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Abstract: The aim of this investigation is to show the solution for the critical Reynolds number in the
flow around the sphere on the basis of theory of stochastic equations and equivalence of measures
between turbulent and laminar motions. Solutions obtained by numerical methods (DNS, LES,
RANS) require verification and in this case the theoretical results have special value. For today in
the scientific literature, there is J. Talor’s implicit formula connecting the critical Reynolds number
with the parameters of the initial fluctuations in the flow around the sphere. Here the derivation of
the explicit formula is presented. The results show a satisfactory correspondence of the obtained
theoretical dependence for the critical Reynolds number to the experiments in the flow around the
sphere.

Keywords: equivalence of measures; stochastic equations; critical Reynolds number; critical point;
the flow around the sphere

1. Introduction

The main ideas of the theory of onset of turbulence are described in [1–11].
The theory of Landau describes the onset of turbulence as quasi-periodic motion

which is realized by multiple frequency doubling [1]. The theory of strange attractors and
the corresponding differential equations are presented in the original papers of Lorenz,
E.N., Feigenbaum, M., Ruelle, D., Takens, F. [3–5]. The main points of statistic theory of
turbulence are presented in the articles of Kolmogorov A.N. [6–9].

The idea about criteria of the relative degree of the ordering of states in self-organization
processes is presented in papers of Struminskii, V.V. and Klimontovich, Y.L. [10,11].

Further complex mathematical and numerical methods for solving of the Navier–
Stokes equation using the theory of strange attractors and the theory of solitons are shown
in [12–24]. The theory of solitons on the basis of the Korteweg–de Vries equations and the
theory of chaos are presented in [12–15]. The main idea about equations of Kolmogorov
corresponding to a two-dimensional stochastic Navier–Stokes system is presented in [16].
The task of determination of the correlation dimension strange attractors was studied
in [17–20]. The fractals in the turbulent flows and Kolmogorov entropy were studied
in [21–24].

Pure numerical methods such as DNS for solution of Navier–Stokes equations are
presented in [25–28]. The statistical and stochastic equations for research of the turbulence
are presented in [29–35].

It was also hypothesized that the flow region with a large absolute value of the Jacobian
∂(u,v)/∂(x,y) generates intense pressure waves. These waves probably give rise to turbulent
pulsations [34–36].

In essence, the theoretical solutions for the critical Reynolds number were done by
using well-known ratio based on of the theory of dimension and experimental data [36–38].
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However, experimental formulas require the initial conditions for concrete flows. Thus, a
new theory for the determination of analytical formulas for the critical number of onset of
turbulence is needed.

The latest results of the theory of stochastic equations and the theory of equivalence
of measures between deterministic and random states have allowed, for the first time,
the derivation of analytical dependences for friction coefficients in a laminar–turbulent
transition in cases of the isothermal flows on the smooth flat plate and in the round
tube [39,40].

It is obvious that the experiment or numerical study of this phenomenon should be
based on conservation laws, and the methods of conducting experiments and solving
equations of these laws should have verification tools. Such a tool can be considered as
being the third research methodology: theoretical. Thus, such methodology is primarily
aimed at creating a new physical and mathematical toolkit, which allows the obtaining
of analytical results. This is especially important for those phenomena for which the
energy–space–time properties were identified: the uncertainty relation. As is known,
this ratio was initially determined for quantum mechanics, which is based on wave and
quantum ideas. Recent studies have shown the correctness of the ratio of uncertainties
in the stochastic mechanics of liquid and gas. Thus, the generation of energy in random
processes in both quantum mechanics and classical mechanics determines the existence of
the uncertainty relation. Therefore, this ratio determines a criterion or feature for verifying
natural and numerical experiments. The importance and materiality of such the tool in
both of these methodologies is obvious and noted repeatedly. Therefore, the creation of
a theoretical tool, which makes it possible to qualitatively and quantitatively evaluate
the most important parameters for practice while taking into account the uncertainty
relation, determining, among other things, the possibility of verifying research in natural
and numerical experiments. The development of such a theoretical apparatus for the study
of a natural phenomenon requires repeated checks of this apparatus by calculating the
characteristics of various types of the phenomenon under study.

These new results have been made possible as a result of successive advances in
theoretical physics related to turbulence. Namely the theoretical dependencies for first and
second critical Reynolds number and dependences for profiles of averaged velocity and
temperature fields in the boundary layers [41–47] were obtained. Moreover, the friction and
heat-transfer coefficients and second-order correlations were derived [48–52]. Besides the
formulas for Reynolds analogy and formulas of the correlation dimension of an attractor in
the boundary layer on the flat plate and in the tube were received [53–58].

Note that the uncertainty relation in the process of turbulence generation was re-
ceived [59,60]. For this case the spectral function E(k)j depends on wave numbers k for
interval of generation of turbulence in the form of E(k)j~kn, n = −1.2 ÷ −1.5.

Furthermore, theoretical solutions for the spectral function E(k)j in cases of Kol-
mogorov and dissipation intervals [59–63] were derived. [59–63].

Other classes of fluid motions were also studied. The turbulent flow in the plane
jet, the flow near a rotating disk and the motion between rotating coaxial cylinders are
presented in [64–66].

Here, the analytical solutions for the critical Reynolds number and for the critical point
in the case of the motion around the sphere are presented.

2. Equations of Conservation for the Isothermal Stochastic Process

The equations were derived in [39–47] and for isothermal movement without the
external forces take the following form:

The equation of mass (continuity):

d(ρ)colst

dτ
= −

(ρ)st
τcor

−
d(ρ)st

dτ
, (1)
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The momentum equation:

d(ρui)colst

dτ
= div(τi,j)colst

+ div(τi,j)st −
(ρ
→
U)st

τcor
−

d(ρ
→
U)st

dτ
(2)

And the energy equation:

dEcolst

dτ
= div(uiτi,j)colst

+ div(uiτi,j)st −
(

Est

τcor

)
−
(

dEst

dτ

)
(3)

Here, ui, uj, ul , E, ρ, µ, τ, τi,j are the velocity components in the directions xi, xj, xl (i,
j, l = 1, 2, 3); the energy, the density, the dynamic viscosity, the time and the stress tensor

τi,j = P + σi,j, σij = µ
(

∂ui
∂xj

+
∂uj
∂xi

)
− δij

(
ξ − 2

3 µ
) ∂ul

∂xl
here i, j are the tensorial notations, δij =

1 if i = j, δij = 0 for i 6=j. P is the pressure of liquid or gas. The subscript “st” refers to the
components, which are actually stochastic.The subscript “col st” refers to the components,
which are actually deterministic.

3. Stochastic Equations for Critical Reynolds Number

The flow around a sphere, along with flows in the boundary layer on a plate, in a
pipe and in a jet, belongs to the classical ones. Note that the question of the transition
from a laminar flow to a turbulent flow around a sphere was considered in a number
of works [37,67–69]. The example under consideration, in contrast to the previously
considered flows, is characterized by the fact that before the process of transition of a
laminar, deterministic flow to a turbulent one occurs, the separation of the boundary layer
from the surface of the sphere occurs. As is known, in this case the separation process is not
accompanied by a simultaneous transition to turbulence. Thus, on the basis of the already
defined equivalence relation of measures, it is necessary to determine the critical Reynolds
number in the boundary layer when flowing around a sphere.

To decide Equations (1)–(3) the correlator DN,M was derived in [39–46] as the definition
of equivalency of measures between laminar movement and turbulent movement. The
results of using of the correlator DN,M applying to (1)–(3) are the sets of stochastic equations
for four space–time areas: (1) the onset of generation (subscript 1,0 or 1); (2) the generation
(subscript 1,1); (3) the diffusion (1,1,1) and (4) the dissipation of the turbulent fields.

The correlator DN,M for all four space–time regions in the critical point of space–time
ri → rc; ∆τi → τc for the parameter mi → mc can be written in form

∑
j

DM,N
(
rc; mcj; τc

)
=

∑
j

∑
i

Lim
mi→mcj

Lim
ri→rc

Lim
∆τi→τc

{m
(
TMZ∗ ∩ TNY∗

)
− RTMZ∗TNY∗ ·m

(
TMZ∗

)
} = 0.0.

(4)

The binary intersections are considered between subsets Y, Z, W, in space X = Y + Z
+ W. The subsets of Y, Z, W have the name “extended to X”, if the measures m(Y), m(Z),
m(W) have the property [32–38]:

m(Y) = m(Y∗) = m(TnY) +
k=n−1

U
k=0

m(Tk
(

G1
n−k
)
) and wandering subset

k=n−1
U

k=0
m(Tk

(
G1

n−k
)
) ⊂ Y;

m(Z) = m(Z∗) = m(TnZ) +
k=n−1

U
k=0

m(Tk
(

G2
n−k
)
) and wandering subset

k=n−1
U

k=0
m(Tk

(
G2

n−k
)
) ⊂ Z;

m(W) = m(W∗) = m(TnW) +
k=n−1

U
k=0

m(Tk
(

G3
n−k
)
) and wandering subset

k=n−1
U

k=0
m(Tk

(
G3

n−k
)
) ⊂W.

Index j is determined parameters mcj (j = 3 means: mass, momentum, energy). This
correlation function produces the system of equations of equivalent measures

∣∣m(TMZ
)∣∣ =

(RTMZTNY)(n,m)

∣∣m(TNY
)∣∣, 0 < (RTMZTNY)(n,m) ≤ 1.
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Here, (RTMZTNY)(n,m) is a fractal correlation function, and then we assume it is equal
to the unit to obtain analytical solutions. Therefore, for the pair (N,M) = (1,0) we have
|m(Z)| = (RZTY)(n,m)|m(TY)|, and for (N,M) = (1,1), |m(TZ)| = (RTZTY)(n,m)|m(TY)|.
Here, Tn is a conservative transformation of X for all n, then there exists n > ncr, such
that there Tn is dissipation and transformation for Y ⊂ X and Z ⊂ X. Then to the
set X corresponds the value of the total energy of the stochastic field ∪i=n

i (Ei)gst
; to a

subset Y⊂X corresponds the value of energy of deterministic component of the stochastic
field ∪i=n

i (Ei)colst
; to the wandering subset Gn

1 extended in subset Y ⊂ X, corresponds
(δQ + δL)(col)int; to the subset Z ⊂ X of the measure m (Z) > 0 corresponds the value of the
stochastic component of energy ∪i=n

i (Ei)st; to the wandering subset Gn
2 extended in subset

Z⊂ X corresponds (δQ + δL)(st)int; to the subset W⊂ X and to the wandering subset Gn
3

corresponds to the the value of the ∪i=n
i (Ei)corst

. Furthermore, to the transformation Tn of

the set or subset corresponds the differential operators
{

d; d
dτ

}
. Here (δQ + δL)(st)int is the

sum of elemental heat and elementary work.
The value of R1TM Z∗TNY∗

for each of four space–time areas is equal to 1 here. The
subscript j denotes the parameters mcj (j = 3 means mass, momentum and energy). The
correlator DM,N

(
rc; mcj; τc

)
= D1,1

(
rc; mcj; τc

)
for the pair (N,M) = (1,1) gives the following

equations: (dΦcolst)1,1 = −R1,1(dΦst),
(

d(Φ)colst
dτ

)
1,1

= −R1,1

(
dΦst
dτ

)
. Here, Φ is the sub-

stantial quantity (mass (density ρ), momentum (ρU), energy (E)). The fractal coefficients
R1,0TM Z∗TNY∗

= R1,0, R1,1TM Z∗TNY∗
= R1,1 are taken to be equal in unity. The subscripts “cr”

or “c” refer to the critical point r (xcr, τcr) or rc, which is the space–time point of the onset
of the interaction between the deterministic motion and the random motion, which leads
the turbulence. Therefore, according to the above, the system of equations corresponding
to the beginning of the transition (the space–time area 1), which determines the critical
Reynolds number for the case of an incompressible flow, has the next form:

d(ρ)colst

dτ
= − (ρ)st

τcor
(5)


dEcolst

dτ = −
(

Est
τcor

)
div(uiτi,j)colst

= −
(

Est
τcor

)
The solution to the problem of laminar, deterministic, motion on the surface of a

sphere is presented, in particular, in I.G. Schlichting [37]. Following the provisions of the
stochastic theory of turbulence, the critical Reynolds number is determined by the relation
(6), within the left side of which it is necessary to put a solution for laminar flow over the
surface of a sphere.

div(uiτi,j)col st1 =
∣∣∣ Est

τ0cor

∣∣∣
1,0

(6)

As is known, the velocity profile of a laminar boundary layer on a sphere is similar in
representation to the Blasius profile, with the difference being that the profiles are presented
as a function of the angle and coordinate. The profile of the laminar boundary layer before
the separation can be written as

u1

U0
= f

[
x2

(
U0

νR

)0.5
]

. (7)
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Here orthogonal coordinates x1 and x2 are chosen, the x2 coordinate is directed along
the normal to the surface of the sphere along the radius, R. Now, taking into account the
approximation in the region of constant velocity gradient, it is possible to write

u1

U0
=

[
Kφx2

(
U0

νR

)0.5
]

. (8)

Then, let us write the speed differential; here, Kφ is a constant

du1 = d

(
U0

[
Kφx2

(
U0

νR

)0.5
])

(9)

or

du1 = d

(
U0

[
Kφx2

(
U0

νR

)0.5
])

= KφU0

(
U0

νR

)0.5
dx2. (10)

Then, given that the angle is fixed, we write that

du1

dx2
= d

(
U0

[
Kφx2

(
U0

νR

)0.5
])

= KφU0

(
U0

ν1R

)0.5
. (11)

Obviously, for a deterministic (laminar) flow du1
dx2

>> du1
dx1

div(uiτi,j)colst1
= µ2Kφ

2U2
0

(
U0

νD

)
. (12)

Then, the equivalence of measures between deterministic and stochastic moves is
written as follows (

2µKφ
2U2

0

(
U0

νD

))
=

Est

τ0cor
. (13)

From where it is possible to determine the dependence for the dimensionless number
at which the equivalence of measures occurs, named in hydrodynamics as the critical
Reynolds number for the flow in the boundary layer for the corresponding values of the
time correlation:

(
τ0

cor
)

i,
(
τ0

cor
)

2,
(
τ0

cor
)

3, τ[div(ui)]
−1

det.
For

(
τ0

cor
)

1 = L/(Est/ρ) the Reynolds number will be written as

(ReD)1 = 2 ·
[
K2

φ

]( U0

(Est/ρ)0.5

)4

Rest. (14)

For the time correlation
(
τ0

cor
)

2 = L2/ν the Reynolds number is

(ReD)2 = 2 ·
[
K2

φ

]( U0

(Est/ρ)0.5

)4

Re2
st. (15)

Accordingly, for the value
(
τ0

cor
)

3 = ν/(Est/ρ)

(ReD)3 = 2 ·
[
K2

φ

]( U0

(Est/ρ)0.5

)4

, (16)

L is the turbulence scale taken along the x2. From these expressions, as well as for
the flow in a pipe, it is clear that the critical Reynolds number (ReD)i is a local parameter
determined in the region of space r (x1, x2)cr. The perturbation parameters in (14)–(16) are
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U0
(Est/ρ)0.5 , Rest =

L
√

Est/ρ

ν . The coefficient
[
Kφ

]
is determined by the tangent of the slope

angle at the critical point (x2)cr.

4. The Definition of the Critical Point

The definition of the critical point (x2)cr, as well as for the flow in the pipe, will be
written using the ergodic theory:

∫ +∆V|2

−∆V|2
d
(
Ecolst

)
1;0 =

∫
X

dEst, (17)

Est = Est

(→
xi, τi, mi

)
< ∞. (18)

Est is the stochastic energy component in the space X, measure m(Est) < ∞.
Then, it is possible find next expressions:∫

X
dEst =

1
L

∫
L

Estδ((x2) − x2)dL =
1

τ0
cor

∫
τ

Estδ
(

τ0
cor − τ

)
dτ = Est, (19)

∫ +L|2

−L|2
d
(
Ecolst

)
1;0 = Kφ

2L · (x2)critic ·
(

ρU0
2/2
)(U0

νR

)
, (20)

(x2)
φ

critic = 2
(

Est/ρ

U02

)(
ν

U0

)
R
L

1
Kφ

2 , (21)

( x2

R

)φ

critic = 4
(

Est/ρ

U02

)(
ν

U0D

)
R
L

1
Kφ

2 , (22)

( x2

R

)φ

critic = 4 ·
(

Est/ρ

U02

)(
1

ReD

)(
R
L

)
1

Kφ
2 . (23)

Note that it may be of interest to make a similar estimate, when the laminar–motion
velocity profile is determined by the motion of Taylor vortices but not by the profile for the
boundary layer; however, this version of the definition is not used here.

5. Results of Estimates of the Critical Taylor Number

The implicit form of the Taylor formula for the first critical Reynolds number is
presented as the following relationship [37,67–69]

ReD = f

[(
(Est/ρ)0.5

U0

)(
D
L

)1/5
]

. (24)

Note that the conditions of the experiments [31,67–69] are next: the pulsation intensity
[(Est/ρ)0.5/U0] = 6–0.5%, the relative magnitude of the turbulence scale (L/R) is 10−3–10−4

and the experimental values of the critical Reynolds number (Re)cr~80,000–300,000.
Thus, the critical Reynolds number and critical point can be determined with using

Formulas (14) and (23). The values of the pulsation intensity and the scale of turbulence may
be determined from experiments: For R = 0.15 [m], U = 5 [m/c], the degree of turbulence
intensity 4.5% u′ = 0.225 [m/c], L = 0.00011 [m], Rest = 1.68, Kφ = 0.3. So, critical Reynolds
number has a value

(ReD)1critic = 2 ·
[
0.32

]
(22.3)4 0.225 · 1.1 · 10−4

1.47 ∗ 10−5 = 2 · 2.43 · 105 · 9.9 · 10−2 · 1.68 ≈ 0.8 · 105. (25)
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In accordance with experimental data [67–69], it is possible to estimate the values of a
critical point in the boundary layer of the flow around the sphere:( x2

R
)φ

critic = 4 ·
(

Est\ρ
U0

2

)(
1

ReD

)(
R
L

)
1

Kφ
2 =

4 · 20.25 · 10−4 · 1/
(
0.8 · 105) · 1.5 · 10−1/

(
1.1 · 10−4) · 1/9 · 10−2 =

81 · 1.423 · 10−9 · (1.5/9) · 105 ≈ 1.54 · 10−3;

(26)

(x2)
φ

critic = 0.00154 · 0.15 = 0.00024 [m] . (27)

It is possible to make an indirect comparison with experimental data for the critical
point: the calculation result L/(x2)

φ
critic = 1.1 · 10−4/0.00024 ≈ 0.46 and at the same time

the Von Karman constant is k = 0.43–0.38, so the difference is ~10–15%.
Obviously, with a decrease in the degree to 0.5%, the scale of turbulence will also

decrease. Then for 0.5%, degree of turbulence the critical Reynolds number has a value

(ReD)1critic = 2 ·
[
0.0352](200)4 0.025·4.5·10−5

1,47·10−5 =

2 · 16 · 108 · 12.25 · 10−4 · 6.8 · 10−2 ≈ 3.00 · 105,
(28)

( x2
R
)φ

critic = 4 ·
(

Est\ρ
U0

2

)(
1

ReD

)(
R
L

)
1

Kφ
2 =

4 · 25 · 10−6 · 1/
(
3 · 105) · 1.5 · 10−1/

(
4.5 · 10−5) · 1/1.225 · 10−3 =

100 · 0.33 · 10−11 · (1.5/5.51) · 107 = 33 · 10−4 · 0.27 = 1.12 · 10−3;
(x2)

φ
critic = 0.15 · 1.12 · 10−3 = 1.35 · 10−4 [m].

(29)

The indirect comparison with experimental data for the critical point is in the next:
the calculation result L/(x2)

φ
critic = 4.5 · 10−5/0.000135 = 0.33 and at the same time the

Von Karman constant is k = 0.43–0.38, so the difference is ~15–20%.
It must be noted that in the original works of J. Taylor [37,67] there are no simultaneous

comparisons of values for the calculated critical Reynolds number with experimental data
and turbulent characteristics with any verified characteristic, such is the constant of Von
Karman from the statistical theory of turbulence.

At the same time, in the present work, special attention is paid to this aspect, since such
a multi-parameter comparison with experiments of both critical numbers and turbulent
characteristics allows us not only to verify the proposed theoretical relationships, but also
to confirm the general points of theory for determining turbulent characteristics on the
basis of the stochastic equations and theory of equivalence of measures. Additionally, the
results show that as the turbulence intensity decreases, the transition point approaches the
solid surface of the sphere. Attempts to present the dependence of the critical Reynolds
number on the scale and intensity of turbulence have been made repeatedly [35–37,70–86].

Results of the calculation in accordance with Formula (23) which is obtained on the
basis of stochastic equations that are presented on the Figure 1 compared to experiments of
Dryden, H. L., Kuethe, A. M. and Dryden, H. L., Schubauer G. B. [68,69].

It should be noted that such a detailed experimental study of the dependence of the
critical Reynolds numbers on turbulent fluctuations in the flow around a sphere, as far as
the authors know, has not yet been carried out.
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Figure 1. Comparison of calculation with experimental data for the critical Reynolds number on the
degree of turbulence during the flow around the sphere [37,68,69].

6. Conclusions

In this article, the analytical Formula (14) for the critical Reynolds number and for the
critical point (23) for the motion around the sphere are presented.

These results are obtained on the basis of the theory of stochastic equations for the con-
tinuum and the theory of the equivalence of measures between random and deterministic
motions.

The calculation results using Equation (14), which are presented in Figure 1, show
a satisfactory agreement with the experimental data. The analytical dependence of the
critical Reynolds number on the degree of turbulence in a flow around a sphere show the
possibility of theoretically predicting the transition to a turbulent regime in a boundary
layer on a sphere in the range of the degree of turbulence 0.5–6%. In contrast to J. Taylor’s



Fluids 2023, 8, 81 9 of 12

implicit formula connecting the critical Reynolds number with the parameters of the initial
fluctuations in the flow around the sphere the new the explicit formula is presented (14).

On the basis of Formula (23), calculations of the values of the critical point in the
boundary layer on a sphere show the same range of values as in the boundary layer on a
smooth flat plate and in the boundary layer in a smooth round pipe

( x2
R
)φ

critic ≈ 10−3.
The calculations show satisfactory agreement regarding the theoretical dependences

for the critical Reynolds number with the experiments with an accuracy of up to 10%.
The calculated values of constant von Karman using Equations (14) and (23) show the
agreement up to 10–20% with the experimental von Kaman constant.

Therefore, the theoretical Dependences (14) and (23) may be used to check both
experimental and calculation research of the transition to turbulence in the flow around the
sphere. The importance of the obtained formulas lies in the numerous problems that occur
during the movement of spherical bodies in the ocean and in the atmosphere, as well as in
technical devices with flows of suspended solid and liquid spherical particles.

Moreover, as was mentioned in [39,40], such results which are presented in this article
probably open up prospects both for the development of new experimental measuring
instruments and for the development of a new calculation method—Direct Theoretical–
Numerical Simulation (DTNS).
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