
Citation: Shirinzad, A.; Jaber, K.; Xu,

K.; Sullivan, P.E. An Enhanced

Python-Based Open-Source Particle

Image Velocimetry Software for Use

with Central Processing Units. Fluids

2023, 8, 285. https://doi.org/

10.3390/fluids8110285

Academic Editors: D. Andrew S. Rees

and Guangjian Zhang

Received: 29 September 2023

Revised: 20 October 2023

Accepted: 25 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

An Enhanced Python-Based Open-Source Particle Image
Velocimetry Software for Use with Central Processing Units
Ali Shirinzad * , Khodr Jaber † , Kecheng Xu † and Pierre E. Sullivan †

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
khodr.jaber@mail.utoronto.ca (K.J.); kecheng.xu@mail.utoronto.ca (K.X.); sullivan@mie.utoronto.ca (P.E.S.)
* Correspondence: ali.shirinzad@mail.utoronto.ca
† These authors contributed equally to this work.

Abstract: Particle Image Velocimetry (PIV) is a widely used experimental technique for measuring
flow. In recent years, open-source PIV software has become more popular as it offers researchers and
practitioners enhanced computational capabilities. Software development for graphical processing
unit (GPU) architectures requires careful algorithm design and data structure selection for optimal
performance. PIV software, optimized for central processing units (CPUs), offer an alternative to
specialized GPU software. In the present work, an improved algorithm for the OpenPIV–Python
software (Version 0.25.1, OpenPIV, Tel Aviv-Yafo, Israel) is presented and implemented under a
traditional CPU framework. The Python language was selected due to its versatility and widespread
adoption. The algorithm was also tested on a supercomputing cluster, a workstation, and Google
Colaboratory during the development phase. Using a known velocity field, the algorithm precisely
captured the time-average flow, momentary velocity fields, and vortices.

Keywords: particle image velocimetry; OpenPIV; Python; image processing

1. Introduction

Particle Image Velocimetry (PIV) is a non-intrusive experimental method that allows
the measurement of fluid velocity vectors over a plane of interest [1]. PIV has been
applied to a broad range of fluid flows, such as high–speed flows with shocks, laminar
boundary layers, and near–wall flows, making it a widely used technique for velocity
measurement [2]. Recently, PIV has also been used to look at cell motion [3], granular
flows [4], ultrasonic images [5], and other fields where velocities or displacements need to
be quantified. Cutting–edge hardware designed for PIV experiments can quickly capture
and store thousands of image pairs. This capability stands as a critical factor in acquiring
flow characteristics with sufficient statistics. Image processing techniques for PIV have
also evolved in tandem with these hardware advancements, with the most notable of
these methods being the window deformation iterative multigrid (WIDIM), which can
significantly enhance the precision and spatial resolution of velocity fields in high–shear
regions [6,7]. However, using the WIDIM approach for large datasets is computationally
expensive and often limits the possible size of the datasets.

The growing significance of PIV over the past few decades has led to the emergence
of numerous software packages. Among the available open–source packages are [8–10],
e.g., PIVLab [11], OpenPIV [12], Fluere [13], Fluidimage [14], mpiv [15], JPIV [16], and
UVMAT [17]. The advantages of open–source software development include the complete
availability of algorithm details, which provides greater flexibility in future developments,
especially in the context of community–driven collaboration, and compatibility with high–
performance computing systems [8]. In this regard, PIVLab and OpenPIV have proven
to be popular with the research community with the former being one of Matlab®’s most
popular nonofficial free toolboxes [10].

Fluids 2023, 8, 285. https://doi.org/10.3390/fluids8110285 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8110285
https://doi.org/10.3390/fluids8110285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-7286-1809
https://orcid.org/0000-0002-7466-6943
https://orcid.org/0000-0003-1454-3391
https://doi.org/10.3390/fluids8110285
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8110285?type=check_update&version=1

Fluids 2023, 8, 285 2 of 23

Most open–source PIV algorithms are primarily developed for central processing
units (CPUs) and leverage multiple cores and multiprocessing to accelerate calculations.
In contrast, there are relatively fewer implementations optimized for GPUs [8,18]. GPU
implementations have the potential to outpace their CPU counterparts and are essential
for real–time PIV processing. For offline PIV analysis, deciding between GPU and CPU
implementations is less straightforward. One crucial factor to consider is the hardware
cost, as datacenter–grade GPUs are generally more expensive than CPUs. Additionally,
the complexities of GPU programming, usually with regard to data structure selection and
algorithm design suitable for the single–instruction multiple–data architecture, may deter
some users from adopting GPU–based implementations due to the steeper learning curve
compared to traditional CPU–based algorithms. Moreover, Python packages for CPUs
tend to have greater stability compared to GPU packages, which undergo more frequent
changes. Consequently, the CPU version of OpenPIV remains essential for maintaining
stability and reliability.

Dallas et al. [8] developed a GPU–accelerated version of OpenPIV–Python that out-
performed the CPU version of the software by a factor of 175. In their work, the GPU
algorithms were executed on a supercomputing cluster while the CPU version was run
on a standard workstation. Even though GPUs are expected to be faster than CPUs, the
results of their work clearly showed that the CPU version of OpenPIV–Python suffers from
poor performance, prompting the authors to conduct an in-depth analysis of both OpenPIV
and PIVLab on all sub-levels. The current study presents an open-source CPU version
for OpenPIV–Python, entitled OpenPIV–Python–CPU, combining essential features from
both PIVLab and OpenPIV and aiming to improve processing time, accuracy, and spatial
resolution of the velocity fields. The package is freely available on a GitHub repository,
the link to which is provided in Appendix A. The remainder of the paper is organized as
follows. The improved algorithms, implementation of the new software, and a description
of the used datasets are presented in Section 2. The main results are presented in Section 3,
followed by a more detailed discussion of the effect of the PIV parameters on the software
performance in Section 4. The major findings and conclusions are summarized in Section 5.

2. Materials and Methods
2.1. Implementation and Architecture

OpenPIV–Python was initially developed as a Python package available on the Python
Package Index (PyPI). Figure 1 illustrates a flowchart detailing the typical PIV process using
the WIDIM approach in the current implementation. The readers are referred to Scarano [19]
for a more detailed explanation of the WIDIM algorithm. The functionalities of the original
software can be categorized into four main groups: correlation, validation, replacement,
and smoothing. The following sections will elaborate on the detailed enhancements made
to each of these tasks, excluding smoothing, as the algorithm remains consistent with the
one utilized in PIVLab and previous versions of OpenPIV [8,20].

The numerical cross-correlation process begins by dividing a pair of images into square
regions, known as interrogation windows, as shown in Figure 2a. In Python, striding is
applied to create two 3D stacks of all the interrogation windows for an image pair, as
working with 1D arrays is more efficient for future operations, such as removing masked
windows. Similarly to PIVLab, a discrete Fourier transform (DFT) is used to perform a
circular cross-correlation of the two 3D arrays. The mean intensity from each window may
then be subtracted as typical image data include some noisy, non-zero background signal.
An important assumption in circular cross-correlation is the periodicity of the signal (image
data), which may introduce frequencies in the DFT spectrum that are non-existent [2].
To suppress this negative effect, the window stacks can be zero-padded, yielding an
approximation of a linear non-periodic cross-correlation [10]:

WFFT = nFFT ×W (1)

Fluids 2023, 8, 285 3 of 23

where W is the window size and WFFT is the width of the Fourier transform. The cross-
correlation is then calculated according to the cross-correlation theorem, using the Fastest
Fourier Transform in the West (FFTW) available as pyFFTW on PyPI [21]. The Fourier
transform width must be a power of two when using FFTW for performance reasons.

Fluids 2023, 1, 0 4 of 24

Start PIV processing 1. Set PIV settings
2. Load mask

First iterationNo

1. Interpolate displacement
onto image coordinates
2. Interpolate image intensity
onto new coordinates

Load image pair

Set intensity at masked
locations to zero

Yes

Correlation object

Mesh refinement

Interpolate displacement
onto the refined grid

1. Interrogate images
2. Stack windows
3. Remove masked windows
4. Normalize intensities
5. Zero pad window stacks
6. Perform cross-correlation
7. Find first peak indices
8. Find subpixel position
9. Find displacement field

Yes

No

Sum obtained displacement
with previous estimation

No

Validate displacement field

Replace spurious vectors Max iterationNo

Validation object

Replacement object

Last iterationSmooth displacement field

Save or export results Scale displacement field

Yes

Smoothn object

First iteration

Yes

No

Yes

Figure 1. Flowchart of the architecture of OpenPIV-Python-CPU.
Figure 1. Flowchart of the architecture of OpenPIV–Python-CPU.

Fluids 2023, 8, 285 4 of 23

(a) (b)

Figure 2. A 512 pixels× 512 pixels synthetic image of tracer particles in a Rankine vortex: (a) interro-
gation windows of size 128 pixels× 128 pixels with zero overlap; (b) measurement (blue) and padded
(red) nodes are shown, respectively.

Once the cross-correlation map is calculated, the subpixel peak location may be
approximated, typically using a Gaussian estimation:

isp = i + 0.5
log Ii−1,j − log Ii+1,j

log Ii−1,j − 2 log Ii,j + log Ii+1,j
(2a)

jsp = j + 0.5
log Ii,j−1 − log Ii,j+1

log Ii,j−1 − 2 log Ii,j + log Ii,j+1
(2b)

where i and j are the peak location indices, Ii,j denotes the value of the cross-correlation
map corresponding to i and j indices, and isp and jsp are the subpixel approximations. The
displacement is then obtained by centering the subpixel peak locations using Equations (3a)
and (3b) below. Note that from Equations (2a) and (2b) it is clear that no subpixel location
may be estimated if the peak location is one of the borders of the correlation map. In such
cases, the software uses the original peak indices to calculate the displacement.

u = jsp −
WFFT

2
(3a)

v = isp −
WFFT

2
(3b)

After each iteration, the displacement field must be validated for spurious vectors
to ensure the accuracy of the displacement field used as a predictor to shift and deform
the interrogation windows in the next iteration. Various validation schemes have been
implemented in OpenPIV [8]. The signal-to-noise ratio is a correlation-based validation
method defined as the ratio of the first and second highest peaks (I1 and I2) in the correlation
map, as shown in Equation (4) below:

I1

I2
> εS2N (4)

where εS2N is the tolerance parameter, which is generally greater than 1.3 [8]. Note that it
may not be feasible to use a single signal-to-noise tolerance value for all iterations as the
signal-to-noise ratio decreases with every grid refinement.

Fluids 2023, 8, 285 5 of 23

Displacement-based validation methods provide a more robust alternative to the
signal-to-noise ratio. Figures 2b and 3a show the measurement nodes and kernels used
during a typical displacement-based validation process. As shown in Figure 2b, the
displacement field is padded before being stridden to create a 3D array of all kernels. The
center of every kernel is then evaluated against some statistics, such as mean, median, or
median absolute deviations, of its neighbors:

u0 − um > rm,u × ε (5a)

v0 − vm > rm,v × ε (5b)

In Equations (5a) and (5b), u0 and v0 are the displacements at the center of the kernel
while ε is the tolerance parameter. For a simple median or mean validation, um and vm
are the median or mean of the neighbors, and rm,u = rm,v = 1. For the median-absolute-
deviation test, however, um and vm are the median while rm,u and rm,v are the median
absolute deviation of the neighbors. The median and median-absolute-deviation validation
methods have shown to be less sensitive to the variation in vectors during the PIV process.
Westerweel and Scarano [22] argued that it is possible to apply a single tolerance value for
all iterations in certain scenarios.

The outliers detected during the validation process must be replaced properly to
ensure the accuracy of the final displacement field or to improve the displacement field
used as a predictor for the next PIV iteration. The methods implemented in the previous
versions of OpenPIV replace an outlier with the mean or median of its non-spurious
neighbors iteratively until the maximum number of iterations is reached. The median
and mean replacement methods fail to replace the vectors that are entirely surrounded by
outliers. Such vectors may be replaced in the remaining replacement iterations if a large
enough number of iterations are used for the information to spread to their neighbors. In
the above-described method, it is also possible to revalidate the field after each replacement
iteration to exclude the outliers from the next replacement iteration when they satisfy the
validation criteria. The current software allows the mean and median methods to be used
with or without the revalidation option.

(a) (b)

Figure 3. Schematics of a kernel of size three, showing center and neighboring nodes used during val-
idation and replacement processes: (a) validation kernel; (b) spring analogy for outliers replacement.
Measured nodes (blue), Padded nodes (red) and outliers (white) are shown.

PIVLab, on the other hand, uses a spring analogy to replace the outliers altogether. A
schematic of a system of springs is shown in Figure 3b. In this method, all measurement
nodes are treated as forces applied to the ends of a spring and the outliers are replaced by
solving a system of inter-connected springs with zero net force. If there are no neighboring
outliers, the outlier is simply replaced by the mean of four of its neighbors. Otherwise,
the method uses all of the nodes surrounding a region of outliers to interpolate the nodes

Fluids 2023, 8, 285 6 of 23

within. For a displacement field with n outliers, the force balance at each node may be
expressed by Equations (6a) and (6b):

xi −
1
ai

n

∑
j=1

κijxj =
1
ai

ci

∑
k=1

bik (6a)

ci = ai −
n

∑
j=1

κij (6b)

where an outlier and a node connected to the outlier are denoted by xi and bik, respectively.
In Equation (6a), κij = 1 if an outlier is connected to the other end of one of the four springs
shown in Figure 3b and zero otherwise (note that by this definition κii = 0 and κij = κji).
The coefficient ai is the number of available springs at a given node. For instance, there are
only three free springs in Figure 3b since one is connected to a padded node. Generally,
ai = 3 if a node is at the edge, ai = 2 if a node is in the corner, and ai = 4 if a node is not on
the borders.

Theoretically, in the spring analogy, all of the outliers need not be replaced at once, and
only the linked nodes need to be solved together, simplifying the original problem to a set
of smaller systems. Hence, Equations (6a) and (6b) form multiple linear equations systems,
which may be solved either separately or simultaneously. For simplicity, however, the
algorithm used in the present software constructs a system of all equations before solving
the system using linear algebra. Equations (6a) and (6b) may be rewritten in matrix form
suitable for numerical computations:

LX = B

L =




1
−κ12

a1
· · · −κ1n

a1−κ21

a2
1

−κ2n

a2
...

...
. . .

...
−κn1

an

−κn2

an
· · · 1




(7)

In Equation (7), L and B are the linkage and coefficient matrices, respectively. Since
every outlier is at most connected to four other outliers, the linkage matrix is sparse. The
linkage matrix is constructed row by row using a row-based list of lists (LIL) sparse matrix
before being converted into a compressed sparse row (CSR) format. In every loop, an array
of zeros with the same shape as the padded displacement field is initialized, and the linkage
kernel is placed at the outlier location, filling the coefficients of the connecting nodes. The
row of the linkage matrix is then filled by selecting all elements corresponding to outlier
locations from this array. This procedure is illustrated in Figure 4 for the first outlier in the
corner (a1 = 2) for the same field shown in Figure 2b.

The construction of the coefficient matrix in Equation (7) is straightforward. First, all
elements corresponding to outlier locations in the padded field are replaced with zeros.
The resulting field is stridden into a 3D array of kernels and the kernels centered around all
outliers are selected from this array before calculating the mean of the nodes connected
to the center of kernels. An example of this procedure for the field shown in Figure 4 is
presented in Figure 5.

Fluids 2023, 8, 285 7 of 23

1

− 1
a1

− 1
a1

− 1
a1

− 1
a1

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0

0

0

0

0

0

0

Figure 4. A schematic showing an array of zeros and a kernel of size three used to construct the
linkage matrix. The white nodes are selected to fill the first row of the linkage matrix. Measured
nodes (blue), Padded nodes (red), and outliers (white) are shown.

The remaining subroutines are described as follows. If the window size in the next
PIV iteration is reduced, the filtered and smoothed displacement field is interpolated onto
the new grid through bicubic interpolation. The displacement field is then interpolated
onto all image coordinates using spline interpolation to build a predictor displacement field
over all the image pixels. The two images are deformed according to the predictor spatial
distribution. For performance reasons, the resampling of the pixel values at intermediate
locations is only completed through bilinear interpolation. The deformed images are then
used as input for the next iteration.

2.2. Datasets and Image Processing

Synthetic images generated from a known distribution are often used to assess the
accuracy of PIV software. Synthetic images are also useful for analyzing the influence of
image parameters, such as noise, particle size, or loss of particle pairs, on the performance
of PIV software. Consider the turbulent flow through a rectangular channel slice of a
half-height h. A Cartesian coordinate system is employed with the origin at the junction of
the entrance cross-section, bottom wall, and the midspan plane, as sketched in Figure 6a.

Fluids 2023, 8, 285 8 of 23

0

b11 b21

0

b22

b33

b34

b31

b32 b42

b41

x1 x2

x3 x4

Figure 5. An example showing the kernels used for constructing the right-hand side of Equation (7).
Note that the gray nodes will not be used when calculating the average in each kernel.

Fluids 2023, 1, 0 8 of 23

outliers are selected from this array before calculating the mean of the nodes connected
to the center of kernels. An example of this procedure for the field shown in Figure 4 is
presented in 5.

The remaining subroutines are described as follows. If the window size in the next
PIV iteration is reduced, the filtered and smoothed displacement field is interpolated onto
the new grid through bicubic interpolation. The displacement field is then interpolated
onto all image coordinates using spline interpolation to build a predictor displacement field
over all the image pixels. The two images are deformed according to the predictor spatial
distribution. For performance reasons, the resampling of the pixel values at intermediate
locations is only done through bilinear interpolation. The deformed images are then used
as input for the next iteration.

2.2. Datasets and Image Processing

Synthetic images generated from a known distribution are often used to assess the
accuracy of PIV software. Synthetic images are also useful for analyzing the influence of
image parameters, such as noise, particle size, or loss of particle pairs, on the performance
of PIV software. Consider the turbulent flow through a rectangular channel slice of half-
height h. A Cartesian coordinate system is employed with the origin at the junction of the
entrance cross-section, bottom wall, and the midspan plane, as sketched in Figure 6(a).

Figure 6. A schematic representation of the wall-bounded turbulent rectangular channel flow: (a)
The adopted nomenclature. (b) A sample of the synthetic images used in the present study and tracer
particles in a 32 pixels× 32 pixels window.

The velocities in the x and y coordinate directions are denoted by u and v, respectively.
The velocity field in the x-y plane is denoted by v and its magnitude is given by Equation (8):

|v| =
√

u2 + v2 (8)

Figure 6. A schematic representation of the wall-bounded turbulent rectangular channel flow: (a) the
adopted nomenclature; (b) a sample of the synthetic images used in the present study and tracer
particles in a 32 pixels× 32 pixels window.

Fluids 2023, 8, 285 9 of 23

The velocities in the x and y coordinate directions are denoted by u and v, respectively.
The velocity field in the x-y plane is denoted by~v and its magnitude is given by Equation (8):

|~v| =
√

u2 + v2 (8)

since the z component of the velocity is not of interest. All time-averaged velocities
are denoted by their corresponding capital letters. John Hopkins turbulent channel
database contains the direct numerical simulation (DNS) results for wall-bounded tur-
bulent flow in a rectangular channel [23]. The DNS domain size is 8π × 2× 2π using
2048× 512× 1536 nodes in the x, y, and z coordinate directions, respectively. The results
were obtained by solving incompressible Navier–Stokes equations with periodic boundary
conditions in the stream–wise and span–wise directions and a no-slip condition at the top
and bottom boundaries. The DNS grid spacing was uniform in the stream–wise direction
and non-uniform in the wall-normal direction with a higher density of nodes near the wall
boundary. The database contains velocity fields for 4000 simulation time steps, correspond-
ing to approximately one flow-through period of the channel. The fluid kinematic viscosity
and the friction velocity were ν = 5× 10−5 and uτ = 0.0499, corresponding to a friction
velocity Reynolds number of Reτ = uτ × h/ν ≈ 1000.

In the present study, synthetic images generated from a 2π × 2 slice of the velocity
fields at z = π/10 for 1000 time steps (amounting to 2000 images) were used to assess
the performance of the software to realistic and complicated flow fields. The DNS ve-
locity field was uniformly scaled for a maximum particle displacement of 8 pixels when
generating the images, satisfying the one-quarter rule for a 32 pixel × 32 pixel initial in-
terrogation window. This corresponds to adjusting the time delay between image pairs to
best capture the flow dynamics when capturing real PIV images. The synthetic images are
1608 pixels × 512 pixels large and have the same aspect ratio as the channel slice. Samples
of the synthetic images of the tracer particles in the channel slice and a 32 pixel × 32 pixel
window are shown in Figure 6b.

The images were processed on a workstation and the Niagara computer cluster to
ensure compatibility with both the Microsoft Windows and Linux platforms and evaluate
computational performance. The workstation had a 12-core Intel® Core™ i5-10600K CPU
(Intel Corporation, Santa Clara, CA, USA) at 4.1 GHz and 64 GB of RAM. On the Niagara
cluster, a node with 40 Intel® Skylake cores at 2.4 GHz and 188 GB of RAM was used for
PIV processing. All 1000 image pairs had to be transferred to the cluster using Globus. A
list of the software input parameters and PIV settings is presented in Table 1.

The Rankine vortex is a useful case study to investigate the effects of the PIV parame-
ters shown in Table 1 on the accuracy and performance of the software. The Rankine vortex
and the adopted coordinate system are shown in Figure 7a.

The velocity field and its components in the x and y coordinate directions are denoted
by ~v, u, and v, respectively. The velocity magnitude and its distribution for the Rankine
vortex are given by Equations (8) and (9):

{
|~v| = r

R |~v|R r < R
~v = R

r |~v|R r > R
(9)

where r is the distance from the vortex center, R is the radius of the vortex core, and |~v|R is
the velocity magnitude at r = R. A pair of synthetic images of the size 512 pixels× 512 pixels
were generated from the Rankine vortex distribution using PIVLab. The vortex core was
located at the center of the frame and had a radius of R = 50 pixels. The number of particles,
particle diameter, and noise level were set to 50,000, 3 pixels, and 0.001, respectively. The
maximum particle velocity was scaled to |~v|R = 16 pixels/s to satisfy the one-quarter rule
for a 64 pixels× 64 pixels initial interrogation window. A sample of these images is shown
in Figure 7b.

Fluids 2023, 8, 285 10 of 23

Figure 7. A schematic representation of Rankine vortex: (a) the adopted nomenclature; (b) a sample
of the synthetic images used in the present study.

Table 1. Summary of PIV parameters for turbulent channel flow.

Settings Variable Description Value

Masking mask
2D array with non-zero values indicating the
masked locations. None

Data type dtype_f 1 Type of floating-point numbers. “float32”

Geometry

frame_shape Size of the images. (512, 1608)
min_search_size Interrogation window size for the final iteration. 8
search_size_iters Number of iterations for each window size. (1, 1, 2)
overlap_ratio Ratio of overlap for each window size. 0.5
shrink_ratio 2 Ratio to shrink the search size for the first iteration. 1

Correlation

deforming_order
Order of spline interpolation for window
deformation. 2

normalize
Normalize the window intensity by subtracting the
mean value. True

subpixel_method 3 Method to estimate subpixel location of the
correlation peak. “gaussian”

n_fft Size factor for the 2D FFT. (1, 1, 2)
deforming_par 4 Ratio of the predictor used to deform each frame. 0.5
batch_size Batch size for calculating the cross-correlation. 1

Validation

s2n_method 5 Method of signal-to-noise ratio measurement. “peak2peak”

s2n_size
Half-size of a square around the first peak ignored
for second peak. 2

validation_size 6 Size parameter for validation kernel. 1
s2n_tol 7 Tolerance for signal-to-noise ratio validation. None
median_tol 7 Tolerance for median validation. 2
mad_tol 7 Tolerance for median-absolute-deviation validation. None
mean_tol 7 Tolerance for mean validation. None
rms_tol 7 Tolerance for root mean squared validation. None

Replacement

num_replacing_iters Number of iterations per replacement cycle. 2
replacing_method 8 Method to use for outlier replacement. “spring”
replacing_size 6 Size parameter for replacement kernel. 1

revalidate
Revalidate the fields in between replacement
iterations. True

Fluids 2023, 8, 285 11 of 23

Table 1. Cont.

Settings Variable Description Value

Smoothing smooth 9 Smooth the displacement fields. True
smoothing_par 10 Smoothing parameter to apply to the velocity fields. None

Scaling dt 11 Time delay separating the two images. 1
scaling_par 11 Scaling factor to apply to the velocity fields. 1

1 The available types are “float32” and “float64” for single and double floating points, respectively.
2 Shrinking the window size allows for performing an extended search area PIV for the first iteration. 3 The
available methods are “gaussian”, “centroid”, and “parabolic”. 4 A value of 0.5 corresponds to the central
difference interrogation (CDI) scheme, minimizing the bias error [7]. 5 The available methods are “peak2peak”,
“peak2mean”, and “peak2energy”. 6 The actual kernel size is obtained by kernel_size = 2× size+ 1. 7 By
selecting None, a validation method method may be ignored. 8 The available methods are “spring”, “mean”,
and “median”. 9 No smoothing is applied at the end of the final iteration. 10 By selecting None, the generalized
cross-validation (GCV) method is used to obtain the optimum value. 11 If no scaling is applied, the output values
will be in units of pixels/s.

3. Results

In this section, contour plots, vector plots, and one-dimensional profiles are presented
to evaluate the accuracy of the algorithms in resolving the instantaneous and time-averaged
flow characteristics. Python was used to calculate the average of 1000 velocity fields for
both the DNS and PIV results. The velocity and displacement throughout the rest of
this paper are in units of pixels/s and pixels, respectively. All data visualizations were
accomplished using the commercial software Origin®.

3.1. Mean Flow Field

Figure 8 compares the contour plots of the mean stream–wise velocity for the DNS
data and PIV results. From Figure 8a,b, it can be seen that the OpenPIV results captured
all of the major patterns found in the contour plot of the DNS data, and closely matched
all the large-scale contour lines. The discrepancies found between Figure 8a,b are mostly
concentrated near the bottom and top walls, near the entrance and exit cross-sections, and
in high-velocity regions.

The one-dimensional profiles of the mean stream–wise velocity are provided in
Figure 9 to better visualize the stream–wise evolution of the flow. The profiles were plotted
at five successive stream–wise locations, starting at x = 4 and ending at x = 1604 with
an increment of 400, allowing the DNS data and PIV results to be compared in both near
boundary and internal regions. In the near-wall regions, the small-scale structures are
averaged out from the DNS data during the generation of the images [8,24]. The wall
coordinates are defined as follows:

y+ =
uτ∆y

ν
(10)

The PIV measurement nodes closest to the bottom and top walls are located at y = 4
and y = 508, corresponding to y+ ≈ 16 (given that Reτ ≈ 1000). Since these nodes are near
the edge of the shear layers, their values are biased towards the larger velocities, which
may also be observed in Figure 9.

Fluids 2023, 8, 285 12 of 23

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0U:(a)

(b)

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

Figure 8. Contour plots of the mean stream–wise velocity: (a) John Hopkins DNS data; (b) results
obtained with OpenPIV–Python.

0 4
0

100

200

300

400

500

0 4 0 4 0 4 0 4 8

 DNS
 PIV

y

x = 4 x = 404 x = 804 x = 1204 x = 1604

U

Figure 9. Stream–wise evolution of the mean stream–wise velocity profiles.

The disparity between the DNS data and the PIV results at the entrance and exit
cross-sections (x = 4 and x = 1604) occurs due to the loss of particle pairs that cannot be
redeemed by window translations and deformation. For a given image pair, the particles
entering or leaving the frame are only present in one of the two images, leading to a
significant loss of correlation. The current software tends to remedy this negative effect
using bilinear extrapolation to resample the image intensity near the boundaries. In
general, it is good practice to discard at least the layer immediately near the borders of the
velocity fields.

Fluids 2023, 8, 285 13 of 23

Figure 10 shows the frequency distribution plots of the error (difference between the
DNS and PIV results) for the mean velocity magnitude, mean stream–wise velocity, and the
mean transverse velocity. The sample size, mean, and standard deviation of the velocity
magnitude error were 50,927, 0.003, and 0.116, respectively. These results, as well as the
95 % confidence intervals shown in Figure 10a–c, indicate that the software is capable of
resolving all time-averaged velocities with reasonable accuracy.

-0.2 -0.1 0.0 0.1 0.2
0.0

5.0k

10.0k

15.0k

20.0k
0.072-0.070

C
ou

nt

|V| error

(a) (b) (c)

-0.2 -0.1 0.0 0.1 0.2

0.072-0.070

U error
-0.2 -0.1 0.0 0.1 0.2

0.019-0.024

V error

Figure 10. Frequency distribution plots of velocity error for the mean velocity fields: (a) velocity
magnitude; (b) stream–wise velocity; (c) transverse velocity. The 95 % confidence interval is shown
by dashed vertical lines on each plot.

3.2. Instantaneous Flow Field

The performance of the software in resolving the instantaneous flow field was eval-
uated by analyzing the fluctuating velocities, span–wise vorticity, and Q-criterion. The
fluctuating velocities and the span–wise vorticity are given by Equations (11a) and (11b):

u′ = u−U (11a)

v′ = v−V (11b)

The coherent structures in the flow can be identified using the Q-criterion. The Q-
criterion is a scalar field that defines structures as regions where the vorticity magnitude is
greater than the magnitude of the strain rate. In a two-dimensional Cartesian coordinate
system, the Q-criterion is given by Equation (12) below:

Q = −1
2

((
∂u
∂x

)2
+ 2
(

∂u
∂y

)(
∂v
∂x

)
+

(
∂v
∂y

)2
)

(12)

In the present study, the instantaneous velocity gradients were calculated using second-
order accurate central differences in the interior points and first-order accurate one-side
differences at the boundaries to calculate Equation (12). The fluctuating velocity vectors
superimposed on top of the contour plots of the Q-criterion for the DNS data and PIV
results at an arbitrary time step are presented in Figure 11.

In both Figure 11a,b, the Q-criterion was normalized by its maximum value in the
DNS data. The main structures in the DNS data are also captured in the PIV results. In the
middle section of the channel where the velocity is large, small isolated regions of negative
Q values are present in the PIV results, which may not be seen in the DNS data. Many
of these regions, a few of which are marked with red circles in Figure 11b, corresponded
to the vectors that were replaced during the last iteration, indicating the effectiveness of
the median validation in detecting the outliers. It is important to note that the median
validation did not classify these vectors as outliers at the end of the process. These vectors,
nevertheless, are approximated from their neighbors and should be regarded as unreliable.

Fluids 2023, 8, 285 14 of 23

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05Q/Qmax:(a)

(b)

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

Figure 11. Vectors of the fluctuating velocities superimposed on the contour plots of the normalized
Q-criterion: (a) John Hopkins DNS data; (b) results obtained with OpenPIV–Python.

The density of the vector field may be increased by means of decreasing the minimum
window size or increasing the final overlap. The same vector spacing of 4 pixels may
be achieved by setting only min_search_size=16 and overlap_ratio=(0.5, 0.5, 0.75)
from the parameters in Table 1. This will significantly improve the results away from the
walls (100 < y < 400) and at the entrance and exit cross-sections. Obviously, the near-wall
results will not be as detailed when a larger min_search_size is used. These results are
provided as supplementary figures in Appendix B.

Figure 12 shows the frequency distribution plots of the error for the velocity magni-
tude, stream–wise velocity, and transverse velocity to further assess the accuracy of the
instantaneous velocity fields. The sample size, mean, and standard deviation of the velocity
magnitude error were 50,927,000, 0.005, and 0.208, respectively. In Figure 12a–c, the 95%
confidence interval is specified by two dashed vertical lines. These confidence intervals
may be significantly improved if the boundary nodes are discarded. The results show that
the software is capable of resolving the instantaneous velocities with reasonable accuracy.

3.3. Computational Performance

Figure 13 demonstrates the effect of the number of processors on the computation
time. Multiprocessing was employed to vary the number of utilized processors for both
the workstation and Niagara cluster. Initially, for both platforms, the computation time
decreases rapidly as more processors are utilized. Meanwhile, launching more processes
above a certain threshold did not impact the calculation time. The time needed to transfer
2000 images to the Niagara cluster using Globus was 863 s at an effect speed of 3.81 MB/s.
From Figure 13, it can be seen that the speedup achieved by using the Niagara cluster is not
enough to compensate for the data transfer time. Using the cluster only becomes sensible

Fluids 2023, 8, 285 15 of 23

when large images with computationally intensive settings are to be processed or when a
dataset needs to be processed more than once.

-1.0 -0.5 0.0 0.5 1.0
0.0

5.0M

10.0M

15.0M

0.322-0.264

C
ou

nt

|v| error

(a) (b) (c)

-1.0 -0.5 0.0 0.5 1.0

0.320-0.266

u error
-1.0 -0.5 0.0 0.5 1.0

0.214-0.217

v error

Figure 12. Frequency distribution plots of velocity error for 1000 instantaneous velocity fields:
(a) velocity magnitude; (b) stream–wise velocity; (c) transverse velocity. The 95 % confidence interval
is shown by dashed vertical lines on each plot.

1 4 8 12 16 20 24 28 32 36 40
0

500

1000

1500

2000

2500

3000

3500
 Workstation
 Niagara Cluster

Number of processors

Ti
m

e
(s

)

Figure 13. Plot of the computation time against the core number.

CPU–Based PIV software, unlike their GPU counterparts, generally should cycle
through the windows rather than performing the cross-correlation simultaneously. Hence,
it is recommended always to set batch_size=1 for optimum performance. Regardless of
whether the cross-correlation is parallelized or not, the most time-consuming calculation
in a PIV algorithm is generally computing the cross-correlation between the interrogation
windows. The relative computational time for most of the sub-routines is presented
in Figure 1 is reported in Table 2. The relative computational time was calculated five
times using the same parameters shown in Table 1 before being averaged. As expected,
cross-correlation was the most time-consuming subroutine with nearly 65% of the total
computation time. Although deformation is the second most time-consuming subroutine,
it is worth mentioning that a larger portion of the time is spent on frame deformation.
Since window deformation is not as time-consuming, using a deforming_order greater
than one is recommended for better accuracy. Overall, 84.207% of the calculation time was
spent in the correlation object, which handles the main PIV calculations, while only 7.449%

Fluids 2023, 8, 285 16 of 23

of the time was dedicated to validation, replacement, and smoothing altogether, further
indicating that the software is implemented well.

Table 2. Performance profile of the CPU–Based software.

Subroutine Computational Time per Run 1 Average

Interrogation 0.893 0.894 0.833 0.867 0.791 0.855
Deformation 2 14.596 14.533 14.626 14.308 4.511 14.515
Normalization 1.902 1.865 1.783 1.852 1.820 1.845
Cross-correlation 65.573 65.769 65.797 66.103 65.560 65.760
Peak estimation 3 1.203 1.282 1.190 1.222 1.263 1.232
Validation 3.066 3.185 3.209 3.153 3.124 3.148
Replacement 3.493 3.615 3.727 3.587 3.639 3.612
Smoothing 0.658 0.698 0.672 0.748 0.671 0.689

Time per vector 4 50.611 50.557 49.586 49.859 49.704 50.063
1 For the subroutines, the reported values are the percentage of the relative computational time defined as the
time required for the subroutine divided by the total processing time. 2 Deformation refers to the combination of
window and frame deformation. 3 Peak estimation refers to the process of finding the first peak and estimating
its subpixel location. 4 Computational time per vector is presented in units of µs and is obtained as the total
calculation time divided by the number of vectors in the resulting vector field.

4. Discussion

The effect of several PIV parameters, including data type, number of PIV iterations,
correlation width, number of replacement iterations, replacing method, and revalidation, on
the Rankine vortex dataset described in Section 2 are discussed in this section. The readers
are referred to Meunier and Leweke [7] for a detailed discussion on the effect of the defor-
mation parameter on the bias error. For each case study, all parameters are the same as in
Table 1 with the exception of the parameters being investigated, frame_shape=(512, 512)
and min_search_size=16. After the effect of the PIV parameters on the resulting field is
discussed, a comparison between the results derived using the best replacement method
and PIVLab results obtained using the same number of iterations with a minimum window
size of 16 pixels is presented.

The precision of the floating-point data used during the PIV process can significantly
impact the computational performance. Although both single and double precisions are
available options, the single precision data type is preferred as it can greatly reduce the
cross-correlation computation time. Performing the PIV analysis for both double and single
data types resulted in the same mean, standard deviation, and 95 % confidence interval of
−0.061, 0.374, and (−0.984, 0.204) for the velocity magnitude error. In general, using the
single precision data type should not be a problem for most PIV applications.

The number of iterations used at each window size may remarkably improve the accu-
racy of the results. For instance, just performing one more iteration for the 32 pixels× 32 pixels
window size, that is, changing search_size_iters=(1, 1, 2) to (1, 2, 2), can change
the 95 % confidence interval of the velocity magnitude error from (−0.984, 0.204) to
(−0.657, 0.211).

As was discussed in Section 2, zero-padding the windows before taking the circular-
cross correlation may improve the results. It is recommended to increase the correlation
width for the minimum window size at least by a factor of two to strike a balance between
accuracy and computation efficiency. Increasing the correlation width for other window
sizes, although not as effective as the smallest window size, may also improve the accu-
racy. For example, changing n_fft=(1, 1, 2) to (1, 2, 2) reduces the 95 % confidence
interval of the velocity magnitude error from (−0.984, 0.204) to (−0.805, 0.203).

The number of replacement iterations can become an important PIV parameter depend-
ing on the replacement method. For the spring replacement method, using one iteration is
sufficient since this method replaces the outliers altogether. There is no rule to determine
the number of iterations required for the convergence of the mean and median methods.
It may take several iterations for these methods to converge if revalidation is not applied

Fluids 2023, 8, 285 17 of 23

depending on the number of outliers and their connection. For this case study, the mean
and median methods converged after three iterations when the fields were revalidated.
Without revalidation, on the other hand, it took 16 and 34 iterations for the mean and
median methods to converge, respectively.

The effect of the replacement method on the accuracy of the results is not straightfor-
ward. Replacing outliers with reasonable estimations increases the chance of obtaining
a better correlation match in the subsequent PIV iterations. The outliers replaced during
the last iteration, however, are not reliable since all of the replaced vectors are simply
approximated from their neighbors. Figure 14 shows the exact velocity field and the results
obtained with three replacement methods. The mean and median replacements were per-
formed using five iterations to reach convergence. The green vectors indicate the outliers
that were replaced during the last iteration and satisfied the validation criteria at the end
of the process. The remaining outliers are designated in red color and amounted to three,
one, and, two for spring, mean, and median methods, as can be seen in Figure 14a–c,
respectively.

The mean, standard deviation (STD), and 95 % confidence interval (95 % CI) of the
velocity components and velocity magnitude are reported in Table 3. It can be seen that all
values in Table 3 are of the same order of magnitude. For this particular set of parameters,
the mean method yielded the minimum mean absolute error (MAE) and root mean squared
error (RMSE) of 0.303 and 0.459, respectively.

Table 3. Mean, standard deviation, and 95% confidence interval of velocity errors for different
replacement methods.

Method Error Mean STD 1 95% CI 2

Spring
u −0.011 0.356 (−0.645, 0.480)
v 0.004 0.419 (−0.593, 0.582)
|~v| −0.073 0.438 (−1.231, 0.217)

Mean
u −0.005 0.345 (−0.569, 0.521)
v −0.007 0.303 (−0.544, 0.521)
|~v| −0.045 0.301 (−0.732, 0.196)

Median
u −0.002 0.378 (−0.620, 0.504)
v 0.001 0.374 (−0.541, 0.597)
|~v| −0.053 0.346 (−0.783, 0.210)

1 Standard deviation. 2 95% confidence interval.

The effect of revalidation on the results obtained with the mean and median replace-
ment methods is shown in Figure 15. Although revalidation always reduces the number
of iterations needed for convergence, it does not necessarily improve the accuracy of the
results. By comparing Figure 15a with Figure 15b and Figure 15c with Figure 15d, it
can be seen that revalidation has improved the results only for the mean method. The
mean replacement with revalidation performed the best since fewer vectors were replaced
during the last PIV iteration and only one outlier remains after the process. For the best
practice, it is recommended to perform a few pilot runs before PIV analysis to decide on
the replacement and validation options, aiming to minimize the replaced vectors during
the last PIV iteration. Note that revalidation is not applicable to the signal-to-noise ratio
validation method since the signal-to-noise ratio is correlation-based and is not affected by
the replaced vectors.

Fluids 2023, 8, 285 18 of 23

0 100 200 300 400 500
0

100

200

300

400

500

y

x

(a) (b)

0 100 200 300 400 500
0

100

200

300

400

500

y

x

(c) (d)

0 100 200 300 400 500
0

100

200

300

400

500

y

x
0 100 200 300 400 500

0

100

200

300

400

500

y

x

Figure 14. Effect of replacing methods on the velocity fields: (a) exact velocity field; (b) spring re-
placement; (c) mean replacement; (d) median replacement. Replaced vectors satisfying the validation
criteria at the end of the final iteration are designated in green color. Any remaining outliers are
represented in red color.

A comparison of the results of the developed software, obtained using the mean
replacement methods with revalidation, and the PIVLab results is shown in Figure 16. Note
that no post-processing was applied to the PIVLab results. PIVLab provides utilities for
velocity-based and image-based validation during the post-processing steps. The vector
field shown in Figure 16 is what is obtained solely using the validation and smoothing
routines in between the PIV iterations. From Figure 16, it is clear that with the exception of
one vector at (x, y) = (352, 32), the remaining different vectors are focused near the center
of the vortex. Using the local median filter with a threshold of two, the post-processing step
in PIVLab showed that this vector is an outlier. Using the present software, however, this
vector was reliably obtained using cross-correlation. More such instances were identified
among the outliers near the center of the vortex. Although PIVLab allows for replacement of
the remaining outliers using interpolation, the vectors replaced during the post-processing
phase or the last PIV iteration are not reliable, as was confirmed by the DNS data.

Fluids 2023, 8, 285 19 of 23

0 100 200 300 400 500
0

100

200

300

400

500

y

x

(a) (b)

(c) (d)

0 100 200 300 400 500
0

100

200

300

400

500

y

x

0 100 200 300 400 500
0

100

200

300

400

500

y

x
0 100 200 300 400 500

0

100

200

300

400

500

y

x

Figure 15. Effect of revalidation on the velocity fields: (a) mean replacement and no revalidation;
(b) mean replacement with revalidation; (c) median replacement and no revalidation; (d) median
replacement with revalidation. Replaced vectors satisfying the validation criteria at the end of the
final iteration are designated in green color. Any remaining outliers are represented in red color.

0 100 200 300 400 500
0

100

200

300

400

500

y

x

(a)

0 100 200 300 400 500
0

100

200

300

400

500

y

x

(b)

Figure 16. Comparison between the results obtained with the developed software and PIVLab:
(a) PIVLab original results with no further post-processing; (b) results obtained with the present
software using mean replacement with revalidation.

Fluids 2023, 8, 285 20 of 23

5. Conclusions

An open-source CPU–Based PIV data processing software was developed and vali-
dated. The software was written entirely in Python and was compatible with the Microsoft
Windows and Linux operating systems. The software was functional on different hard-
ware platforms, ranging from small embedded systems to large supercomputing clusters.
Synthetic PIV images generated from the John Hopkins turbulent rectangular channel
DNS data were processed to test the accuracy of the software in resolving the mean and
instantaneous flow fields and computation performance.

Both the mean and instantaneous velocities closely matched the DNS data except near
the walls, where the lengths scales are much smaller than the smallest PIV interrogation
window, near the entrance and exit cross-sections, and in high-velocity regions. Isolated
regions of low Q-criterion values were detected in the PIV results, which were not observed
in the DNS data. Further investigations showed that such discrepancies in high-velocity
regions may be avoided by using a larger window size for the final iteration. These analyses
showed that the vectors replaced during the last iteration, even when they are not detected
as outliers after the PIV process, must be marked as unreliable.

The computational performance of the software was evaluated on a workstation and
the Niagara cluster. For both cases, the computation time initially decreased significantly
as more processors were used. Meanwhile, the profiles almost remained flat once enough
processors were utilized. The relative computation times of different subroutines of the
software were measured during five runs and averaged to obtain the performance profile.
The cross-correlation and deformation subroutines constituted the major portion of the
total computation time. The relative computation times for validation, replacement, and
smoothing subroutines, on the other hand, were significantly lower, indicating the efficiency
of the algorithms.

The effect of several PIV parameters on the output velocity field for the Rankine vortex
dataset was investigated. Using a double precision floating-point data did not affect the
quality of the results. Using more PIV iteration or zero-padding the correlation generally
tends to improve the accuracy. The errors associated with using different replacement
methods were all of the same order of magnitude. Revalidation was shown to be effective
in reducing the number of iterations needed for convergence of the resulting fields. Finally,
the velocity field obtained with the best set of the discussed parameters showed good
agreement with the PIVLab results. The discrepancies between the results of the two
software were mostly confined to a few vectors near the center of the vortex.

Overall, the present study showed that the developed software is accurate and compu-
tationally efficient, and can be reliably used on the Microsoft Windows and Linux platforms
to process large datasets. The software was tested on a standard computer workstation,
a CPU cluster, and Google Colaboratory cloud computing service as part of this study.
Hence, the software could be run on computer clusters or cloud computing services to
avoid investing in hardware or needing affiliation with a university. The software offers
great flexibility, enabling the users to adjust the settings according to their needs. Although
the parameters were tuned to obtain more accurate results throughout this paper, it is also
possible to adjust the parameters for fast PIV processing at the cost of accuracy.

Author Contributions: Conceptualization, A.S. and P.E.S.; methodology, A.S. and K.J.; software, A.S.
and K.X.; validation, A.S.; formal analysis, A.S.; investigation, A.S.; resources, P.E.S.; data curation,
A.S.; writing—original draft preparation, A.S.; writing—review and editing, K.X., K.J. and P.E.S.;
visualization, A.S.; supervision, P.E.S.; project administration, P.E.S.; funding acquisition, P.E.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) grant number RGPIN-2022-03071 and the Digital Research Alliance of
Canada (4752).

Fluids 2023, 8, 285 21 of 23

Data Availability Statement: The data presented in this study are openly available at (24 October
2023) https://drive.google.com/drive/folders/1IuzZlz7DjjKHptILpuzRAFRUioiAiqaX and https:
//drive.google.com/drive/folders/185O3NOtyl0rn5GTLUIYYEOVLuipZddjW.

Acknowledgments: The authors are grateful to Bertrand Lecordier for providing the PIV synthetic
image generator, as well as his instructions on best practices. The authors would also like to ac-
knowledge the Johns Hopkins Turbulence Database for providing access to their data repository.
Computations were performed on the Niagara cluster at the SciNet High-Performance Computing
consortium, which was supported by the Canada Foundation for Innovation under the auspices of
Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence, and
the University of Toronto.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PIV Particle Image Velocimetry
CPU Central Processing Unit
GPU Graphical Processing Unit
WIDIM Window Deformation Iterative Multigrid
PyPI Python Package Index
DFT Discrete Fourier Transform
FFTW Fastest Fourier Transform in the West
LIL LIst of Lists
CSR Compressed Sparse Row
DNS Direct Numerical Simulation
CDI Central Difference Interrogation
STD Standard Deviation
CI Confidence Interval
MAE Mean Absolute Error
RMSE Root Mean Squared Error
NSERC Natural Sciences and Engineering Research Council of Canada

Appendix A

The software is available for download on 24 October 2023 https://github.com/ali-sh-
96/OpenPIV--Python-cpu via Github. The users may follow the instructions to install the
necessary packages and download the software. The procedure for processing the dataset
used in the present study, i.e., the synthetic images generated from the Johns Hopkins DNS
data, is available as a working tutorial through Google Colaboratory cloud computing
service. User feedback through the GitHub platform is welcomed.

Appendix B

As discussed in Section 3, the PIV process could be performed with a minimum
window size of 16 pixels and 75 % instead of 8 pixels and 50 % to achieve the same vector
spacing of 4 pixels. The corresponding mean and instantaneous flow fields are presented
in Figures A1 and A2, which could be compared to Figures 8 and 11, respectively.

Comparing Figure A2 with Figure 11, it may be observed that the small flow structures
near the walls are lost due to the larger minimum window size used to obtain the velocity
field. The results in high-speed flow regions, on the other hand, are significantly improved
as there are fewer discrepancies between the Q-criterion contours of the DNS data and PIV
results in Figure A2. Note that the small isolated regions of negative Q values highlighted
in Figure 11 are not present in Figure A2. Similarly, for the mean stream–wise velocity
contours, the most evident improvement is in high-speed regions, such as the U = 7
iso-contour. Overall, depending on the region of interest, the users may need to adjust the
smallest interrogation window size.

https://drive.google.com/drive/folders/1IuzZlz7DjjKHptILpuzRAFRUioiAiqaX
https://drive.google.com/drive/folders/185O3NOtyl0rn5GTLUIYYEOVLuipZddjW
https://drive.google.com/drive/folders/185O3NOtyl0rn5GTLUIYYEOVLuipZddjW
https://github.com/ali-sh-96/OpenPIV--Python-cpu
https://github.com/ali-sh-96/OpenPIV--Python-cpu

Fluids 2023, 8, 285 22 of 23

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0U:(a)

(b)

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

Figure A1. Contour plots of the mean stream–wise velocity: (a) John Hopkins DNS data; (b) re-
sults obtained with OpenPIV–Python using a window size of 16 pixels and 75% overlap for the
final iteration.

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05Q/Qmax:(a)

(b)

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

y

x

Figure A2. Vectors of the fluctuating velocities superimposed on the contour plots of the normalized
Q-criterion: (a) John Hopkins DNS data; (b) results obtained with OpenPIV–Python using a window
size of 16 pixels and 75% overlap for the final iteration.

Fluids 2023, 8, 285 23 of 23

References
1. Adrian, R.J. Twenty years of particle image velocimetry. Exp. Fluids 2005, 39, 159–169. [CrossRef]
2. Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide, 3rd ed.;

Springer International: Cham, Switzerland, 2018 . [CrossRef]
3. Booth-Gauthier, E.A.; Alcoser, T.A.; Yang, G.; Dahl, K.N. Force-induced changes in subnuclear movement and rheology. Biophys.

J. 2012, 103, 2423–2431. [CrossRef] [PubMed]
4. Sarno, L.; Carravetta, A.; Tai, Y.C.; Martino, R.; Papa, M.; Kuo, C.Y. Measuring the velocity fields of granular flows–Employment

of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach. Adv. Powder Technol. 2018, 29, 3107–3123.
[CrossRef]

5. Voorneveld, J.; Kruizinga, P.; Vos, H.J.; Gijsen, F.J.; Jebbink, E.G.; Van Der Steen, A.F.; De Jong, N.; Bosch, J.G. Native blood speckle
vs ultrasound contrast agent for particle image velocimetry with ultrafast ultrasound-in vitro experiments. In Proceedings of the
2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [CrossRef]

6. Scarano, F.; Riethmuller, M.L. Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids
1999, 26, 513–523. [CrossRef]

7. Meunier, P.; Leweke, T. Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp. Fluids
2003, 35, 408–421. [CrossRef]

8. Dallas, C.; Wu, M.; Chou, V.; Liberzon, A.; Sullivan, P.E. Graphical Processing Unit-Accelerated Open-Source Particle Image
Velocimetry Software for High Performance Computing Systems. J. Fluids Eng. 2019, 141, 111401. [CrossRef]

9. Ben-Gida, H.; Gurka, R.; Liberzon, A. OpenPIV-MATLAB—An open-source software for particle image velocimetry; test case:
Birds’ aerodynamics. SoftwareX 2020, 12, 100585. [CrossRef]

10. Thielicke, W.; Sonntag, R. Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res.
Softw. 2021, 9, 12. [CrossRef]

11. PIVLab. Available online: https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-
piv-tool-with-gui (accessed on 15 August 2023).

12. OpenPIV. Available online: http://www.openpiv.net/ (accessed on 15 August 2023).
13. Fluere. Available online: https://www.softpedia.com/get/Science-CAD/Fluere.shtml (accessed on 15 August 2023).
14. Fluidimage. Available online: https://pypi.org/project/fluidimage/ (accessed on 15 August 2023).
15. mpiv. Available online: https://www.mathworks.com/matlabcentral/fileexchange/2411-mpiv (accessed on 15 August 2023).
16. JPIV. Available online: https://eguvep.github.io/jpiv/ (accessed on 15 August 2023).
17. UVMAT. Available online: http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat (accessed on 15 August 2023).
18. Yang, E.; Ekmekci, A.; Sullivan, P.E. Phase evolution of flow controlled by synthetic jets over NACA 0025 airfoil. J. Vis. 2022,

25, 751–765. [CrossRef]
19. Scarano, F. Iterative image deformation methods in PIV. Meas. Sci. Technol. 2001, 13, R1. [CrossRef]
20. Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 2010,

54, 1167–1178. [CrossRef] [PubMed]
21. Gomersall, H. pyFFTW: Python Wrapper around FFTW. Astrophys. Source Code Libr. 2021, ascl:2109.009. Available online:

http://xxx.lanl.gov/abs/2109.009 (accessed on 15 August 2023).
22. Westerweel, J.; Scarano, F. Universal outlier detection for PIV data. Exp. Fluids 2005, 39, 1096–1100. [CrossRef]
23. Perlman, E.; Burns, R.; Li, Y.; Meneveau, C. Data Exploration of Turbulence Simulations Using a Database Cluster. In Proceedings

of the 2007 ACM/IEEE Conference on Supercomputing, SC′07, New York, NY, USA, 10–16 November 2007. [CrossRef]
24. Saikrishnan, N.; Marusic, I.; Longmire, E.K. Assessment of dual plane PIV measurements in wall turbulence using DNS data.

Exp. Fluids 2006, 41, 265–278. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00348-005-0991-7
http://dx.doi.org/10.1007/978-3-319-68852-7.
http://dx.doi.org/10.1016/j.bpj.2012.10.039
http://www.ncbi.nlm.nih.gov/pubmed/23260044
http://dx.doi.org/10.1016/j.apt.2018.08.014
http://dx.doi.org/10.1109/ULTSYM.2016.7728614
http://dx.doi.org/10.1007/s003480050318
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1115/1.4043422
http://dx.doi.org/10.1016/j.softx.2020.100585
http://dx.doi.org/10.5334/jors.334
https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui
https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui
http://www.openpiv.net/
https://www.softpedia.com/get/Science-CAD/Fluere.shtml
https://pypi.org/project/fluidimage/
https://www.mathworks.com/matlabcentral/fileexchange/2411-mpiv
https://eguvep.github.io/jpiv/
http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat
http://dx.doi.org/10.1007/s12650-021-00824-5
http://dx.doi.org/10.1088/0957-0233/13/1/201
http://dx.doi.org/10.1016/j.csda.2009.09.020
http://www.ncbi.nlm.nih.gov/pubmed/24795488
http://xxx.lanl.gov/abs/2109.009
http://dx.doi.org/10.1007/s00348-005-0016-6
http://dx.doi.org/10.1145/1362622.1362654
http://dx.doi.org/10.1007/s00348-006-0168-z

	Introduction
	Materials and Methods
	Implementation and Architecture
	Datasets and Image Processing

	Results
	Mean Flow Field
	Instantaneous Flow Field
	Computational Performance

	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

