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Abstract: Unsteady separation is a phenomenon that occurs in many flows and results in increased
drag, decreased lift, noise emission, and loss of efficiency or failure in flow devices. Turbulence
models for the steady or unsteady Reynolds-averaged Navier–Stokes equations (RANS and URANS,
respectively) are commonly used in industry; however, their performance is often unsatisfactory. The
comparison of RANS results with experimental data does not clearly isolate the modeling errors, since
differences with the data may be due to a combination of modeling and numerical errors, and also to
possible differences in the boundary conditions. In the present study, we use high-fidelity large-eddy
simulation (LES) results to carry out a consistent evaluation of the turbulence models. By using the
same numerical scheme and boundary conditions as the LES, and a grid on which grid convergence
was achieved, we can isolate modeling errors. The calculations (both LES and RANS) are carried out
using a well-validated, second-order-accurate code. Separation is generated by imposing a freestream
velocity distribution, that is modulated in time. We examined three frequencies (a rapid, flutter-like
oscillation, an intermediate one in which the forcing and the flow have the same timescales, and a
quasi-steady one). We also considered three different pressure distributions, one with alternating
favorable and adverse pressure gradients (FPGs and APGs, respectively), one oscillating between an
APG and a zero-pressure gradient (ZPG), and one with an oscillating APG. All turbulence models
capture the general features of this complex unsteady flow as well or better than in similar steady
cases. The presence, during the cycle, of times in which the freestream pressure-gradient is close to
zero affects significantly the model performance. Comparing our results with those in the literature
indicates that numerical errors due to the type of discretization and the grid resolution are as
significant as those due to the turbulence model.

Keywords: turbulence models; unsteady separation; Reynolds-averaged Navier–Stokes equations

1. Introduction
1.1. Motivation

Separation is a phenomenon that occurs frequently in engineering and the natural
sciences. It significantly affects the flow dynamics, such as the forces on immersed objects or
the effective area (and the pressure distribution) in diverging ducts. Separation typically causes
a decrease in the efficiency of devices such as turbomachines, diffusers and lifting bodies
due to increased drag and decreased lift. The phenomenon may induce noise, unwanted
vibrations, and significant stress on turbomachinery [1]. Because of its ubiquity, separation has
been the subject of a considerable amount of work [1–7]. Separation can be caused by sharp
geometrical changes or by strong APGs. This work focuses on pressure-induced separation,
in which boundary layer detachment happens solely due to a strong APG.

According to Simpson [1], three distinct regions can be identified: (1) intermittent detach-
ment, where instantaneous backflow is present 1% of the time; (2) transitory detachment, where
instantaneous backflow is present 50% of the time, and (3) detachment, which occurs on a
smooth surface when the time-averaged wall shear stress is zero. Figure 1 shows time-averaged
streamwise velocity contours and instantaneous contours of skin-friction coefficient to highlight
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the various regions. The instantaneous contours, in particular, show the complexity of the
phenomenon: regions of backflow appear well ahead of the detachment point, and regions of
fluid move downstream well after it. The same phenomena are observed at reattachment.
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Figure 1. Detachment of a turbulent boundary layer. γ is the percentage of backflow (fluid moving
upstream): (Top) mean streamwise velocity contours; (bottom) instantaneous contours of the skin-
friction coefficient (red: positive; blue: negative. Data from [8].

The structure of separated turbulent flows is drastically different than that of attached
flows; in separated flows, for instance, the largest turbulent stresses occur in the center
of the separated shear layer. These stresses are mostly caused by large-scale structures
generated in the shear layer, which later impinge on the wall in the reattachment region, also
causing significant pressure fluctuations there [5]. In separated flows, there is significant
interaction between the pressure and velocity fluctuations as the backflow is re-entrained
into the outer-region flow [4].

In addition to the inherent unsteadiness of turbulent flows, when separation is present,
coherent vortices are shed from the separation point, supplying an additional source of
unsteadiness. Another source of unsteadiness may be due to the boundary conditions,
which may be time-dependent, as would be the case for a pitching airfoil. In the following,
when we refer to “unsteady separation” we will imply that the unsteadiness is of this type.

1.2. Literature Review

Many studies have considered separated flows that are steady in the mean, although
in some cases, time-accurate calculations have been carried out that allowed to capture
the unsteadiness due to the shedding [9–12]. In nature, however, pressure gradients are
often both space- and time-dependent, for instance, in helicopter and turbomachinery,
pitching airfoils, and in the motion of aquatic animals. In these cases, the separation
process is unsteady in the mean, and the physical behavior is completely different from the
steady counterpart. This literature review concentrates on flows of this type, in which the
boundary conditions vary with time.

The imposed unsteadiness can be characterized by the reduced frequency k [13]

k =
π f Lre f

Ure f
, (1)

where f = 1/T, Lre f , and Ure f are characteristic length and velocity scales, respectively,
and T is the period. The reduced frequency represents the ratio between the convective
and unsteady timescales [14]. The response of the flow to the unsteadiness is greatly
dependent on k. Leishman [15] identified threshold values to describe unsteadiness in his
work on helicopter aerodynamics. A reduced frequency k = 0 corresponds to a steady flow.
The flow is quasi-steady for 0 < k < 0.05; acceleration effects are insignificant, and the
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ensemble-averaged velocity profiles do not differ from a corresponding steady case. As the
reduced frequency grows, acceleration effects begin to dominate the flow characteristics.
The threshold values discussed by [15] depend of course on the definition of k; in some
problems (pitching airfoil, for instance), Lre f and Ure f can be unequivocally identified as
the freestream velocity and the chord length. In other cases, some ambiguity remains: in
rotor dynamics, for instance, the freestream velocity changes continuously along the blade.
Specific threshold values of the reduced frequencies are, therefore, not universal.

The body of literature on unsteady boundary layer separation is not as rich as that
for steady pressure-gradient distributions; however, starting in the late 1950s, scientists
tried to introduce unsteadiness in the flow and observe the impact on the near-wall physics.
Most of the time, this was done by prescribing an oscillating freestream perturbation which
allowed to modulate the magnitude of the APG felt by the near-wall flow.

A pioneering study on the unsteady APG turbulent boundary layer over a NACA0012
airfoil was carried out by Covert and Lorber [16]. In contrast to previous studies that
indicated that the time-averaged profile was nearly independent of the frequency of the
freestream oscillation [17–19], Covert and Lorber [16] showed that, as the strength of the
APG increased, the mean velocity profile assumed an inflectional behavior. These findings
were corroborated by Schatzman and Thomas [14], who developed a novel experimental
technique to investigate unsteady APG turbulent boundary layers. They also showed
that, for an APG strong enough to cause an inflectional velocity profile, the physics of the
near-wall flow were dominated by the existence of an embedded shear layer within the
boundary layer caused by an inflectional instability mechanism.

The separated shear layer and its associated recirculation bubble play an important
role in the dynamics of unsteady separated flows. In a transient separation process, for
instance, shedding of the separation region may occur, and the separation bubble may be
advected downstream as a solid body. This behavior was observed in backward-facing
steps [20], stalled diffusers [4], and, most importantly, in airfoils under dynamic stall
conditions, in which a large leading-edge vortex is formed and quickly advected over the
chord length of the airfoil [15].

With the increasing power of modern computers, dynamic flow separation was investi-
gated also via numerical simulations. The advection of the recirculation region was observed
by Wissink and Rodi [21], who performed large-eddy simulations (LES) of a laminar sepa-
ration bubble under the effect of an oscillating external flow. Ambrogi et al. [8] examined a
turbulent boundary layer subjected to an unsteady freestream APG strong enough to cause
separation. They studied a range of frequencies, and observed hysteresis effects that were
confined to a thin region near the wall at high frequencies, but extended away from the wall
for lower values of k. They further investigated the shedding of the recirculation region [22]
which they found was associated with the entrainment of near-wall fluid with high turbulent
kinetic energy (TKE) into the shear layer, which led to the persistence of this shear layer as it
was advected downstream.

For both DNS and wall-resolved LES, very fine grids and significant computational
resources are needed, which makes these techniques unsuitable for industrial applications
requiring rapid turnaround. In these cases, the solution of the Reynolds-averaged Navier–
Stokes (RANS) equations with turbulence models is prevalent. Turbulence models, however,
are not always accurate in separated flows. Even when the separation line is fixed by
the geometry (as is the case in the backward-facing step), most models have difficulties
predicting the reattachment length (Wilcox [23]). When structural features play a large role
(the separated shear layer, or the advection of the separated-flow region, for instance), such
models are further challenged, and their accuracy may be expected to be poorer. Although
many studies have evaluated the performance of RANS models in steady separation,
fewer investigations have considered the unsteady case (unsteady, as mentioned before,
in the sense that the boundary conditions—e.g., the freestream pressure gradient—are
time-dependent).
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The most common turbulence models have been considered, such as the one-equation
Baldwin–Barth [24] and Spalart–Allmaras [25] (SA) models, the two-layerK–ε model [26], and
the two-equation K–ω SST model [27]. Configurations studied included airfoils (Ekaterinaris
and Menter [28]), flat plates and turbine blades (Nürnberger and Greza [29], Schobeiri and
Abdelfattah [30]), and backward-facing steps (Garnier et al. [31]). General conclusions are
that the prediction of the hysteresis loop for lift and drag coefficients is incorrect due to errors
in the prediction of the separation point [28], that the reattachment point and the size of the
separation bubble may also be predicted incorrectly [29,31], and that the return to equilibrium
is incorrect [29]. Schobeiri and Abdelfattah [30] attributed these errors to the modeling of the
dissipation equation, and to inaccurate transition models.

A drawback of studies that attempt to evaluate turbulence models in non-equilibrium
flows is the fact that numerous sources of error are present. In many cases, it is difficult or
impossible to separate the modeling errors from numerical ones due to the grid resolution or
numerical method, differences in the boundary conditions, or experimental errors. A recent
study Park et al. [32] (hereafter referred to as PHY21) tried to overcome this limitation by
investigating a flat-plate turbulent boundary layer under unsteady APGs to evaluate the
performance of the K–ω [27] and SA [25] turbulence models in unsteady separated flows.
The numerical setup of their calculations was based on that used by Na and Moin [5]: an
APG was generated by applying a profile of freestream wall-normal velocity V∞ at the top of
the domain, whose amplitude varied in time to obtain dynamic separation and reattachment
in the flow. They compared the DNS data with the results from unsteady RANS (URANS)
calculations with the models mentioned above. Although they tried to make the numerical
methods used for DNS and URANS as similar as possible, some differences remained (and
will be mentioned later). PHY21 observed that the turbulence models could predict the
formation of the separation bubble and the phase response of the shear layer qualitatively
well. However, the phase response of the skin-friction coefficient (and, therefore, the
separation and reattachment) was inaccurate: URANS predicted an earlier separation point
and a longer recirculation bubble than the DNS. They attributed the near-wall errors in the
RANS predictions to the anisotropy of the Reynolds stress.

1.3. Objectives

This work aims at evaluating consistently the capabilities of the three most commonly
used one- and two-equation turbulence models to predict unsteady flow separation in
a turbulent boundary layer, taking advantage of the simulations recently carried out
by Ambrogi et al. [8,22]. The physical phenomena observed by these authors and described
above are expected to be difficult to model, making these configurations challenging test
cases. Using these data as a reference, furthermore, gives us a unique opportunity to
isolate modeling errors. The URANS can be performed using the same numerical methods
and boundary conditions, and a grid that, in the LES, gave converged results (in fact, the
present URANS are carried out using the same code as the LES, in which the subgrid-scale
model is replaced by one of the turbulence models examined). PHY21 were the first that
tried to perform this type of evaluation, but they matched the numerical schemes and grid
imperfectly, and they considered only one frequency and a single pressure distribution.
In our work, we examine three frequencies and three pressure distributions, as well as
an additional model (the K–ε model). This allows us to evaluate the modeling errors
for a wider range of applications. Note that the physical configuration of the problem
investigated (a flat-plate boundary layer in a time-varying pressure gradient) is simpler than
most of the geometries discussed above. However, the physical phenomena present here
are also present in many more complex configurations (as discussed in Refs. [8,22]); for this
reason, the present setup has been used in numerous studies of separated flows [5,32,33].
The use of a simpler geometry, furthermore, allows us to compare the URANS results with
those of a high-fidelity LES in a rigorous manner, which is the final objective of this study.

The remainder of this article is organized as follows: first, we introduce the problem
formulation, including the governing equations, boundary conditions, turbulence models,
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details on the numerical simulation and the temporal variations of the various cases studied.
Then, the results of the RANS calculations are presented and compared to the high-fidelity
simulations. Conclusions and recommendations for future work will close the article.

2. Methodology
2.1. Governing Equations

In this study, we solve the phase-averaged equations of conservation of mass and
momentum for an incompressible flow:

∂〈ui〉
∂xi

= 0,
∂〈ui〉

∂t
+

∂

∂xj
〈ui〉〈uj〉 = −

1
p

∂〈p〉
∂xi

+
1

Re
∂2〈ui〉
∂xj∂xj

− ∂

∂xj
〈u′iu′j〉 (2)

where xi are the Cartesian coordinates (we also use x for the streamwise and y for the wall-
normal direction) and ui (or u and v) the velocity components. Phase-averaged quantities
are denoted by angle brackets or capital letters, and are defined as

F = 〈 f 〉 = lim
N→∞

1
N

N

∑
n=0

f (t + nT) (3)

where T is the period of the forcing. A prime indicates the fluctuation around the phase-
averaged value: u′ = u−U.

The phase-averaged Reynolds stresses 〈u′iu′j〉 are parameterized using an eddy viscos-
ity model:

〈u′iu′j〉 = −2νT〈Sij〉,
〈
Sij
〉
=

1
2

(
∂Ui
∂xj

+
∂Ui
∂xj

)
. (4)

where νT is the eddy viscosity, and Sij the rate-of-strain tensor.
Three models in their standard formulations are used: the Spalart–Allmaras (SA)

model [25], the SST K–ω model [27], and the two-layer formulation of the K–ε model [34].
The SA model [25] solves transport equations for a modified eddy viscosity, which was
derived using physical considerations and dimensional arguments. The two-layer K–ε
model [34] solves transport equations for the turbulent kinetic energy (TKE) and for the
dissipation of TKE, ε. The eddy viscosity is then given by νT = CµK2/ε, where Cµ = 0.09
is a constant. In the near-wall region, the equation for ε is not solved, and algebraic
expressions are used to determine a length scale. The SST K–ω model [27] solves transport
equations for the TKEK and for the turbulent frequency ω; the eddy viscosity νT = a1K/ω,
where a1 is a limiter that avoids the over-estimation of the shear stresses. The standard
forms of the model described in the papers cited are used.

Numerical integration of Equation (2) is performed using second-order-accurate cen-
tral differences on a staggered mesh. A second-order-accurate semi-implicit time ad-
vancement is used, with a Crank–Nicolson scheme for wall-normal diffusive terms and a
low-storage third-order Runge–Kutta scheme for the others. The equations are advanced
in time using the fractional-step method [35,36]. The Poisson solver uses a Fourier decom-
position in x and direct inversion of the resulting tridiagonal matrices. The code has been
validated extensively and previously applied to similar problems [7,37,38].

2.2. Problem Formulation

We replicate the problem studied by Ambrogi et al. [8]; the computational domain,
however, is two-dimensional. We consider a spatially developing turbulent boundary layer
on a flat plate; the geometry is shown in Figure 2. The LES used a three-dimensional domain
of dimensions Lx × Ly × Lz = 600δ∗o × 64δ∗o × 55δ∗o , where δ∗o is the displacement thickness
at the inflow, significantly longer than that used in other calculations [5,6]. The present
simulation uses a 2D domain whose length and height match those of the LES. The mesh for
the URANS calculations has Nx × Ny = 1024× 160 grid points; this resolution was chosen
based on the grid-convergence study of Ambrogi et al. [8], whose production runs were
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carried out on a fine grid using Nx × Ny × Nz = 1536× 192× 256 points, but had obtained
grid convergence using 1152× 129× 152 point; we chose the latter resolution, which is, in
any case, much finer than what would be typical in a URANS simulation. The Reynolds
number, based on δ∗o and the freestream velocity at the inlet, Uo, is Re∗ = 1000. Based
on the friction velocity at the inlet, the grid size in wall units is ∆x+ = 28, ∆y+min = 1.05.
The calculations were carried out in time-accurate mode, and the CFL number did not
exceed 0.5.

Figure 2. Sketch of the computational setup for LES (left) and URANS (right).

A no-slip condition is applied at the wall, and a convective condition is used at the
outflow [39]. At the inflow, the LES used a sequence of yz-planes obtained from separate
simulations. We followed the same approach, using, however, the phase-average of the
LES data. For the turbulent quantities, K and ε could be calculated directly from the LES,
while for the K–ω model, the eddy viscosity was first computed as

νT = −〈u
′v′〉
〈S12〉

(5)

and the turbulent frequency was then obtained as ω = K/νT .
The freestream pressure gradient is generated by imposing an unsteady vertical-

velocity distribution on the upper side of the domain. The wall-normal velocity V∞(x, t) is
given by

V∞(x, t) = Vo(x)g(t); Vo(x) = α sin β(x− xr) exp
[
−γ(x− xr)

2
]

(6)

where α = 1.25Uo, β = 0.012/δ∗o , γ = 1.4× 10−4/(δ∗o )
2, and xr/δ∗o = 320. The spatial

variation matches the suction-blowing velocity profile used by [5]. Let Φ = mod (t/T)× 360◦

be the phase angle. Three periodic temporal-variation laws were used:

g(t) =


sin Φ Case A
−1− 0.1 cos Φ Case B
−0.5(1− sin Φ) Case C

(7)

The streamwise velocity component was then obtained by imposing zero spanwise
vorticity. In Case A, an FPG precedes an APG for 0◦ < Φ < 180◦, while the APG precedes the
FPG in the reset of the cycle. The separation occurs only around Φ ' 270◦. At Φ = 90◦ and
180◦ the freestream pressure gradient is nearly zero. In Case B, on the other hand, the APG
always precedes the FPG, and the flow is separated throughout the cycle. This distribution
matches the one by Park et al. [32]. In Case C, finally, the APG also precedes the FPG, but at
Φ = 90◦ and Φ = 180◦ V∞ = 0, generating a nominally ZPG boundary layer. Figure 3 shows
the streamwise and wall-normal freestream-velocity profiles for the three cases.
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Figure 3. Freestream velocity distribution. (a–c) U∞/Uo; (d–f) V∞/Uo. (a,d) Case A; (b,e) Case B;
(c,f) Case C. The gray area is the envelope of the velocity profile through the cycle, while the lines
show the four extreme phases.

We define the reduced frequency as k = π f LPG/Uo, where LPG is the length over
which the pressure gradient varies, and f = 1/T. LPG was chosen by analogy with pitching
airfoils, in which LPG would be the chord length. In Case A, three values of k were used:
k = 0.2, 1, and 10. Steady calculations were also performed with V∞ corresponding to the
Φ = 0◦ and 180◦, Φ = 90◦ and Φ = 270◦ phases. For k = 0.2, the flow is quasi-steady, as
the convective time scale is much lower than the imposed unsteady time scale. In the k = 1
case, the two scales are similar. Finally, the high-frequency case k = 10 corresponds to a
flutter-like rapid oscillation.

3. Results
3.1. Effect of Reduced Frequency

The phase-averaged data were collected at 20 equispaced phases, Φ = 0◦, 18◦, . . . , 342◦.
Figures 4–6 show contours of the phase-averaged streamwise velocity 〈u〉 at two phases
of the cycle. At Φ = 90◦, the strongest FPG is followed by the strongest APG, whereas at
Φ = 270◦, the FPG follows the APG. In all cases, at Φ = 90◦, the boundary layer is thinned
in the accelerating-flow region where V∞ < 0, (i.e., x/δ∗0 = 150− 300). At Φ = 270◦, the
APG causes separation, and a recirculation bubble is formed; the flow then reattaches in
the FPG region. The height of the bubble is minimum at high frequency and largest at the
lowest one. At the intermediate frequency, the recirculation bubble is advected downstream,
almost as a solid body (see [22] for a discussion of the causes of this phenomenon). At
Φ = 90◦, the advected region is exiting the domain.

Each turbulence model predicts the general features of the flow with only small
discrepancies from the LES. The downstream shedding of the recirculation region and the
reattachment of the boundary layer are complex phenomena, and the fact that the model
can capture them is important (and, perhaps, unexpected). Small discrepancies between
the models are observed in the size and shape of the shed region, but the general features
of the flow are correct.

Figure 7 shows the skin-friction coefficient at four phases of the cycle. Note that
at k = 10, a phase shift is observed between the forcing and the flow response, to be
discussed below, so different phases were chosen compared with the other cases. At the
high frequency, the agreement is very good, except at Φ = 144◦, towards the middle of the
deceleration part of the period. During this phase, the skin-friction coefficient is consistently
over-predicted, indicating that the model does not respond quickly enough to the very
rapid change of the forcing. The fact that all models respond in a similar way indicates
that this issue is not due to the particular choice of the time scale of each model, but rather
to some more fundamental model assumption (such as, for instance, the eddy viscosity
assumption) and the fact that these models are calibrated in equilibrium boundary layers.
Figure 8 shows the skin-friction coefficient and the freestream velocity U∞ at the center of
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the recirculation region. The maximum and minimum skin-friction precedes the maximum
and minimum freestream velocity by 37◦. This is consistent with the overall behavior of
the flow at this frequency, which exhibits a decoupling between the inner and outer layer,
similar to that observed in Stokes’ second problem, the oscillating plate (which has a phase
shift of 45◦). This issue is also discussed by [8]. The dimensions of the recirculation region,
Figure 9a, are predicted quite accurately at this frequency and at the intermediate one,
although in the latter case, separation is predicted to occur earlier both in space and time.
At the lowest frequency, errors are more significant, especially in the prediction of the
separation point. In general, the longer the period, the larger the error for these quantities.
At high and intermediate frequencies, the fact that the flow goes through two ZPG phases
(for which the models are calibrated) tends to limit the divergence of the model solution
from the correct one. At low frequency, on the other hand, the flow field has more time to
respond to the model (mis)prediction, and thus errors are increased.

Figure 4. Contours of the phase-averaged streamwise velocity at Φ = 90◦ (a–d) and Φ = 270◦ (e–h),
k = 10.

Figure 5. Contours of the phase-averaged streamwise velocity at Φ = 90◦ (a–d) and Φ = 270◦ (e–h),
k = 1.0. The Supplementary Material contains an animation showing the entire cycle (Supplemental
file S1).
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Figure 6. Contours of the phase-averaged streamwise velocity at Φ = 90◦ (a–d) and Φ = 270◦ (e–h),
k = 0.2.

Figure 7. Skin-friction coefficient at four phases in the cycle. (a–d) k = 10; (e–h) k = 1.0; (i–l) k = 0.2;
(m–p) steady.

Figure 8. Time evolution of (a–c) C f and (d–f) U∞/Uo at the center of the recirculation region
(x/δ∗o = 300). (a,d) k = 10; (b,e) k = 1.0; (c,f) k = 0.2.
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Figure 9. Recirculation zone dimensions during the cycle. (a) k = 10; (b) k = 1.0; (c) k = 0.2.

At the intermediate and low frequencies, Figure 7f–l, the error is greatest in the FPG
phases (Φ ' 90◦). This is expected, since in FPG flows, the coherent-eddy structure changes
significantly, as the streamwise vortices become more elongated and the correlation between
u′ and v′ fluctuations decreases [40]. This type of phenomenon is difficult to reproduce
using turbulence models, which are best at predicting shear-driven flows. In fact, the
turbulence models significantly overpredict the Reynolds shear stresses, Figure 10, a result
consistent with that of [32]. At these frequencies the phase shift between C f and U∞
decreases (Figure 8). At k = 1, the agreement between models and LES during separation
is remarkably good, better than for a steady case. At the low frequency, the agreement is at
least as good as in the steady case. Note that during the FPG phases, the K− ε is the most
accurate model, while in the separation phases, K−ω gives the best results. SA is always
in-between those.

A quantity that is of primary interest to engineers is the drag. We calculated it by
integrating the skin-friction coefficient over the region where the pressure gradient is
significant, extending to the outflow. Including the upstream regions, in which the flow
remains ZPG throughout the cycle, would artificially decrease the difference between the
model results and the LES, since in that region, all the models are accurate. The integration,
however, is carried out all the way to the outflow (where V∞ is stationary) to account
for the passing of the shed recirculation zone. We also defined an integral error as the
difference between the model prediction and the LES result, this error is normalized by the
time-averaged drag from the LES:

D(Φ) =
∫ x2

x1

C f (Φ, x)dx; D =
1
T

∫ T

0
D(Φ)dΦ; IE(Φ) =

D(Φ)−DLES(Φ)

DLES
. (8)

The drag (normalized by DLES) and the integral error are shown in Figure 11. The
drag prediction is quite accurate, partly because of error cancellation (see, for example, the
C f distribution in Figure 7f,j, in which the overprediction of the skin-friction at x/δ∗o ' 300
is partially balanced by its underprediction further downstream). Apart from the strong
acceleration phases, the error is 10% or below for the intermediate and low frequencies.
The time-averaged drag is also predicted quite accurately at those frequencies (within 6%
of the LES value), although, again, error cancellation contributes to this result.
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Figure 10. Reynolds shear stress profiles (×103) at three streamwise locations (x/δ∗o = 200, 300, and
400) and four phases, Φ = 0◦, 90◦, 180◦, and 270◦. (a–d) k = 10; (e–h) k = 1.0; (i–l) k = 0.2.

Figure 11. (a–c) Normalized drag and (d–f) Integrated error. (a,d) k = 10; (b,e) k = 1.0; (c,f) k = 0.2.

3.2. Effect of Pressure Distribution

We next studied two additional cases in which the spatial distribution Vo(x) was
unchanged, but two different temporal modulations were assigned, as discussed in the
Introduction (Section 1). They are referred to as Cases B and C, respectively, and the
freestream velocities corresponding to each case are shown in Figure 3. Physically, Case
A may represent the flow of an airfoil pitching between angles of attack +α and −α, Case
B mimics an airfoil pitching between two angles of attack α + ∆α and α− ∆α, and Case C
an airfoil pitching between angles of attack 0 and α. In all cases examined in this section,
the reduced frequency is k = 1. Apart from the Reynolds number, which is substantially
higher (Reθ = 670 vs. 300), and for the domain size (which is, in the present simulations,
longer), Case B is identical to the flow studied by [32].

Figures 12 and 13 show contours of the phase-averaged streamwise velocity for Cases
B and C. For Case A, the contours were shown in Figure 5. In Case B, the recirculation
bubble persists throughout the cycle, although it is modulated by the time-varying blow-
ing/suction profile, as can also be seen in Figure 14. In Case C, the recirculation bubble
is somewhat larger than in Case A (reflecting the fact that the APG is present (at different
strengths) throughout the entire cycle. The early separation observed by [32] is observed
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here, not only in Case C, but in the other ones as well. The reattachment, however, is
predicted more accurately.

Figure 12. Case B. Contours of the phase-averaged streamwise velocity at (a–d) φ = 90◦; (e–h)
φ = 270◦. (a,e) K–ω model; (b,f) K–ε model; (c,g) SA model; (d,h) LES. The Supplementary Material
contains an animation showing the entire cycle (Supplementary File S2).

Figure 13. Case C. Contours of the phase-averaged streamwise velocity at (a–d) φ = 90◦; (e–h)
φ = 270◦. (a,e) K–ω model; (b,f) K–ε model; (c,g) SA model; (d,h) LES. The Supplementary Material
contains an animation showing the entire cycle (Supplementary File S3).

Figure 14. Recirculation zone dimensions during the cycle. (a) Case A; (b) Case B; (c) Case C.
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The skin-friction coefficient distribution for cases A, B, and C is shown in Figure 15
For Case B it has a distribution very similar to the steady or low-frequency cases, and
is predicted less accurately than in the k = 1 case. The C f in the separation region is,
once again, predicted more accurately in the unsteady cases A and C than in the quasi-
steady, low-frequency, one. In Cases B and C, the least accurate prediction occurs in the
recovery region after reattachment. In that region, the Reynolds shear stresses (Figure 16)
are significantly underpredicted, and the underestimation of the turbulent mixing leads to
the slower recovery.

Figure 15. Skin-friction coefficient at four phases in the cycle. (a–d) Case A; (e–h) Case B; (i–l) Case C.

Figure 16. Reynolds shear stress profiles at three streamwise locations (x/δ∗o = 200, 300, and 400)
and four phases in the cycle. (a–d) Case A; (e–h) Case B; (i–l) Case C.
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Despite the errors in C f , the phase-averaged drag is predicted with the same level of
accuracy observed before, and is close to the LES result. The only exception is Case B (the
one with separation throughout the cycle), in which the error can be as high as 9% (for the
SA model).

Finally, in Figure 17, we compare the DNS and RANS calculation results by [32] with
the present LES, and our model results. The higher Reynolds number results in lower C f ,
in our case, in the inlet section. A notable feature of this figure is the fact that the modeled
calculations in PHY21 resemble more, in shape, the present calculations than the DNS. In
particular, the two-lobed structure of the recirculation region, present at the higher Re, is
also observed in the model predictions in PHY21. We conjecture that the differences in
numerics and grid resolution play a role here. PHY21 carried out their URANS simulations
using OpenFOAM [41], on a grid significantly coarser than the DNS one. Although the
authors attempted to use the same scheme for the URANS and DNS, the URANS used a co-
located method, while the DNS used a staggered grid. While the staggered grid conserves
momentum and energy discretely, the co-located scheme is not energy conserving, even
with the parameters used [42]. We conjecture that the more significant errors observed
by PHY21 are not due exclusively to the turbulence model, as they argue, but rather
to a combination of turbulence modeling inaccuracies and numerical errors due to the
different grid resolution and grid-point arrangement (staggered vs. co-located) that results
in excessive numerical diffusion.

Figure 17. Comparison of the skin-friction coefficient with the results of Park et al. [32]. (a) DNS,
present LES and K–ω model; (b) DNS, present LES and SA model.

4. Summary and Conclusions

We performed simulations of a flat-plate turbulent boundary layer subjected to a
time-varying freestream pressure distribution that resulted in unsteady separation. The
results of five wall-resolved large-eddy simulations (WRLES) [8] were used to evaluate
the accuracy of three commonly used turbulence models for the solution of the unsteady
Reynolds-averaged Navier–Stokes (URANS) equations, namely the K–ω SST model [27],
the two-layer K–ε model [34], and the Spalart–Allmaras model [25].

In most evaluations of turbulence models, discrepancies between model predictions
and reference data can be due to a variety of sources: numerical resolution, errors due to
the specific discretization used, differences in boundary conditions, and uncertainties in
the reference data. The novelty of the present study lies in the fact that, by performing the
URANS simulations using the same numerical method and boundary conditions as the
WRLES, and a grid on which converged results were obtained by the WRLES, we were able
to isolate the modeling errors. We performed two sets of comparisons: first, for a given
freestream pressure distribution we considered various frequencies. Then, we kept the
frequency constant and varied the unsteady pressure distribution.

In the first set of calculations, the freestream pressure (which was always imposed by a
suction/blowing profile at the freestream) varied symmetrically between a favurable pressure
gradient (FPG) and an adverse pressure gradient (APG), so that separation occurred during
part of the cycle only, and the flow passed through two phases in which the pressure gradient
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was zero (ZPG). Three frequencies were considered. Next, we considered a case (Case B)
corresponding to the study of Park et al. [32], in which the flow was separated throughout
the cycle, and one (Case C), in which the APG always preceded the FPG in space, and the
magnitude of the pressure gradients was varied in time, reaching a ZPG phase.

The main results of this study were:

1. The turbulence model’s accuracy is comparable for the three models considered.
They uniformly predict early separation, and the length of the recirculation region is
generally overestimated.

2. At the intermediate frequency, all turbulence models predict the downstream advec-
tion of the recirculation region that was observed in the resolved LES.

3. The mean velocity profiles are reasonably accurate in the outer layer, the errors being
concentrated in the near-wall region, especially near the separation and reattachment
points.

4. The Reynolds shear stresses are over-predicted during the acceleration phases, as
observed previously [32].

5. The drag is predicted with good accuracy, the integrated error (IE) remains always
below 10% for all models.

6. The results of Park et al. [32] resemble qualitatively our results, but the error there is
larger. We conjecture that the error, in this case, is due to a combination of factors. In
particular, the more dissipative character of the numerical method used for the RANS
calculations, coupled with the coarser grid used, could result in additional diffusion.
In our case, numerical errors were the same for the RANS calculations and the LES.

It should be remarked that our simulations used a grid much finer than those typically
used in RANS calculations, and, furthermore, that industrial codes resemble OpenFOAM
more than our staggered method. In a practical calculation, therefore, the error would be
higher. Our calculations, however, are useful in that they point out that the turbulence
models are responsible only for part of the discrepancies, and that other aspects of the
calculations (and not only the turbulence models) must be improved in order to achieve
greater fidelity.

Future work could follow various routes. One of them is the inclusion of roughness,
which substantially changes the dynamics of separation [7]. Roughness modifications for
RANS models have been developed and calibrated mostly in equilibrium flows, and their
accuracy decreases near separation. Since most real surfaces are rough, the accuracy with
which RANS models with roughness modifications can predict the flow is critical for appli-
cations in engineering and in the natural sciences. Another important aspect that should be
addressed in future studies is the presence of curvature, both in the streamwise and in the
lateral (z) direction. Even weak curvature affects the shear stresses significantly [43], and eddy
viscosity models must be modified to include these effects (see Spalart and Shur [44], and the
discussion by Durbin and Pettersen-Reif [45]). Verifying whether these modifications give
accurate results when unsteady separation is present would also help set error bars for the
use of turbulence models in realistic industrial applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fluids8100273/s1.
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