
Citation: Kozelkov, A.; Kurulin, V.;

Kurkin, A.; Taranov, A.; Plygunova,

K.; Krutyakova, O.; Korotkov, A.

Numerical Approach Based on

Solving 3D Navier–Stokes Equations

for Simulation of the Marine

Propeller Flow Problems. Fluids 2023,

8, 293. https://doi.org/10.3390/

fluids8110293

Academic Editors: Ling Zhou,

D. Andrew S. Rees and Wei Li

Received: 15 September 2023

Revised: 23 October 2023

Accepted: 28 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Numerical Approach Based on Solving 3D Navier–Stokes
Equations for Simulation of the Marine Propeller Flow Problems
Andrey Kozelkov 1,2 , Vadim Kurulin 1, Andrey Kurkin 2,* , Andrey Taranov 3, Kseniya Plygunova 1,
Olga Krutyakova 1 and Aleksey Korotkov 1

1 Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics,
Nizhny Novgorod Region, 607188 Sarov, Russia; askozelkov@mail.ru (A.K.); kurulin@mail.ru (V.K.);
xenia28_94@mail.ru (K.P.); puch9@yandex.ru (O.K.); alvladkor79@mail.ru (A.K.)

2 Department of Applied Mathematics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev,
603155 Nizhny Novgorod, Russia

3 Federal State Unitary Enterprise “Krylov State Research Center”, 196158 Saint-Petersburg, Russia;
andrei_taranov@mail.ru

* Correspondence: aakurkin@nntu.ru

Abstract: The report presents the approach implemented in the Russian LOGOS software package for
the numerical simulation of the marine propeller flow problems using unstructured computational
meshes automatically generated by the mesh generator. This approach includes a computational
model based on the Navier–Stokes equation system and written with respect to the physical pro-
cess: the turbulent nature of flow with transient points is accounted using the Reynolds Averaged
Navier–Stokes method and the k–ω SST model of turbulence by Menter along with the γ–Reθ
(Gamma Re Theta) laminar-turbulent transition model; the Volume of Fluid method supplemented
with the Schnerr–Sauer cavitation model is used to simulate the cavitation processes; a rotating
propeller is simulated by a moving computational mesh and the GGI method to provide conformity
of the solutions on adjacent boundaries of arbitrarily-shaped unstructured meshes of the two do-
mains. The specific features of the numerical algorithms in use are described. The method validation
results are given; they were obtained because of the problems of finding the performance curves of
model-scale propellers in open water, namely the problems of finding the performance of propellers
KP505 and IB without consideration of cavitation and the performance of propellers VP1304 and C5
under cavitation conditions. The paper demonstrates that the numerical simulation method presented
allows for obtaining sufficiently accurate results to predict the main hydrodynamic characteristics for
most modes of operation of the propellers.

Keywords: computational fluid dynamics; Navier–Stokes equations; validation; propeller; cavitation;
open water performance

1. Introduction

For many typical problems in shipbuilding, there is a need to simulate ship propul-
sors; one option is a marine propeller. Its performance is characterized by such quanti-
ties as thrust and torque. The dependences of these dimensionless parameters and the
propeller efficiency on the advance ratio form the propeller performance curves. It is
important to find these hydrodynamic parameters for the further integrated simulation of
the self-propulsion tests.

One of the advanced approaches used to predict the propeller performance is a 3D
numerical simulation with a description of the propeller geometry and that account for the
specific physical processes: rotation of a body, the turbulent nature of flow with transient
points, cavitation processes, the effect of closeness to the water surface, and waves. The basis
of such an approach is a computational model based on the Navier–Stokes equation system
written with respect to the abovementioned factors [1]. For example, to take into account
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the behavior of a turbulent flow, one can use the RANS (Reynolds Averaged Navier–Stokes)
method [2–4] or the space filtering methods (the eddy-resolving approaches, such as the LES
(Large Eddy Simulation) method, and hybrid methods) [5–7]. The RANS method is widely
used for the numerical simulation of propellers and allows for achieving an acceptable
accuracy of the solution [8–12]. The quality of RANS simulation results may depend on the
chosen types of computational mesh and turbulence models (see [10,11]). It is shown in
paper [12] that the use of the laminar-turbulent transition model in numerical simulations
allows for improving the prediction accuracy for the hydrodynamic characteristics of
propellers at the model scale. For details on the use of the eddy-resolving approaches to
simulate the propeller flow problems, see [13–17]. They allow for improving the accuracy
and reproducing a complex flow structure; however, with the use of such an approach, one
faces difficulties in accounting for the laminar-turbulent transition.

The operation of a propeller may be accompanied by the cavitation processes, which
often lead to the deterioration of the functional performance, the wear of the propeller
component parts, and a lower efficiency [18]. The most popular way of taking into account
cavitating flows is to use the VOF (Volume of Fluid) method [19,20] to describe the dynamics
of phases and models of cavitation [21–24], which are the relation between the mass transfer
velocity of the liquid and vapor phases and the flow parameters. Such an approach is
used in [25–30] and provides a sufficiently accurate description of the shape of cavities and
their dynamics.

The propeller flow problems are closely associated with the aspect of the numerical
simulation of rotation. There are two approaches to consider a rotating body: implicit
rotation, which is simulated by a moving frame of a reference algorithm [9,31], and ex-
plicit rotation, which is simulated using a computational mesh moving together with
the propeller boundaries [10,25]. The advantage of the implicit rotation method is that it
does not require consideration of the motion of the body boundaries in each time step;
however, the method cannot be used for a steady structure (for example, the hull of a
ship). For the simulation of a propeller and a hull, the explicit rotation method is used as a
universal method.

The paper describes the propeller flow simulation method using unstructured compu-
tational meshes generated by the automatic mesh generator. Special consideration is given
to the features of the implementation of numerical algorithms, the algorithm for taking
into account rotation and determination the flow caused by the motion of the mesh in
particular. The method is based on solving the system of Navier–Stokes equations averaged
according to Reynolds, which is closed with the Menter’s k–ω SST model of turbulence [32]
jointly with the γ–Reθ (Gamma Re Theta) laminar-turbulent transition model [33]. The
cavitation processes are accounted for using the VOF method supplemented with the SS
(Schnerr–Sauer) model of cavitation [21]. A rotating propeller is simulated by moving
nodes of the computational mesh with the interpolation of fluxes across a non-conformal
mesh interface. The method is implemented in the LOGOS CAE system [27,34] for the sim-
ulation of coupled 3D problems of heat and mass transport with convection, aerodynamics,
hydrodynamics, and strength analysis on computers with massive parallelism. Verifica-
tion results are given for the problems of finding the performance curves of model-scale
propellers operating in open water, with the cavitation process being taken or not taken
into account.

2. Description of the Method for Numerical Simulation of the Propeller Flow Problems
2.1. Governing Equations and Turbulence Modeling

The flow around a propeller is a turbulent flow. Currently, the simulation of turbulent
flows was performed using the RANS [35], LES [36], and hybrid methods [37,38]. In the
RANS approach, the Navier–Stokes equations averaged according to Reynolds (averag-
ing symbols were omitted) [39] were used to describe the turbulent motion of a viscous
liquid/gas:
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
∂ρ
∂t +

∂
∂xi

(ρui) = 0,
∂ρui

∂t + ∂
∂xj

(
ρuiuj

)
= − ∂p

∂xi
+ ∂

∂xj

(
τij + τt

ij
)
+ ρgi,

(1)

where t was time; i, j were subscripts indicating the vector components in Cartesian
coordinates, i, j = {x, y, z}; ui was the velocity vector component; xi was the Cartesian
coordinate vector component; τij was the viscous stress tensor; τt

ij was the Reynolds stress
tensor; gi was the gravitational acceleration vector component; p was pressure; ρ was
density of liquid.

The rheological Newton law defines the viscous stress tensor components [35]:

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij

)
, (2)

where µ is dynamic viscosity and δij is Kronecker symbol.
Linear differential models of turbulence use empirical relations to calculate the tur-

bulent viscosity coefficient µt and the Boussinesq hypothesis for the Reynolds stress
tensor calculation:

τt
ij = 2µt

(
Sij −

1
3

∂uk
∂xk

δij

)
+

2
3

kδij, Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (3)

where k is kinetic energy of turbulence.
The turbulence model closes the system of Equation (1). In the present paper, the

k–ω SST model by Menter [32] and the γ–Reθ laminar-turbulent transition model [33]
were used.

2.2. Cavitating Flow Modeling

In case of a cavitating flow, a mathematical model is required, which takes into account
the phase transition and the vapor medium motion. The VOF method [19], which can be
easily generalized to the case of unstructured meshes and an arbitrary number of phases, is
commonly used to simulate a multiphase medium. To describe the mass transfer processes
(evaporation and condensation), the SS model of cavitation [21] was used; it is based on
solving the Rayleigh–Plesset equation describing the dynamics of a single vapor bubble.
With such an approach, Equation (1) was supplemented with the equation for the volume
fraction transport of one of the phases, for example, vapor:

∂ρ
∂t +

∂
∂xi

(ρui) = 0,
∂ρui

∂t + ∂
∂xj

(
ρuiuj

)
= − ∂p

∂xi
+ ∂

∂xj

(
τij + τt

ij
)
+ ρgi,

∂ρvαv
∂t + ∂

∂xi
(ρvαvui) = Re − Rc,

(4)

where ρ was the resultant density in the given case, which was the averaged density of
the two phases: ρ = ρlαl + ρvαv, αwas a volume fraction (subscript v was used for vapor,
subscript l was used for liquid); Re, Rc were the mass sources describing the generation and
collapse of vapor bubbles.

To find the evaporation and condensation parameters—Re and Rc—the SS model uses
the ratio between the volume fraction of vapor and the number of bubbles per unit volume:

αv =
n 4

3 πr3
B

1 + n 4
3 πr3

B
, (5)

where n is the number of bubbles per unit volume and rB is radius of a bubble.
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It was assumed that the volume fraction of vapor varied in time only due to variations
in the bubble radii, and hence, we calculated the following:

dαv

dt
= − d

dt
(1− αv) =

n4πr2
B(

1 + n 4
3 πr3

B

)2
drB
dt

=
3
rB

αv(1− αv)
drB
dt

. (6)

If pressure p in the liquid surrounding a given bubble was higher than pressure pB of
saturated vapors, the evaporation process took place with an increasing radius of bubbles
rB; otherwise, the condensation process with a decreasing radius of bubbles was observed.
According to the Rayleigh–Plesset equation, the rB growth rate could be written as follows:

drB
dt

=


√

2
3 (

pB−p
ρl

), p ≤ pB

−
√

2
3 (

p−pB
ρl

), p > pB
. (7)

With regard to (6) and (7), we could write the transport equation for the volume
fraction of vapor:

∂αv

∂t
+ ui

∂αv

∂xi
=

ρ

ρlρv
(Re − Rc). (8)

Here, the following expressions were used for Re and Rc:

Re =
ρvρl

ρ
αv(1− αv)

3
rB

√
2
3
(

pB − p
ρl

) , p < pB, (9)

Rc =
ρvρl

ρ
αv(1− αv)

3
rB

√
2
3
(

p− pB
ρl

) , p > pB, (10)

where ρv and ρl were the vapor and liquid phase densities, respectively; they were taken as
a constant.

For the discretization purposes, the transport Equation (8) in its non-divergent form
was used for the vapor volume fraction, and this allowed for improving the solution
stability and accuracy [20,40]. In so doing, the continuity equation of system (4) was
written with respect to velocity divergence:

∂ui
∂xi

= −1
ρ

dρ

dt
= −ρv − ρl

ρ

dα

dt
= −ρv − ρl

ρ

ρ

ρlρv
(Re − Rc) =

(
1
ρv
− 1

ρl

)
(Re − Rc). (11)

This allowed us to get rid of the derivative dρ
dt , which took large values in areas of free

surface, and thereby improved stability of the iterative procedure of finding the solution [41].
For discretization of the convective term in the volume fraction transport equation,

“compressive” schemes have proven themselves to be effective, which allow one to avoid
front blurring. One of the known “compressive” schemes is the High Resolution Interface
Capturing (HRIC) scheme [42], which was used in this paper.

2.3. Rotation Modeling

A rotating body was simulated with the explicit method using a computational mesh
moving together with the propeller boundaries. With such an approach, a domain near the
propeller, in which the rotation took place, was selected, while the rest domain remained
motionless (Figure 1).

In the rotation domain, the relation from [43] was used to take into account the mesh motion:

d∗ϕ

dt
=

∂ϕ

∂t
+ vi

∂ϕ

∂xi
, (12)
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where d∗ϕ
dt was substantial derivative of transferable scalar ϕ relative to a moving sys-

tem of coordinates; vi was the displacement velocity vector of the computational mesh.
Consider an example of using the volume fraction transport Equation (8). By using
Equation (12), we could rewrite Equation (8) in the following way (subscript v was omitted
for volume fraction):

d∗α
dt

+
∂

∂xi
(α(ui − vi))− α

∂

∂xi
(ui − vi)−Q = 0, (13)

where Q = ρ
ρlρv

(Re − Rc).
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Figure 1. Layout view of domains for explicit rotation of propeller.

The GGI (General Grid Interface) method [44] was used to conform solutions on
adjacent boundaries of arbitrary unstructured meshes of the two domains and based on
conservative interpolation of fluxes across non-conformable mesh interface. This algorithm
takes into account connections of cells on adjacent boundaries of regions without modifi-
cations to the original mesh using a generated set of virtual faces and creating additional
terms in the system of linear algebraic equations (SLAE) in each computation step. Figure 2
shows an example of merging two domains.
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Figure 2. Merging of two computational domains using an interface.

Cell P had a set of faces k, including internal faces kint, external faces kext, and adjacent
faces kGGI of the two domains, which formed a non-conformable mesh interface. Cell M
and cell P belonged to one and the same domain (Domain 1), while cell N belonged to
the neighboring domain (Domain 2); the distances from the center of cell P to the centers
of cells M and N were dPM and dPN, respectively. Consider the equation discretization
by the example of Equation (13); it was based on the method of finite volumes with
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respect to the unstructured nature of the computational mesh. The time discretization of
Equation (13) was performed using one of the known schemes; here, we used the implicit
Euler scheme [45]:

α
j
P − α

j−1
P

∆t
+

[
∂

∂xi
(α(ui − vi))− α

∂

∂xi
(ui − vi)−Q

]j
= 0, (14)

where α
j
P was the volume fraction at the center of cell P in the current time step; α

j−1
P was

the volume fraction at the center of cell P in the previous time step.
For the space discretization of Equation (13), we integrated this equation over volume

VP of cell P. For the convective term, according to Ostrogradsky–Gauss theorem, we went
to the integral over surface SP (time indexes were omitted if they were evident):

∫
VP

α
j
P − α

j−1
P

∆t
dVP +

∫
SP

α(ui − vi)dSP − αP

∫
SP

(ui − vi)dSP −
∫

VP

QdVP = 0. (15)

For approximation on a finite-volume mesh, we wrote the convective term of the form:∫
SP

α(ui − vi) dSP − αP
∫
SP

(ui − vi)dSP ≈ ∑
k

αk(ui,k − vi,k)Si,k − αP ∑
k
(ui,k − vi,k)Si,k ≈

≈ ∑
k

αk
(

Fk − Fv
k
)
− αP ∑

k

(
Fk − Fv

k
)
,

(16)

where k was the number of face; Si,k was the area vector of face k; αk was the volume
fraction on face k; Fk was the volume flux across face k, which could be found by solving
the continuity and momentum conservation equations; Fv

k was the volume flux associated
with the mesh motion; summation over all faces of cell P was performed. The quantity
value on face αk was determined by the discretization scheme [46].

To find the flux Fv
k , one can use the instant translational velocity of flux at the face center:

→
v k =

→
ω ×→r , (17)

where
→
ω is the angular velocity vector;

→
r is radius-vector to a given point from the coor-

dinate origin located on the body axis of revolution. However, with an increasing
→
r the

calculation error increases, and this leads to disbalance of fluxes Fv
k and, as a result, to the

perturbed numerical solution.
Alternatively, the flux Fv

k can be found exactly in the calculation of the volume created
by sweeping with a rotating face. Figure 3 shows the face k with vertices 1-2-3-4 and the
volume Vk created by rotating this face about axisω.
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The flux Fv
k can be found by sequentially summarizing the volumes of the bodies

bounded by the surfaces of revolution of the face edges:

Fv
k =

ω

2π

N

∑
n=1

Vn→n+1, (18)

where n is a serial number of a vertex; N is the total number of edges.
For this purpose, we found the cylindrical coordinates of the vertices of each edge.

The z coordinate of vertex 1 was as follows:

z1 =
→
d 1·
→
n ω, (19)

where
→
d 1 was radius-vector from the center of revolution to vertex 1;

→
n ω was a unit vector

of theω axis of revolution.
The r coordinate of vertex 1 was as follows:

r1 =
∣∣∣→r 1

∣∣∣ = ∣∣∣∣→d 1 − z1·
→
n ω

∣∣∣∣, (20)

where
→
r 1 was a vector normal to z axis.

Similarly, one can find the z2 and r2 coordinates of vertex 2. The volume formed by
rotating the edge 1–2 can be calculated via the following integral:

V1−2 =

z2∫
z1

πr2(z)dz, (21)

where r(z) = r1 +
r2−r1
z2−z1

(z− z1).

One can integrate (21) and take r2−r1
z2−z1

= b to obtain the following:

V1−2 = π(z2 − z1)

(
r2

1 + r1b(z2 − z1) +
1
3

b2(z2 − z1)
2
)

. (22)

One can use expression (22) to find the volume created by sweeping for each edge of
the face k and then find Fv

k from (18).

2.4. Solution Algorithm

For the numerical solution of the system of Equation (4), SLAEs were generated
according to the SIMPLE algorithm [1,35,47,48], in which the velocity and pressure fields
could be found using the predictor–corrector scheme.

To formulate the SIMPLE algorithm, we wrote the equation of conservation of the
momentum of the system (4) with time discretization from the Euler scheme (for brevity,
we omitted the expansion of the stress tensor and the gravitational term):

ρnun+1
i − ρjuj

i
∆t

+
∂

∂xj

(
ρnun+1

i un
j

)
= −∂pn+1

∂xi
+

∂

∂xj

(
τn+1

ij

)
. (23)

Here, n was the solution at the previous iteration, and j was the solution at the
previous time step. To solve this equation, the pressure and the velocity were presented in
the following form:

un+1
i = un

i + u∗i ,

pn+1 = pn + αp(pn+1 − pn) = pn + αpδpn+1,
(24)
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where 0 ≤ αp ≤ 1 was a relaxation parameter. Substitution of the above expression into (23)
yielded the following:

ρnun+1
i − ρjuj

i
∆t

+
∂

∂xj

(
ρnun+1

i un
j

)
= −∂pn

∂xi
−

∂
(
δpn+1)
∂xi

+
∂

∂xj

(
τn+1

ij

)
. (25)

Substitution of the first expression in (24) into (23) allowed for obtaining a preliminary
estimate of the velocity at the next step from the equation:

ρnu∗i
∆t

+
∂

∂xj

(
ρnu∗i un

j

)
− ∂

∂xj

(
τ∗ij

)
=

ρjuj
i

∆t
− ∂pn

∂xi
. (26)

The molecular and turbulent components of the shear stress tensor in (26) were
calculated using u∗i as well. At the second stage, the total speed was calculated at iteration
n + 1 using a pressure correction:

un+1
i = u∗i − ∆t

∂
(
δpn+1)
∂xi

. (27)

The pressure correction itself was found from Equation (27) if the continuity condition
for un+1

i was satisfied. Thus, taking the derivative of both sides of the above equality, we
obtained the following Poisson equation for the pressure:

∂

∂xi

(
∂
(
δpn+1)
∂xi

)
=

1
∆t

∂u∗i
∂xi

. (28)

This iterative procedure allowed for obtaining velocity and pressure fields that satisfy
the system of Equation (4). To ensure the stability of the calculation, the right side of the
continuity Equation (11) was linearized with respect to the pressure increment.

To take into account the force of gravity, we used the algorithm based on the correction
of volume forces [20,49], which provided no oscillations induced by disposition of unknown
quantities at the centers of cells. The multigrid method [50] allowed for accelerating
computations on high-performance supercomputers.

The numerical simulation method described above was implemented in the LOGOS
software package [27,34].

3. Numerical Calculation of the Propeller Performance in Open Water

First, the method is verified on the problems of a homogeneous liquid flow around
propellers KP505 and IB without consideration of cavitation. The propellers are fixed at
the shaft end, the KP505 model diameter is 0.25 m, and the IB model diameter is 0.2 m.
Figure 4 shows the geometry of these propellers.
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The performance curves of these propellers are calculated in a series of computations
with the speed of rotation n = 20 rps. The advance ratio J in these computations varies in
the range 0.1 ÷ 0.9 with increment 0.1; the incoming flow velocity is calculated with the
following formula:

V = J · n · D, (29)

where D is the propeller diameter. The range of values of the incoming flow velocity is
1 ÷ 4.5 m/s for propeller KP505 and 0.4 ÷ 2.8 m/s for propeller IB.

The computational meshes in Figure 5 were generated with a higher concentration
of cells near blades, in the swirling flow motion direction, and in the boundary layer. The
KP505 model mesh contains 15 mln cells, and the IB model mesh contains 5.8 mln cells.
The computational meshes consist of two regions: the rotating internal region and the
stationary external one. Both regions are cylinders; the propeller fixed at the shaft end is
inside the rotating region.
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Figure 5. Computational meshes for the KP505 (left) and IB (right) propeller models.

The incoming flow velocity is set on the inlet boundary, pressure is set on the outlet
boundary, the propeller boundaries are non-slip walls, and the lateral boundary of the
computational domain is a slip wall.

The following physical properties of water were taken for computations: dynamic
viscosity µl = 0.00114 Pa·s and density ρl = 1000 kg/m3.

Figure 6 illustrates the instantaneous velocity field at time t = 1 s (J = 0.4 for KP505,
J = 0.5 for IB).
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One can see from Figure 6 the swirling flow and the velocity magnitude distribution
near the propeller.

A quantitative comparison between the numerical simulation results is made for the
propeller characteristics, such as the thrust coefficient KT, the torque coefficient KQ, and the
efficiency η0, which are calculated using the following formulas:

KT =
T

ρ·n2·D5 , KQ =
Q

ρ·n2·D5 , η0 =
J

2π
·KT
KQ

, (30)

where T is thrust and Q is torque.
Figure 7 shows the action curves for KP505 and IB propellers obtained using the

LOGOS software package in comparison with experimental data [51,52].
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As one can see from Figure 7, the numerical simulation results are in good agreement
with the experimental data. Errors in the predicted torque coefficient and thrust coefficient
values achieve their maximum for the advance ratios close to 1 because of the small values
of the above quantities in such modes of the propeller behavior. As a result, the efficiency
calculation error also increases. Discrepancies in the resultant values of the propeller
characteristic are below 5% for the advance ratio J below 0.5. A maximum discrepancy in
the efficiency calculation results for propeller IB is observed for J = 0.7 (near the point of
zero thrust) and equals 7.9%. A maximum deviation in the efficiency value for propeller
KP505 is observed for J = 0.8 and equals 1.8%.

4. Numerical Calculation of the Propeller Performance under Cavitation Conditions

The validation of the methods used to simulate the performance of propellers with
cavitation considered is performed on the problem of a liquid flow around a model of a
rotating five-blade VP1304 propeller.

For flows with cavitation effects, the governing parameter is the cavitation number, σ.
In the problems of a flow around a propeller, the cavitation number is as follows:

σ =
(P− Psat)

ρn2D2/2
, (31)

where P is pressure and Psat is saturation pressure.
Table 1 gives experimental parameters for cavitating flows around the VP1304 propeller.

The saturated vapor pressure calculated using the water temperature is Psat = 3540 Pa.
In the experiments, the propeller thrust and torque were measured and used to

calculate dimensionless hydrodynamic parameters using Formula (30).
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Table 1. Computation modes.

Mode 1 2 3

Pressure in tube, Pa 43,071 31,353 42,603
Advance ratio 1.09 1.269 1.408

Cavitation number 2.024 1.424 2.0

The VP1304 propeller model, which geometry is shown in Figure 8, is fixed at the shaft
end; the propeller diameter equals 0.25 m.

Fluids 2023, 8, x FOR PEER REVIEW 11 of 19 
 

the point of zero thrust) and equals 7.9%. A maximum deviation in the efficiency value 
for propeller KP505 is observed for J = 0.8 and equals 1.8%. 

4. Numerical Calculation of the Propeller Performance under Cavitation Conditions 
The validation of the methods used to simulate the performance of propellers with 

cavitation considered is performed on the problem of a liquid flow around a model of a 
rotating five-blade VP1304 propeller. 

For flows with cavitation effects, the governing parameter is the cavitation number, 
σ. In the problems of a flow around a propeller, the cavitation number is as follows: 

−
=

2 2

( )
σ

ρ / 2
satP P

n D
, (31) 

where P is pressure and Psat is saturation pressure. 
Table 1 gives experimental parameters for cavitating flows around the VP1304 pro-

peller. The saturated vapor pressure calculated using the water temperature is Psat = 3540 
Pa. 

Table 1. Computation modes. 

Mode 1 2 3 
Pressure in tube, Pa 43,071 31,353 42,603 

Advance ratio 1.09 1.269 1.408 
Cavitation number 2.024 1.424 2.0 

In the experiments, the propeller thrust and torque were measured and used to 
calculate dimensionless hydrodynamic parameters using Formula (30). 

The VP1304 propeller model, which geometry is shown in Figure 8, is fixed at the 
shaft end; the propeller diameter equals 0.25 m. 

 
Figure 8. Model of VP1304 propeller. 

The computational mesh was built using the cutoff method with the mesh refine-
ment near blades, in the swirling flow motion direction, and in the boundary layer. Fig-
ure 9 shows the VP1304 propeller model near its blade. The total number of the compu-
tational mesh cells is 2.8 mln. 
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The computational mesh was built using the cutoff method with the mesh refinement
near blades, in the swirling flow motion direction, and in the boundary layer. Figure 9
shows the VP1304 propeller model near its blade. The total number of the computational
mesh cells is 2.8 mln.
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Figure 9. The mesh model of VP1304 propeller.

The incoming flow velocity is set on the inlet boundary, the boundary condition with
a fixed hydrostatic pressure distribution is set on the outlet boundary, the lateral boundary
is a slip wall, and the propeller boundaries are non-slip walls.

To calculate the performance curves of the propeller, a series of computations was
carried out with the speed of rotation n = 25 rps. The advance ratio J varied within the
range of 1.09 ÷ 2.0; the advance ratios were used to calculate the incoming flow velocity
with Formula (29).

The following physical parameters were taken for computations: dynamic viscos-
ity µl = 0.00114 Pa·s and density ρl = 1000 kg/m3 for water and dynamic viscosity
µv = 1.26765·10−5 Pa·s and density ρv = 0.59531 kg/m3 for vapor.

Figure 10 shows the fields of velocity magnitude in the cross-section for the
three flow conditions.

Figure 11 illustrates the shapes of cavitating regions for each calculated flow condition
in comparison with experimental sketches.
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One can see from these figures that in all cases, the shapes of cavitation clouds agree
with experimental sketches. Similarly to the experiment, for the first two types of condi-
tions (modes 1 and 2), the computation predicts the generation of two cavitating regions:
one near the blade base and another along the front edge of the blade. For the second type
of conditions (mode 2), where the cavitation number is smaller, the cavitation cloud is pro-
nounced, both in the experiment and in the numerical simulation results. For the third type
of conditions (mode 3), the comparison with the experimental sketch of cavitation vapor
on the pressure side of the blade shows that the calculated fields are slightly different, and
there is no detached flow at the end of the blade.

Figure 12 shows, in comparison, the performance curves of VP1304 propeller obtained
using LOGOS and experimental data [53].

For mode 1, the difference in the values of coefficients KT and KQ does not exceed 1.8%.
For mode 2, the maximum deviation is observed for the torque coefficient and equals 5.6%.
For mode 3, the maximum deviation is 5.2% for KQ and 4.4% for KT. The calculated thrust
coefficients for the advance ratios close to 1 are almost the same as in the experiments,
while for higher advance ratios, they take values less than the experimental ones. The
maximum deviation in the efficiency value is observed for mode 2 and equals 1.2%.
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The next considered is the problem of a flow around a rotating model of five-blade C5
propeller. The model is fixed at the shaft end; the propeller diameter is 0.2 m. Figure 13
shows the model geometry.
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Figure 13. Geometry of C5 propeller.

To calculate the performance curves of the propeller, a series of computations was
carried out for the cavitation numbers σ = 0.9 and σ = 1.2. The propeller rotation speed n
varies within the range of 30 ÷ 36 rps, the incoming flow velocity is 5.5 m/s for σ = 0.9 and
5.2 m/s for σ = 1.2, and the advance ratio J is calculated with Formula (29).

The computational mesh in Figure 14 is built with the refinement of cells near blades,
in the swirling flow motion direction, and in the boundary layer. The mesh model contains
10.2 mln cells.
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The incoming flow velocity is set on the inlet boundary, the boundary condition with
a fixed hydrostatic pressure distribution is set on the outlet boundary, the lateral boundary
is a slip wall, and the propeller boundaries are non-slip walls.

The physical properties of water and vapor are the same as in the previous problem;
the saturated vapor pressure is Psat = 2325 Pa.

First, non-cavitating flows around the propeller are calculated. Figure 15 shows the
performance curves of the C5 propeller model calculated using LOGOS in comparison with
the experiment [54].
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An error in the thrust coefficient prediction takes its maximum values with high
advance ratios, and as a result, the efficiency calculation error increases. The maximum
discrepancy in the calculated efficiency is 4.5% for the advance ratio J = 1.017.

Then, computations are carried out for the cavitation flow conditions. Figure 16 shows
the velocity magnitude distribution in the central section of the computational domain for
different rotation speeds of the propeller and different cavitation numbers.
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Figure 17 shows the isosurface position of the volume fraction of the cavitation vapor ob-
tained using LOGOS for different propeller rotation speeds and different cavitation numbers.
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Figure 18 shows the performance curves for the C5 propeller under cavitation condi-
tions calculated using LOGOS in comparison with experimental data [47] for the cavitation
numbers σ = 0.9 and σ = 1.2 (black solid lines—experimental performance curves for C5
propeller without consideration of cavitation).
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The numerical simulation results obtained with LOGOS are in a good agreement with
the reference data. Maximum deviations are observed for σ = 1.2 at the highest rotation
speed of the propeller: 8.8% for the thrust coefficient, 10.7% for the torque coefficient, and
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4.1% for the efficiency. Under the rest conditions, deviations in the calculated characteristics
do not exceed 5% and equal 2.5% on average.

5. Conclusions

The paper presents the methods implemented in the Russian LOGOS software package
for the numerical simulation of marine propellers on the base of solving the system of
Navier–Stokes equations averaged according to Reynolds and closed by the k–ω SST
model of turbulence along with the γ–Reθ laminar-turbulent transition model. The VOF
method and the SS cavitation model are used to take into account the cavitation processes.
The rotation of propellers is simulated by moving computational mesh nodes and the
GGI method used to provide conformable solutions on adjacent boundaries of arbitrary
unstructured meshes of two domains. The basic equations and approaches used in the
LOGOS software package to solve these equations are described.

The method validation results are given for the problems of finding the performance
curves of models of IB and KP505 propellers with cavitation not taken into account and
for models of VP1304 and C5 propellers under cavitation conditions. The numerical
simulation results demonstrate that these methods provide sufficiently accurate results
(with deviations not exceeding 5%) in predicting the main hydrodynamic characteristics of
propellers under most operating conditions.
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