S0301-9322(98)00048-2
http://dx.doi.org/10.1016/j.jcp.2006.01.016
http://dx.doi.org/10.1016/j.compfluid.2015.04.006
http://dx.doi.org/10.1016/j.jcp.2020.109954
http://dx.doi.org/10.1002/(SICI)1097-0363(19990830)30:8<1067::AID-FLD881>3.0.CO;2-6
http://dx.doi.org/10.1016/j.jcp.2013.08.023
http://dx.doi.org/10.1016/j.compfluid.2005.04.005
http://dx.doi.org/10.1016/j.cma.2010.05.015
http://dx.doi.org/10.1016/j.compfluid.2012.11.010
http://dx.doi.org/10.1016/j.jcp.2013.08.039
http://dx.doi.org/10.1137/0103003
http://dx.doi.org/10.1007/BF01386295
http://dx.doi.org/10.1017/S0022112004000771

Fluids 2023, 8, 86 28 of 28

30. Guermond, J.; Minev, P. A new class of massively parallel direction splitting for the incompressible Navier–Stokes equations.
Comput. Methods Appl. Mech. Eng. 2011, 200, 2083–2093. [CrossRef]

31. Guermond, J.; Minev, P. Start-up flow in a three-dimensional lid-driven cavity by means of a massively parallel direction splitting
algorithm. Int. J. Numer. Methods Fluids 2012, 68, 856–871. [CrossRef]

32. Guermond, J.L.; Shen, J. Velocity-Correction Projection Methods for Incompressible Flows. SIAM J. Numer. Anal. 2003, 41, 112–134.
[CrossRef]

33. Balogh, P.; Bagchi, P. A computational approach to modeling cellular-scale blood flow in complex geometry. J. Comput. Phys.
2017, 334, 280–307. [CrossRef]

34. Mehmani, Y.; Tchelepi, H.A. Minimum requirements for predictive pore-network modeling of solute transport in micromodels.
Adv. Water Resour. 2017, 108, 83–98. . [CrossRef]

35. Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J.
Numer. Methods Eng. 2009, 79, 1309–1331. [CrossRef]

36. Paul, F.; Fischer, J.W.L.; Kerkemeier, S.G. nek5000 Web Page. 2008. Available online: http://nek5000.mcs.anl.gov (accessed on 1
June 2022).

37. Patera, A.T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 1984,
54, 468–488. [CrossRef]

38. Segre, G.; Silberberg, A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation.
J. Fluid Mech. 1962, 14, 136–157. [CrossRef]

39. Seyed-Ahmadi, A.; Wachs, A. Microstructure-informed probability-driven point-particle model for hydrodynamic forces and
torques in particle-laden flows. J. Fluid Mech. 2020, 900, A21. [CrossRef]

40. Seyed-Ahmadi, A.; Wachs, A. Physics-inspired architecture for neural network modeling of forces and torques in particle-laden
flows. Comput. Fluids 2022, 238, 105379. [CrossRef]

41. Siddani, B.; Balachandar, S. Point-particle drag, lift, and torque closure models using machine learning: Hierarchical approach
and interpretability. Phys. Rev. Fluids 2022, 8, 014303. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cma.2011.02.007
http://dx.doi.org/10.1002/fld.2583
http://dx.doi.org/10.1137/S0036142901395400
http://dx.doi.org/10.1016/j.jcp.2017.01.007
http://dx.doi.org/10.1016/j.advwatres.2017.07.014
http://dx.doi.org/10.1002/nme.2579
http://nek5000.mcs.anl.gov
http://dx.doi.org/10.1016/0021-9991(84)90128-1
http://dx.doi.org/10.1017/S0022112062001111
http://dx.doi.org/10.1017/jfm.2020.453
http://dx.doi.org/10.1016/j.compfluid.2022.105379
http://dx.doi.org/10.1103/PhysRevFluids.8.014303

	Introduction
	Numerical Method
	Governing Equations
	Numerical Algorithm: Direction Splitting

	Influence of Complex Geometries on Spatial Discretization
	Indicator Function
	Fluid-Solid Interface Distances
	Optimization of the Method

	Numerical Tests in Complex Geometries Described by STL Files
	Poiseuille Flow in a Pipe
	Flow in a Wavy Channel
	Flow in a Porous Medium: Computation of the Permeability Coefficient in a Sandstone
	Motion of a Rigid Spherical Particle in a Curved Pipe

	Massively Parallel Computing: Flow through a Random Array of Spheres
	Conclusions and Perspectives
	References

