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Abstract: We investigate the solutions of a generalized diffusion-like equation by considering a
spatial and time fractional derivative and the presence of non-local terms, which can be related to
reaction or adsorption–desorption processes. We use the Green function approach to obtain solutions
and evaluate the spreading of the system to show a rich class of behaviors. We also connect the results
obtained with the anomalous diffusion processes.
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1. Introduction

Fractional calculus has quickly become a new efficient mathematical tool to analyze
different properties of a given system and connect them with experimental results. A simple
extension of the differential operators incorporating non-integer indexes has serious conse-
quences, connecting the formalism with memory effects, long-range correlations, and many
other features characterizing complex systems. In this manner, it has brought great insights
into many fields of science [1–6]. One of them occurs for the diffusion processes, which have
been found through fractional calculus a suitable approach to incorporate several effects
which are not suitably described in terms of the classical integer order calculus. For instance,
infiltration in porous building materials [7], the electrical response of electrolytic cells [6,8],
amorphous semiconductors [9], and micellar solutions [10]. In these situations, there is a
nonlinear time dependence exhibited by the mean-square displacement, which, in general,
is characterized by 〈(x− 〈x〉)2〉 ∼ tα, where α characterized the diffusion, e.g., α < 1, α = 1,
and α > 1 correspond to the sub-, usual, and superdiffusion, respectively. This behavior
of the mean square displacement and effects related, e.g., non-Markovian processes and
fractal structure has motivated the analysis of different approaches, which extend the
usual approach, such as fractional diffusion equations [11–13], master equation [14,15],
generalized Langevin equations [16], and random walks [17]. One noticeable point regard-
ing these extensions is that the behavior of the solutions is characterized by power laws
and stretched exponential for fractional differential operators. In particular, the previous
scenarios concerning the diffusion on fractals have indicated that the asymptotic form of
the propagator, such as the Sierpinski gasket, is essentially in this form [11,18]. A similar
situation is also found in fluid flow through porous media [19–21]. Other applications can
be found in transport in the porous pellet [22], transport of chloride in concrete [23], and
oxidation behaviors of needle-punched carbon/carbon composites [24].

Fluids 2023, 8, 34. https://doi.org/10.3390/fluids8020034 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8020034
https://doi.org/10.3390/fluids8020034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0003-3853-1790
https://orcid.org/0000-0003-0610-6220
https://orcid.org/0000-0003-4930-5262
https://orcid.org/0000-0002-6875-1965
https://orcid.org/0000-0002-0103-9017
https://doi.org/10.3390/fluids8020034
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8020034?type=check_update&version=2


Fluids 2023, 8, 34 2 of 13

Here, we consider the following extension of the diffusion equation:

∂

∂t
ρ(x, t) = 0Dγ

t

∫ µ

0
dµp(µ)Dµ,η

x ρ(x, t) +
∫ t

0
dt′Λ(t− t′)ρ(x, t′) , (1)

with 1 ≤ µ ≤ 2, −1 < η, p(µ) is a distribution, 0Dγ
t (· · · ) is a fractional time operator, and

Dµ,η
x (· · · ) is a spatial fractional operator [12,25]. The last term can be related to different

processes, such as absorption and adsorption–desorption, depending on the choice of the
kernel Λ(t). It can also be related to reaction processes of the first order, i.e., irreversible
reaction processes or reversible processes depending on the choice of Λ(t). The fractional
time operator 0Dγ

t (· · · ) is defined in terms of a generalized kernel Kγ(t) as follows:

0Dγ
t ρ(x, t) =

∂

∂t

∫ t

0
dt′Kγ(t− t′)ρ(x, t′) . (2)

Note that depending on the choice of Kγ(t) in the previous equation, we may connect
it to different integrodifferential operators with singular or non-singular kernels. One
of them is the Riemann–Liouville fractional operator, i.e., Kγ̄(t) = t−γ̄/Γ(1− γ̄) [26],
which implies

∂γ̄

∂tγ̄
ρ(x, t) =

1
Γ(1− γ̄)

∂

∂t

∫ t

0
dt′

1
(t− t′)γ̄

ρ(x, t′), (3)

another one is the Fabrizio–Caputo fractional operator, for Kγ̄(t) = Nγ̄e−
γ̄

1−γ̄ t/(1− γ̄), i.e.,

∂γ̄

∂tγ̄
ρ(x, t) =

Nγ̄

1− γ̄

∂

∂t

∫ t

0
dt′e−

γ̄
1−γ̄ (t−t′)

ρ(x, t′) , (4)

or the Atangana–Baleanu fractional operator, for Kγ̄(t) = Nγ̄Eγ̄(−γ̄tγ̄/(1− γ̄))/(1− γ̄),
given by

∂γ̄

∂tγ̄
ρ(x, t) =

Nγ̄

1− γ̄

∂

∂t

∫ t

0
dt′Eγ̄

(
− γ̄

1− γ̄
(t− t′)γ̄

)
ρ(x, t′), (5)

where Nγ̄ is a normalization constant [27–29]. These operators may be related to different
scenarios in connection with anomalous diffusion, which implies memory effects, long-
range correlation, and fractal structures, among others. In particular, these fractional
operators have been used in many contexts such as boundary value problems [30,31],
electric circuits [32,33], and electrical impedance [34,35] (see also Refs. [36–38]). It is also
possible to consider other kernels for Equation (2), with different implications for the
relaxation processes (see, e.g., Refs. [39,40]).

Following the developments performed in Ref [12,25], the spatial operator is defined
as follows:

1
2

∫ ∞

−∞
dxψ±,η(x, k)

(
Dµ,η

x ρ(x, t)
)
≡ −|k|µ+η ρ̃±(k, t), (6)

with the integral transform given by:

1
2

∫ ∞

−∞
dxψ±,η(x, k)ρ(x, t) = ρ̃±(k, t) , (7)

1
2

∫ ∞

−∞
dkψ±,η(x, k)ρ̃±(k, t) = ρ(x, t), (8)
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where

ψ+,η(x, k) = (|k||x|)
1
2 (1+η)J−ν

(
2(|k||x|)

1
2 (2+η)/(2 + η)

)
and (9)

ψ−,η(x, k) = xk(|k||x|)
1
2 (1+η)−1Jν

(
2(|k||x|)

1
2 (2+η)/(2 + η)

)
, (10)

where ψ+,η(x, k) and ψ−,η(x, k) refer to the odd and even functions, ν = (1 + η)/(2 + η),
and Jν(x) is the Bessel function [6]. Equations (7) and (8) may be related to a generalized
Hankel transform [41–44] and for µ = 2, we can directly relate the fractional operator
present in Equation (6) with standard differential operators as follows:

D2,η
x (· · · ) ≡ ∂

∂x

{
|x|−η ∂

∂x
(· · · )

}
. (11)

This case allows us to relate Equation (6) with a diffusion process in heterogeneous
media. Such behaviors are also exhibited by diffusion-related problems, such as diffusion
on fractals [45,46], turbulence [47,48], diffusion and reaction on fractals [49], and solute
transport in fractal porous media [50], where the properties of the media promote an
anomalous diffusion. In these scenarios, we have non-Gaussian distributions related to
these processes and nonlinear behavior of the mean square displacement. Equation (11)
also allows us to connect Equation (1), for p(µ) = δ(µ− 2), directly with the continuity
equation with an additional term as follows:

∂

∂t
ρ(x, t) +

∂

∂x
J (x, t) =

∫ t

0
dt′Λ(t− t′)ρ(x, t′) , (12)

with the current density given by

J (x, t) = − 0Dγ
t

{
|x|−η ∂

∂x
ρ(x, t)

}
. (13)

Notice that |x|−η∂x(· · · ) ≡ (1 + η)∂|x|1+η (· · · ), i.e., it corresponds to a fractal deriva-
tive [51–53], respectively. Thus, the spatial fractional operator defined above by Equation (6)
can be considered a mixing between the Riesz–Wely operator [11] and fractal operators [54].
This feature implies that the solutions of Equation (6) can be related to Lévy distribu-
tions and/or distributions with characteristics of stretched exponential. From the above
discussion, Equation (1) has a particular case of several situations analyzed in different
scenarios and allows analyzing the mixing between different effects on the diffusion process
connected to these fractional operators. Further, the reaction term may be connected to
different processes, particularly the stochastic resetting [55,56].

We aim to analyze Equation (1) by considering different scenarios. The first considers
the absence of the non-local term, i.e., Λ(t) = 0. For this case, we obtain solutions by
considering different spatial and time fractional operator choices. In particular, we also
consider the case p(µ) = χµδ(µ− µ) + χ2δ(µ− 2), where χµ and χ2 are constants. After we
incorporate the non-local term, i.e., Λ(t) 6= 0, in our analysis. We obtain exact solutions in
the framework of Green’s function approach for all cases. These formal developments are
shown in Section 2. Section 3 discusses the main results and concludes with some remarks.

2. Fractional Dynamics and Diffusion

Let us start our discussion about Equation (1) by establishing the boundary conditions,
which are limx→±∞ ρ(x, t) = 0. An arbitrary function represents the initial condition,
i.e., ρ(x, 0) = ϕ(x). After establishing the boundary and the initial condition, Equation (1)
in the absence of the non-local term is given by

∂

∂t
ρ(x, t) = 0Dγ

t

∫ µ

0
dµp(µ)Dµ,η

x ρ(x, t) . (14)
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Formally, we can write the solution for this equation as follows:

ρ(x, t) =
∫ ∞

−∞
dx′G(x, x′, t)ϕ(x′) , (15)

where the Green’s function [57], G(x, x′, t), satisfies the following equation:

∂

∂t
G(x, x′, t)− 0Dγ

t

∫ µ

0
dµp(µ)Dµ,η

x G(x, x′, t) = δ(x− x′)δ(t) . (16)

The Green’s function is subjected to the following conditions: limx→±∞ G(x, x′, t) = 0
and G(x, x′, t) = 0 for t < 0. In terms of the Equations (9) and (10), it is possible to write
Green’s function as

G(x, x′, t) =
1
2

∫ ∞

−∞
dk
[

ψ+,η(x, k)G̃+(k, x′, t) + ψ−,η(x, k)G̃−(k, x′, t)
]

. (17)

Equation (16) can be simplified by using the integral transform defined by Equations (7)
and (8), yielding

∂

∂t
G̃±(k, x′, t) + 0Dγ

t

∫ µ

0
dµp(µ)|k|µ+η G̃±(k, x′, t) =

1
2

ψ±,η(x′, k)δ(t) , (18)

which, after applying the Laplace transform, has the solution given by

̂̃G±(k, x′, s) =
ψ±,η(x′, k)

2s
(
1 +Kγ(s)

∫ µ
0 dµp(µ)|k|µ+η

) . (19)

The inverse Laplace transform of Equation (18) depends on the choice of the fractional
time operator, i.e., the option performed to Kγ(t).

Let us start with the case Kγ(s) = 1/s (Kγ(t) = const) with p(µ) = χµδ(µ − µ).
Applying these conditions in Equation (19) , we have that

G̃±(k, x′, t) =
1
2

ψ±,η(x′, k)e−χµ |k|µ+η t . (20)

By applying the inverse of the integral transform, it is possible to show that

G(x, x′, t) = G+(x, x′, t) +
xx′

|x||x′| G−(x, x′, t), (21)

with

G±(x, x′, t) =
(2 + η)2

2(µ + η)|x|2+η

(
|x||x′|

) 1
2 (1+η)

× H1,0,1,1,1
2,[0:1],0,[0:2]


(
|x′ |
|x|

)2+η

Υµ,η t
2+η
µ+η

|x|2+η

∣∣∣∣∣∣∣∣∣

( 2∓ν
2 , 1

)
;
( 2±ν

2 , 1
)

−−; (0, 2+η
µ+η )

−−;−−(
∓ ν

2 , 1
)
;
(
± ν

2 , 1
)
; (0, 2+η

µ+η ), (0, 2+η
µ+η )

 , (22)

where Υµ,η = (2 + η)2χ
2+η
µ+η
µ and

HL,M,M1,N,N1
E,[A:C],F,[B,D]

 x
y

∣∣∣∣∣∣∣∣
(ε1, ω1), · · · , (εE, ωE)

(a1, α1), · · · , (aA, αA); (c1, β1), · · · , (cC, βC)
(ξ1, v1), · · · , (ξF, vF)

(b1, β1), · · · , (bB, βB); (d1, δ1), · · · , (dC, δD)

 (23)
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is the generalized H−function of Fox [58–60].
For the particular case µ = 2, it is possible to simplify Equation (22) and to show that

G(x, x′, t) =
1

(2 + η)χµt
(
|x||x′|

) 1
2 (1+η)e

− 1
(2+η)2χµ t (|x|

2+η+|x′ |2+η)

×
{

I−ν

(
2(|x||x′|)

1
2 (2+η)

(2 + η)2χµt

)
+ sgn(xx′)Iν

(
2(|x||x′|)

1
2 (2+η)

(2 + η)2χµt

)}
, (24)

where Iν(x) is the Bessel function of order ν of modified argument [57]. Note that the
mean square displacement for this particular case is given by σ2

x =
〈
(x− 〈x〉)2

〉
∼ t2/(2+η)

evidencing the anomalous behavior of the system with the time evolution.
Now, we extend the previous case forKγ(s) = 1/sγ, which corresponds to considering

the Riemann–Liouville fractional time derivative. For this case, with p(µ) = χµδ(µ− µ),
we have that

G̃±(k, x′, t) =
1
2

ψ±,η(x′, k)Eγ

(
−χµ|k|µ+ηtγ

)
, (25)

where Eγ(x) is the Mittag–Leffler function, defined as follows:

Eγ(x) =
∞

∑
n=0

xn

Γ(1 + γn)
. (26)

An interesting point concerning the Mittag–Leffler function is the asymptotic behavior
governed by a power law instead of an exponential. This feature has implications for the
random process connected to these functions, characterized by waiting time distributions
with long-tailed behavior. This point can be verified by using the continuous time random
walk approach, for example, in Ref. [11], which connects the fractional diffusion equations
with a random process. The solution for this case is also given by Equation (21) with

G±(x, x′, t) =
(2 + η)2

2(µ + η)|x|2+η

(
|x||x′|

) 1
2 (1+η)

× H1,0,1,1,1
2,[0:1],0,[0:2]


(
|x′ |
|x|

)2+η

Υµ,η t
γ

2+η
µ+η

|x|2+η

∣∣∣∣∣∣∣∣∣

( 2∓ν
2 , 1

)
;
( 2±ν

2 , 1
)

−−; (0, 2+η
µ+η )

−−;−−(
∓ ν

2 , 1
)
;
(
± ν

2 , 1
)
; (0, 2+η

µ+η ), (0, γ
2+η
µ+η )

 .(27)

Equation (27) mixing three different parameters, which in connection with a random
walk, can be connected to the waiting time and jumping distributions. The parameter
γ related to the fractional time derivative is connected to the waiting time distribution,
and the other parameters η and µ are connected to the jumping probability. We can have
a short or a long-tailed behavior for the spatial distribution depending on the choice of
the parameter η and µ. Figures 1 and 2 show the behavior of G+(x, x′, t) and G−(x, x′, t)
for different values of the parameters γ, η, and µ. In particular, it is possible to observe
that depending on the choice of the parameters, the previous Green functions can exhibit
a unimodal or a bimodal behavior. Figure 3 shows the behavior of the Green function
G(x, x′, t) given by Equations (21) and (27). It is worth mentioning that different choices for
the parameters imply different behaviors obtained with the mixing of different behaviors.

In addition, by using the scaling arguments [13], it is possible to show that the so-
lution can be written as ρ(x, t) = ρ(ξ)/tγ/(µ+η) with ξ = |x|/tγ/(µ+η) and, consequently,
σ2

x ∼ t2γ/(µ+η) for
∫ ∞
−∞ dξξ2ρ(ξ) finite. This result implies that for 2γ/(µ + η) less, equal,

or greater than one, we have subdiffusion, usual diffusion, or superdiffusion, respectively
(see Figure 4).
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-4 -2 0 2 4
0.0

0.1

0.2

0.3

G
+
(x
,x
',
t)

x

(a)

-4 -2 0 2 4
0.0

0.1

0.2

  γ = 1/2 
           η = 1/2

   γ = 1 
           η = 1/2

  γ = 1/3
           η = 1/2

  γ = 1  
           η = − 1/2

G
-(
x
,x
',
t)

x

(b)

Figure 1. Trend of G+(x, x′, t) and G−(x, x′, t) obtained from Equation (22) for µ = 2 and different
values of γ and η. We consider, for illustrative purposes, χ2 = 1, x′ = 1, and t = 1. Note that in
(a,b) show that G+(x, x′, t) and G−(x, x′, t) have different behavior, in particular, near the origin.

-4 -2 0 2 4
0.0

0.2

0.4

G
+
(x
,x
',
t)

x

(a)

-4 -2 0 2 4
0.0

0.2

 γ = 1, η = 1/2 , 

          µ = 3/2

 γ = 1, η= 1/2, 

         µ = 1

 γ = 1/2, η= 1/2, 

         µ = 1

 γ = 1, η= -1/2, 

        µ = 3/2

(b)

G
-(
x
,x
',
t)

x

Figure 2. Trend of G+(x, x′, t) and G−(x, x′, t) obtained from Equation (27) for different values of
µ, γ and η, with p(µ) = χµδ(µ− µ) + χ2δ(µ− 2). We consider, for illustrative purposes, χ2 = 1,
x′ = 1, and t = 1. Note that in (a,b) show that G+(x, x′, t) and G−(x, x′, t) have different behavior, in
particular, near the origin.
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Now, we consider the case p(µ) = χ2δ(µ− 2)+χµδ(µ−µ). This case can be connected
to the mixing of two different behaviors. For this case, we have that Equation (19) can be
written as follows:

̂̃G±(k, x′, s) =
1
2

ψ±,η(x′, k)
s + s1−γ

(
χ2|k|2+η + χµ|k|µ+η

) . (28)

-4 -2 0 2 4

0.0

0.3

0.6

 γ = 1, η = 1/2,  µ = 3/2

 γ = 1, η = 1/2,  µ = 1

 γ = 1/2,  η =1/2,  µ = 1

 γ =  1, η = -1/2, µ = 3/2

G
 (

x
,x

',
t)

x

Figure 3. Trend of G(x, x′, t) obtained from Equations (21) and (22) for different values of µ, γ and η,
with p(µ) = χµδ(µ− µ). We consider, for illustrative purposes, χµ = 1, x′ = 1, and t = 1.

Applying the inverse of the Laplace transform, we obtain that

G̃±(k, x′, t) =
∞

∑
n=0

(−1)n

Γ(1 + n)
(
χµ|k|µ+ηtγ

)nE(n)
γ

(
χ2|k|2+ηtγ

)
=

∞

∑
n=0

(−1)n

Γ(1 + n)
(
χµ|k|µ+ηtγ

)n H1,1
1,2

[
χ2|k|2+ηtγ

∣∣∣(0,1)
(0,1),(−γn,γ)

]
. (29)

Performing the inverse of the integral transform, we obtain that

G±(x, x′, t) =
2 + η

2|x|2+η

(
|x||x′|

) 1
2 (1+η)

∞

∑
n=0

(−1)n

Γ(1 + n)

(
χ2,µt

2−µ
µ+η γ

)n

× H1,0,1,1,1
2,[0:1],0,[0:2]


(
|x′ |
|x|

)2+η

χ2tγ

|x|2+η

∣∣∣∣∣∣∣∣∣∣

( 2∓ν
2 , 1

)
;
( 2±ν

2 , 1
)

−−; ( 2+η
µ+η n, 1)

−−;−−(
∓ ν

2 , 1
)
;
(
± ν

2 , 1
)
;
(

2+η
µ+η n, 1

)
,
(
− 2−µ

2+η nγ, γ
)
 ,(30)

where χ2,µ = χµ/χ
(µ+η)/(2+η)
2 and χ2 = (2 + η)2χ2.
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0.0

0.5
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1.5

2.0

 γ = 1/3 , µ = 3/2,  η= 1
 γ = 4/5,  µ = 3/2,  η= −1
 γ = 1,     µ = 2,     η= 0 

2γ/(µ+η) >1

2γ/(µ+η) < 1

2γ/(µ+η) =1
σ2 x

 ∼
 t

2
γ/

(µ
+η

)

t

subdiffusion

usual diffusion

superdiffusion

Figure 4. Trend of the mean square displacement σ2
x versus t for different values of γ, µ, and η. Note

that depending on the value of the parameter, different behaviors can be obtained.

Figure 5 shows the behavior of the Green function for the previous case, which
considers the mixing between two different differential operators.

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4
 γ = 1, η = 1/2,  µ = 3/2

 γ = 1, η = 1/2,  µ = 1

 γ = 1/2,  η =1/2,  µ = 1

γ =  1, η = -1/2, µ = 3/2 

G
 (
x
,x
',
t)

x

Figure 5. Trend of G(x, x′, t) obtained from Equations (21) and (22) for different values of µ, γ and
η, with p(µ) = χµδ(µ− µ) + χ2δ(µ− 2). We consider, for illustrative purposes, χµ = 1, χ2 = 0.6,
x′ = 1, and t = 1.

For the initial condition given by ρ(x, 0) = δ(x), the solution is illustrated in Figure 6
for different values of the parameters γ, µ, and η. We also illustrate the behavior of
1/[ρ(0, t)]2, which is connected to the mean square displacement related to this case.
In particular, from Figure 6b, it is possible to observe the presence of different diffusion
regimes depending on the choice of the parameters.
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Figure 6. (a) shows the profile of ρ(x, t) obtained from Equations (15), (21) and (22) for different
values of µ, γ and η, with p(µ) = χµδ(µ− µ), t = 1, and ρ(x, 0) = δ(x). (b) shows the behavior of
1/[ρ(0, t)]2 to illustrate the spreading of the system. We consider, for illustrative purposes, χµ = 1
and t = 1.

We can consider a different fractional time operator for the previous scenarios defined
by Equation (14). One of them is the Caputo–Fabrizio fractional operator [28]. In this case,
Equation (14) can be written as follows:

∂

∂t
ρ(x, t) =

∫ µ

0
dµp(µ)Dµ,η

x ρ(x, t) + r
(
δ(x− x′)− ρ(x, t)

)
, (31)

with r = γ/(1− γ), for the initial condition ρ(x, 0) = δ(x− x′). It is worth mentioning that
Equation (31) corresponds to a system subjected to a stochastic resetting [61]. In particular,
it extends the processes described in Ref. [56]. By using the previous approach, it is possible
to show that the solution for this case is given by

ρ(x, t) = e−rtG(x, x′, t) + r
∫ t

0
dt′e−rt′G(x, x′, t′) (32)

with the Green function given by Equations (21) and (27). For the particular case, p(µ) =
χµδ(µ− µ) with x′ = 0, we have that the Green function is given by

G(x, 0, t) =
2 + η

2(µ + η)|x|Γ
(

3+η
2+η

) H2,1
2,3

[
|x|2+η

(2 + η)2
(
χµtγ

) 2+µ
2+η

∣∣∣∣∣
(

1, 2+η
µ+η

)
,
(

1, 2+η
µ+η

)
(

1
2+η ,1

)
,
(

1, 2+η
µ+η

)
,(1,1)

]
. (33)

Figure 7a shows the behavior of Equation (32) and Figure 7b shows the behavior of
1/[ρ(0, t)]2 to illustrate the spreading of the system for different values of the parameters
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η and µ with γ = 1/2. From this figure, we observe that the system has long been
stationary. It is also interesting to mention that Equation (32) with the Green function given
by Equation (33) allows us to investigate a diffusive process in heterogeneous media with
stochastic resetting.
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Figure 7. (a) shows the profile of ρ(x, t) obtained from Equations (31) and (33) for different values of
µ, γ and η, with p(µ) = χµδ(µ− µ), t = 1, and ρ(x, 0) = δ(x). (b) shows the behavior of 1/[ρ(0, t)]2

to illustrate the spreading of the system. We consider, for illustrative purposes, χµ = 1 and r = 1.

Now, we consider the presence of a non-local term in the diffusion equation. We also
consider, for simplicity, the initial condition ρ(x, 0) = δ(x), p(µ) = χµδ(µ− µ), and the
Riemann–Liouville fractional time operator. For this case, we can apply the previous
procedure based on integral transforms, yielding

̂̃ρ+(k, s) =
1
2

ψ+(0, k)
s + s1−γχµ|k|µ + Λ(s)

. (34)

After performing a series of expansions, we have that

̂̃ρ+(k, s) =
1
2

ψ+(0, k)
s + s1−γχµ|k|µ

∞

∑
n=0

(−1)n
[

Λ(s)
s + s1−γχµ|k|µ

]n
, (35)

which, after performing the inverse integral transforms, yields

ρ(x, t) = G+(x, 0, t) +
∞

∑
n=1

(
−1

2

)n ∫ t

0
dtn

∫ ∞

−∞
dxnΥ(x, xn, t− tn) · · ·

×
∫ t2

0
dt1

∫ ∞

−∞
dx2 Υ(x2, x1, t2 − t1)Υ(x1, 0, t1) (36)
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where Υ(x, ξ, t) =
∫ t

0 dt′G+(x, ξ, t− t′)Λ(t′).

3. Discussion and Conclusions

We have investigated a generalized diffusion equation which has, in particular cases,
several situations. We have started our analysis by considering the fractional spatial
operator and analyzed the influence of the fractional time operators on the solutions. In this
scenario, we have obtained the time behavior of the mean square displacement by using
scaling arguments when fractional space and time derivatives are present in the diffusion
equation. In this case, we consider a singular kernel for the fractional time derivative that
allows a connection with the Riemann–Liouville fractional time derivative. For the spatial
fractional operator, we have also considered an operator of distributed order. In particular,
we analyzed the mixing between two cases, i.e., p(µ) = χµδ(µ− µ) + χ2δ(µ− 2). In each
case, the solutions can be directly connected to the stretched exponential or power laws,
depending on the choice of the parameters characterizing the spatial fractional operator.
We have also considered Fabrizio–Caputo fractional time operator. For this case, we have
related this case with a stochastic resetting process following the approach presented in
Ref. [28] and analyzed the behavior of the solutions. For each case, the solutions were
obtained using the Green function approach. In addition, we have also considered the
solutions for an arbitrary non-local term in the generalized diffusion equation. Finally, we
hope that the results found here can be helpful in the discussion of different scenarios in
connection with diffusion and anomalous diffusion processes.
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