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Abstract: Recently, when modeling transient problems of conjugate heat transfer, the independent
construction of grid models for fluid and solid subdomains is increasingly being used. Such grid
models, as a rule, are unmatched and require the development of special grid interfaces that match
the heat fluxes at the interface. Currently, the most common sequential approach to modeling
problems of conjugate heat transfer requires the iterative matching of boundary conditions, which
can significantly slow down the process of the convergence of the solution in the case of modeling
transient problems with fast processes. The present study is devoted to the development of a direct
method for solving conjugate heat transfer problems on grid models consisting of inconsistent grid
fragments on adjacent boundaries in which, in the general case, the number and location of nodes do
not coincide. A conservative method for the discretization of the heat transfer equation by the direct
method in the region of inconsistent interface boundaries between liquid and solid bodies is proposed.
The proposed method for matching heat fluxes at mismatched boundaries is based on the principle
of forming matched virtual boundaries, proposed in the GGI (General Grid Interface) method. A
description of a numerical scheme is presented, which takes into account the different scales of
cells and the sharply different thermophysical properties at the interface between liquid and solid
media. An algorithm for constructing a conjugate matrix, the form of matrix coefficients responsible
for conjugate heat transfer, and methods for calculating them are described. The operability of the
presented method is demonstrated by the example of calculating conjugate heat transfer problems,
the grid models of which consist of inconsistent grid fragments. The use of the direct conjugation
method makes it possible to effectively solve both stationary and non-stationary problems using
inconsistent meshes, without the need to modify them in the conjugation region within a single
CFD solver.

Keywords: hydrodynamic flows; conjugate heat transfer; unmatched grids; general grid interface;
SIMPLE algorithm; unmatched grid interface

1. Introduction

Conjugate heat transfer simulation is one of the most important classes of production
problems. These problems play a key role in the design and optimization process of prod-
ucts, whose operation needs to consider thermal limitations (e.g., supersonic aerodynamics
problems [1]), the stability of thermal processes, the thermal stress level, thermal effective-
ness, etc. The importance of such numerical solution problems is primarily determined
by the necessity of the spatial and time distribution of temperatures, as well as in spotting
problem areas when simulating emergency situations in the designed structures for which
a natural experiment is often impossible or entails considerable financial expenses [2–4].
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When solving industrial problems involving conjugate heat transfer, in most cases,
the grid model is formed by individual segments containing fluid flow and solid body
subareas. The form and density of the grid for each segment are selected according to their
physical processes. Such approach simplifies the process of optimizing individual regions
of the model, since it allows for re-meshing only in desired subdomains, and also makes it
possible to perform a more accurate solution without a significant increase in the number
of cells in the mesh model.

As usual, grid models consist of unmatched grid segments, with the number and
location of cells on their adjacent boundaries mismatching in general. The key feature of
the numerical simulation of conjugate heat transfer problems on such grid models is the
necessity to match thermal flows in the coupling area of fluid and solid body subareas by
means of special grid interfaces.

In order to calculate conjugate heat transfer problems, several methods can be ap-
plied [5], each having its own application area, advantages, and disadvantages. The least
computationally expensive is the approach under which fluid flow field calculation is
carried out in a steady-state arrangement and only in key points, used to form thermal
boundary conditions on a fluid and solid body interface [6]. Hypotheses, based on empiri-
cal data and engineering expertise, commonly underlie such calculations. This may lead to
significant errors in estimating the temperature field in geometrically complex structures.

According to the sequential approach [7,8], temperature fields in fluid and solid
body subareas are calculated by separate calculation modules. This approach implies a
distinct boundary detection in the coupling area and a boundary conditions exchange
mechanism between calculation modules. At each calculation step, coupling takes place
between different calculation methods until the required residual level is reached. When
unmatched grids are present in the fluid and solid body coupling area, various interpolation
techniques of boundary conditions are applied. The major disadvantage of the sequential
approach is the necessity of the iterative matching of changing boundary conditions, which
considerably slows down the convergence process. This is most noticeable when solving
non-stationary problems.

The direct coupling method [9–11] allows for building a numerical scheme, which
is capable of simultaneously discretizing heat-transfer equations for fluid and solid body
subareas and constructing a system of linear algebraic equations (SLAE) relative to tem-
perature. The direct method is the most computationally expensive, having the biggest
SLAE size, which considerably speeds up the convergence process; it is also the most
universal one, as it allows for efficiently calculating both steady and transient problems in
the conjugation area within a single CFD solver. Most articles [12–16] devoted to the direct
coupling method do not cover the issue of calculating problems on the models, containing
unmatched grid segments on the fluid and solid body interface. Unmatched grids on
the fluid and solid body interface require conservatively matching thermal flows in the
coupling area, which is a nontrivial task and requires developing special interfaces.

The present study is devoted to the development of a direct conjugation method for
problems containing arbitrary, inconsistent meshes at the interface between liquid and solid
regions. The work is an extension of the possibilities of the mass flow matching method
in solving the Navier–Stokes equations in the liquid–liquid interface proposed in [17,18],
which is based on the principle of forming virtual boundaries that form a virtual matched
interface, which is the basis of the matching method of heat fluxes presented in the article.
The proposed method does not require the modification of the original unmatched mesh in
the interface area, allows for the use of a single principle of matching heat and mass flows,
and can be implemented within a single CFD solver. At the same time, the presence of
an inconsistent grid should not worsen the solution in comparison with the solution on a
consistent grid.

The structure of the work is organized as follows: first, the article describes the classical
form of the discretization of the analog of the heat transfer equation and the method of
obtaining the matrix coefficients of a single matrix with respect to the temperature for the
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case of a consistent grid in the area of conjugation of a liquid and a solid body, followed by a
description of the modification of the components of the discrete analog of the heat transfer
equations and the coefficients of the matrix in the interface area for the case of using an
inconsistent grid model in the interface area. The last section shows the applicability of the
presented method for the example of conjugate heat transfer problems, the grid models of
which consist of inconsistent grid fragments. The results of the simulation of test problems
show that the presence of mismatched meshes at the interface between liquid and solid
blocks does not significantly affect the temperature field.

2. Mathematical Model and Numerical Method
2.1. Mathematical Model

In conjugate heat transfer problems, the numerical simulation area is divided into
solid and fluid substance subareas (Figure 1).
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We consider a mathematical model, in which the subarea (Figure 1) is a laminar
incompressible fluid having a constant thermal conductivity coefficient, with heat sources
(including dissipative ones) being absent. Taking into account the above assumptions,
the heat transfer equation for a subarea written with respect to the temperature takes the
following form:

ρFCF
∂T
∂t

+ ρFCF∇ · (uT) = ∇ · (kF∇T), (1)

where ρF—fluid density, CF—fluid heat capacity, u—fluid phase velocity vector, kF—fluid
thermal conductivity coefficient, and t—time.

In Equation (1), the fluid phase velocity vector u is determined by solving the Navier–
Stokes equation system—for example, by the well-known SIMPLE algorithm [19–21];
meanwhile, a no-slip boundary condition on the side of the fluid is accepted on the interface
boundary.

Subarea S (Figure 1) is a fixed solid body with a constant thermal conductivity coeffi-
cient without heat sources. Taking into account the above assumptions, the heat transfer
equation for subarea S, written with respect to the temperature, takes the following form:

ρSCS
∂T
∂t

= ∇ · (ks∇T), (2)

where ρS—solid body density, CS—solid body thermal capacity, kS—solid body thermal
conductivity coefficient, and t—time.

A necessary condition of coupling Equations (1) and (2) is following the energy
conservation law, i.e., thermal flows equality on the fluid and solid body boundary:

qF = qS, (3)

where qF—thermal flow on the side of fluid and qS—thermal flow on the side of the solid
body.
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Finite-volume discretization of the direct coupling method is considered by the exam-
ple of heat transfer discretization (Equations (1) and (2)), considering coupling condition (3)
for matched grids on the interface boundary, which form a consistent interface. As an
example, we examine the modeling region, comprising two control volumes of the fluid
and solid substance, respectively (Figure 2).

Fluids 2023, 8, x FOR PEER REVIEW 4 of 20 
 

qF = qS, (3) 

where qF—thermal flow on the side of fluid and qS—thermal flow on the side of the solid 
body. 

Finite-volume discretization of the direct coupling method is considered by the 
example of heat transfer discretization (Equations (1) and (2)), considering coupling 
condition (3) for matched grids on the interface boundary, which form a consistent in-
terface. As an example, we examine the modeling region, comprising two control vol-
umes of the fluid and solid substance, respectively (Figure 2). 

 
Figure 2. A schematic diagram of the matched grid on the fluid and solid body coupling boundary. 

In general, the complete form of discrete analogs of differential heat transfer (Equa-
tions (1) and (2)) for cells P and N (Figure 2), with the transient term approximated by the 
Euler implicit scheme [22], is determined by the following expressions: 

1

ρ 0
Δ

t
P P

F F P P P

T T
C V Conv D

t

−−
+ − = , (4) 

1

ρ 0
Δ

t
N N

S S N N

T T
C V D

t

−−
− = , (5) 

where TP, TN—temperature values in P and N cell centers at the current time step, 1t
PT − , 

1t
NT − —temperature values in P and N cell centers at the previous time step, 

ConvP—convective term for cell P at the current time step, and DP, DN—diffusive terms 
for cells P and N at the current time step. 

The diffusive terms DP and DN in (4) and (5) at the current time step are determined 
by the following expressions: 

( , ) ( )
( ) ( )

inner bound interface

P F f f f f f
f face P P f face P

D k T k T
= =

∇ ⋅ + ∇ ⋅=  S S , (6) 

( , ) ( )
( ) ( )

inner bound interface

N S f f f f f
f face N N f face N

D k T k T
= =

∇ ⋅ + ∇ ⋅=  S S , (7) 

where Sf—area vector with its normal orientation toward the face f, Sf—face area f, 
Tf—temperature in the face center f at the current time step, ∇ Tf—temperature gradient 
on the face f at the current time step, kf—thermal conductivity coefficient on interface 
faces, f = face(Pinner, Pbound)—summing over all internal and external faces, constraining cell 
P, f = face(Pinterface)—summing over all interface faces of the P cell, f = face(Ninner, 

Figure 2. A schematic diagram of the matched grid on the fluid and solid body coupling boundary.

In general, the complete form of discrete analogs of differential heat transfer (Equations
(1) and (2)) for cells P and N (Figure 2), with the transient term approximated by the Euler
implicit scheme [22], is determined by the following expressions:

ρFCF
TP − Tt−1

P
∆t

VP + ConvP − DP = 0, (4)

ρSCS
TN − Tt−1

N
∆t

VN − DN = 0, (5)

where TP, TN—temperature values in P and N cell centers at the current time step, Tt−1
P ,

Tt−1
N —temperature values in P and N cell centers at the previous time step, ConvP—

convective term for cell P at the current time step, and DP, DN—diffusive terms for cells P
and N at the current time step.

The diffusive terms DP and DN in (4) and (5) at the current time step are determined
by the following expressions:

DP = ∑
f= f ace(Pinner ,Pbound)

kF(∇Tf · S f ) + ∑
f= f ace(Pinter f ace)

k f (∇Tf · S f ), (6)

DN = ∑
f= f ace(Ninner ,Nbound)

kS(∇Tf · S f ) + ∑
f= f ace(Ninter f ace)

k f (∇Tf · S f ), (7)

where Sf—area vector with its normal orientation toward the face f, Sf—face area f, Tf—
temperature in the face center f at the current time step, ∇Tf—temperature gradient on
the face f at the current time step, kf—thermal conductivity coefficient on interface faces,
f = face(Pinner, Pbound)—summing over all internal and external faces, constraining cell P,
f = face(Pinterface)—summing over all interface faces of the P cell, f = face(Ninner, Nbound)—
summing over all internal and external faces, constraining the N cell, and
f = face(Ninterface)—summing over all interface faces of the N cell.
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The temperature gradient on internal and interface faces for arbitrary unstructured
grids, considering a correction for nonorthogonality [23] at the n-th iteration of the current
time step, is determined by the following expression:

∇Tn
f = (Tn

Ai
− Tn

Aj
)

S f

S f · dAi Aj
+∇Tn−1

f − (∇Tn−1
f · dAi Aj)

S f

S f · dAi Aj
, (8)

where Ai and Aj—adjacent cells over the face f, dAi Aj —Ai and Aj cells center-to-center
vector (Figure 2), Tn

Ai
, Tn

Aj
—temperature value in adjacent cells centers at the n iteration,

and ∇Tn−1
f = λf ∇Tn−1

Ai
+ (1 − λf)∇Tn−1

Aj
—interpolated temperature value on the f face at

the n − 1 iteration.
Temperature gradient values in the centers of cells can be calculated by the Green–

Gauss algorithm [20]:

∇TAi =
1

VAi
∑

f= f ace(Ai)

Tf S f , (9)

In the convective term of the discrete analog of the differential heat transfer equation
in subarea F (4) on the interface faces, featuring a coupling boundary, a no-slip boundary
condition is accepted. As a result, all velocity components uf on the interface faces in
subarea F are zeros, and the convective term of the discrete analog of the differential heat
transfer equation for cell P at the current time step takes the following form:

ConvP = ρFCF ∑
f= f ace(Pinner ,Pbound)

Tf (u f · S f ), (10)

where uf—velocity in the face center f at the current time step, Tf—temperature on the
face f at the current time step, and f = face(Pinner, Pbound)—summing over all internal and
external faces constraining cell P.

The values of the unknown variables Tf and uf in expression (10) for external faces are
determined by calculation model boundary conditions, whereas for internal faces, they
can be calculated by any well-known approximation scheme [20]. For example, when
approximation scheme CD is used, the values of the variables Tf and uf on internal faces
are determined by the weighted interpolation method:

Tf = λ f TAi + (1− λ f )TAj , (11)

u f = λ f uAi + (1− λ f )uAj , (12)

where Ai and Aj—adjacent cells over the internal face f, λf—geometric interpolation coeffi-
cient value for the face f, TAi , TAj —temperature values in adjacent Ai and Aj cells’ centers
at the current time step, and uAi , uAj —velocities in adjacent Ai and Aj cells’ centers at the
current time step.

Geometric interpolation coefficient value λf for cells Ai and Aj over the face f (Figure 2)
is determined by the following expression:

λ f =

∣∣∣n f · dAi f
∣∣∣∣∣∣n f · dAi f

∣∣∣+ ∣∣∣n f · dAj f
∣∣∣ , (13)

where dAi f and dAj f —vectors constructed between the centers of the Ai and Aj cells and
the face f (Figure 2).
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For the adjacent cells P and N over the interface (Figure 2), taking into consideration (3)
and the temperature match Tf on the interface faces, the expression for thermal flows can
be written as follows:

qP = qN = −kF
TP − Tf

dN f = −kS
Tf − TN

dP f = −k f
TP − TN

dPN , (14)

where kf—thermal conductivity coefficient on the interface face f, qP, qN—thermal flows
on the side of cells P and N, TP and TN—temperature values in P and N cells’ centers, and
dPN—vector, constructed between P and N cells’ centers (Figure 2).

When calculating the average coefficient value kf on the interface faces, differences in
the thermal conductivity coefficients and geometric parameters of cells in the coupling area
should be taken into consideration. In the case of media coupling with significantly different
thermophysical properties, common methods of interpolating thermal conductivity on
faces in the coupling area, such as geometric mean or arithmetic mean averaging, can cause
excessive error, and their application is limited by slight changes in coefficients of fluid
and solid body thermal conductivity. As shown in [24–26], the most accurate and universal
method, which takes into consideration thermal–physical property differences and the
coupling media grid model nonuniformity, is the harmonic-average method of calculating
the thermal conductivity coefficient considering the grid model nonuniformity:

k f =
1

λ f
kF

+
1−λ f

kS

, (15)

where kF and kS—thermal conductivity coefficients of fluid and solid substances, respec-
tively, and λf—geometric interpolation coefficient value for the interface face f (13).

Equation (14) allows for simultaneously solving the system of Equations (1) and (2),
taking the same approach to thermal conductivity equation discretization on the side of
both the fluid and solid body.

The finite-volume discretization of thermal conductivity Equations (1) and (2) consid-
ering (14) will result in a general system of algebraic equations, solved simultaneously in
fluid and solid body subareas. For instance, for an arbitrary cell P (Figure 2), the following
equation is composed:

aPTP + aPNTN + ∑
i=nb(P)

aiTi = bP, (16)

where aP—diagonal coefficient of cell P, aPN—off-diagonal coefficient determining the
connection between cell P and cell N over the matched interface faces in the fluid and solid
body coupling area, ai—off-diagonal coefficients determining the connection of cell P with
cells of the calculated subarea F over the common (internal) faces, bP—the right side, and i
= nb(P)—summing over all adjacent cells i with common faces with cell P.

As a result, for a grid model comprising the two matched calculated subareas F and
S (Figure 3), SLAE (17) is formed, which can be solved by one of the methods detailed
in [20,27,28]. 

aF1 · · · 0 aF1,S1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · aFN 0 · · · aFN ,SN

aF1,S1 · · · 0 aS1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · aFN ,SN 0 · · · aSN

(T) = (b), (17)

where aFi , i∈[1. . .N]—diagonal coefficients of cells in subarea F, aSi , i∈[1. . .N]—diagonal
coefficients of cells in subarea S, aFiSi —off-diagonal coefficients determining the connection
between cells Fi and Si over the interface faces, (T)—vector of sought temperatures in the
cell centers, and (b)—the right-side vector.
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body subareas.

For simplification purposes, SLAE (17) does not show off-diagonal coefficients, deter-
mining the connection of cells over internal faces. Further, we write the matrix SLAE (17)
coefficients’ form at the n-th iteration of the current time step, disregarding boundary
conditions.

The form of SLAE (17) diagonal coefficients for cells of subarea F is:

aFi =
ρFCF

∆t
VFi + ainner

Fi
+ ainter f ace

Fi
. (18)

Term ainner
Fi

in (18) is formed due to cell Fi being adjacent to cells of subarea F over the
internal face f :

ainner
Fi

= ∑
f= f ace(Finner

i )

(
CFρFλ f un

f · S f − kF
S f

n f · dFi Fj

)
, (19)

where f = face(Finner
i )—summing over all internal faces of cell Fi, and Fj—cell adjacent to

cell Fi over the internal face f.
Term ainter f ace

Fi
in (18) is formed due to cell Fi being adjacent to cells of subarea S over

interface faces f :

ainter f ace
Fi

= ∑
f= f ace(Finter f ace

i )

(
−k f

S f

n f · dFiSi

)
, (20)

where f = face(Finter f ace
i )—summing over all interface faces of cell Fi, and Si—cell adjacent

to cell Fi over the interface face f.
The form of SLAE (17) diagonal coefficients for cells of subarea S is:

aSi =
ρSCS

∆t
VSi + ainner

Si
+ ainter f ace

Si
. (21)

Term ainner
Si

in (21) is formed due to cell Si being adjacent to cells of subarea S over
internal faces f :

ainner
Si

= ∑
f= f ace(Sinner

i )

(
−kS

S f

n f · dSiSj

)
, (22)
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where Si—cell adjacent to cell Sj over the internal face f.

Term ainter f ace
Si

is formed due to cell Si being adjacent to cell Fi over interface faces f :

ainter f ace
Si

= ∑
f= f ace(Sinter f ace

i )

(
−k f

S f

n f · dSi Fi

)
. (23)

The form of SLAE (17) off-diagonal coefficients determining the connection between
cells in subarea F over internal faces f is:

aFi Fj = ∑
f= f ace(Finner

i )

(
CFρF(1− λ f )u

n
f · S f + kF

S f

n f · dFi Fj

)
. (24)

The form of SLAE (17) off-diagonal coefficients determining the connection of cells
from subarea F with cells of subarea S over interface faces f is:

aFiSi = aSi Fi = ∑
f= f ace(Finter f ace

i )

k f
S f

n f · dFiSi
. (25)

The form of SLAE (17) off-diagonal coefficients determining the connection between
cells of subarea S over internal faces f is:

aSiSj = ∑
f= f ace(Sinner

i )

kS
S f

n f · dSiSj
. (26)

The form of SLAE (17) right-hand side coefficients for cells of subarea F is:

bFi =
ρFCF

∆t
VFi + binner

Fi
+ binter f ace

Fi
, (27)

where the terms binner
Fi

и binter f ace
Fi

have the following form:

binner
Fi

= kFS f ∑
f= f ace(Finner

i )

[
∇Tf · n f −

∇Tf · dFi Fj

n f · dFi Fj

]n−1

, (28)

binter f ace
Fi

= k f S f ∑
f= f ace(Finter f ace

i )

[
∇Tf · n f −

∇Tf · dFiSi

n f · dFiSi

]n−1

. (29)

The form of SLAE (17) right-hand side coefficients for cells of subarea S is:

bSi =
ρSCS

∆t
VSi + binner

Si
+ binter f ace

Si
, (30)

where terms binner
Si

и binter f ace
Si

have the following form:

binner
Si

= kSS f ∑
f= f ace(Sinner

i )

[
∇Tf · n f −

∇Tf · dSiSj

n f · dSiSj

]n−1

, (31)

binter f ace
Si

= k f S f ∑
f= f ace(Sinter f ace

i )

[
∇Tf · n f −

∇Tf · dSi Fi

n f · dSi Fi

]n−1

. (32)
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The direct method described can be applied to calculate conjugate heat transfer prob-
lems on models of any dimension. However, the application of the described discretization
algorithm of the original Equations (1) and (2) considering (3) is possible only on the models
containing matched grids on adjacent boundaries of fluid and solid body subareas. This
limitation considerably complicates this method’s applicability in solving most conjugate
heat transfer industrial-type problems, their grid models generally consisting of unmatched
grid segments, which are independently built for fluid areas and for solid body construc-
tions. In order to solve such problems, it is necessary to ensure that thermal flows match
on the unmatched interface boundary with consideration of adjacent cells. Next, a way to
modify the direct coupling method is presented, considering the discretization features
of Equations (1) and (2) as well as providing conservative thermal flows matching on the
unmatched boundaries’ area of fluid and solid body coupling.

2.2. Direct Coupling Method of Fluid and Solid Body Unmatched Subareas

Let us consider a mathematical model of a conjugate heat transfer problem, in which
the numerical simulation region consists of unmatched grid segments, featuring calculated
subareas of fluid F and solid body S, their adjacent boundaries forming an inconsistent
(unmatched) interface (Figure 4). Unmatched interfaces mean adjacent boundaries of
unmatched grid segments, the number and position of points and edges on them generally
being mismatched.

Fluids 2023, 8, x FOR PEER REVIEW 9 of 20 
 

−

=

 ∇ ⋅
 = ∇ ⋅ −
 ⋅ 


1

( )

i j

i i jinner
i

nS S
finner

S S f f f S S
f face S f

T
b k S T

d
n

n d
, (31) 

1

( )

i i

i i iinterface
i

nS F
finterface

S f f f f S F
f face S f

T
b k S T

−

=

 ∇ ⋅
 = ∇ ⋅ −
 ⋅ 


d

n
n d

. (32) 

The direct method described can be applied to calculate conjugate heat transfer 
problems on models of any dimension. However, the application of the described dis-
cretization algorithm of the original Equations (1) and (2) considering (3) is possible only 
on the models containing matched grids on adjacent boundaries of fluid and solid body 
subareas. This limitation considerably complicates this method�s applicability in solving 
most conjugate heat transfer industrial-type problems, their grid models generally con-
sisting of unmatched grid segments, which are independently built for fluid areas and for 
solid body constructions. In order to solve such problems, it is necessary to ensure that 
thermal flows match on the unmatched interface boundary with consideration of adja-
cent cells. Next, a way to modify the direct coupling method is presented, considering the 
discretization features of Equations (1) and (2) as well as providing conservative thermal 
flows matching on the unmatched boundaries� area of fluid and solid body coupling. 

2.2. Direct Coupling Method of Fluid and Solid Body Unmatched Subareas 
Let us consider a mathematical model of a conjugate heat transfer problem, in which 

the numerical simulation region consists of unmatched grid segments, featuring calcu-
lated subareas of fluid F and solid body S, their adjacent boundaries forming an incon-
sistent (unmatched) interface (Figure 4). Unmatched interfaces mean adjacent boundaries 
of unmatched grid segments, the number and position of points and edges on them 
generally being mismatched. 

 
Figure 4. An example of forming a virtual interface. 

For coupling unmatched interfaces, the set of initial faces, which are part of an in-
consistent interface, is substituted for a set of virtual faces, forming a matched virtual 
interface. The virtual faces� geometrical parameters are determined as a result of succes-
sively projecting the initial interface faces of subarea F onto all initial interface faces of 
subarea S. In order to determine the points� coordinates, formed as a result of face inter-
section, any algorithm of polygons� intersections can be applied [29]. The obtained set of 
virtual faces forms a pair of matched virtual boundaries, through which the connection 
between cells of unmatched adjacent grid subareas is established (Figure 4). 

Figure 4. An example of forming a virtual interface.

For coupling unmatched interfaces, the set of initial faces, which are part of an incon-
sistent interface, is substituted for a set of virtual faces, forming a matched virtual interface.
The virtual faces’ geometrical parameters are determined as a result of successively pro-
jecting the initial interface faces of subarea F onto all initial interface faces of subarea S.
In order to determine the points’ coordinates, formed as a result of face intersection, any
algorithm of polygons’ intersections can be applied [29]. The obtained set of virtual faces
forms a pair of matched virtual boundaries, through which the connection between cells of
unmatched adjacent grid subareas is established (Figure 4).

In general, a virtual interface consists of a set of internal and external virtual faces
(Figure 5). Internal virtual faces form the connection between adjacent cells on the interface
boundaries. External virtual faces without any connection with cells on the adjacent
interface boundary should be processed according to selected boundary conditions.
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Figure 5. Intersecting virtual faces on an unmatched interface.

Finite-volume discretization of the direct coupling method is considered by the exam-
ple of heat transfer equations discretization (1) and (2) considering coupling condition (3)
for the case of unmatched grids on the interface boundary, featuring an inconsistent (un-
matched) interface. As an example of an unmatched interface, we examine a calculating
area, comprising one control volume of fluid subarea F, adjacent with several control
volumes of solid body subarea S (Figure 6).
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coupling boundary.

As in the case of a matched interface, on interface faces in subarea F, featuring the
boundary, a no-slip boundary condition is assumed, and a convective term of a discrete
analog of a differential heat transfer equation for cell P (4) at the current time step is
determined by expression (10).

Further, we examine the diffusive terms modification (6) and (7) of discrete analogs of
differential heat transfer equations for subarea F and subarea S on an unmatched interface,
considering the transition from initial faces to virtual ones (Figure 6).
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A discrete analog of diffusive component (6) for cell P when transferring from initial
faces to virtual ones is written as follows:

DP = ∑
f= f ace(Pinner ,Pbound)

kF(∇Tf · S f ) + ∑
f= f ace(Pinter f ace)

∑
v

k f v(∇Tf v · S f v), (33)

where ∇Tf v —scalar quantity gradient value on the virtual face fv, k f v —thermal conductiv-
ity coefficient on the virtual face fv, and S f v —virtual face area fv, normally oriented toward
the initial face f.

A discrete analog of diffusive component (7) for cell N when transferring from initial
faces to virtual ones will be written as follows:

DN = ∑
f= f ace(Ninner ,Nbound)

kS(∇Tf · S f ) + ∑
f= f ace(Ninter f ace)

∑
v

k f v(∇Tf v · S f v), (34)

The thermal conductivity coefficient value on virtual faces k f v is calculated by analogy
with (15).

k f v =
1

λ f v

kF
+

1−λ f v

kS

, (35)

where λ f v —geometric interpolation coefficient value for cell P, adjacent to cell Nv over the
virtual face fv (Figure 6), which is determined by the following expression:

λ f v =

∣∣∣n f · dNv f v
∣∣∣∣∣∣n f · dNv f v

∣∣∣+ ∣∣∣n f · dP f v
∣∣∣ . (36)

The gradient value ∇Tf v on the virtual face fv, formed between the adjacent cells P
and Nv (Figure 6), considering nonorthogonal correction at n-th iteration of the current
time step, equals:

∇Tf v = (Tn
N − Tn

P)
S f v

S f v · dPNv
+∇Tn−1

f v − (∇Tn−1
f v · dPNv)

S f v

S f v · dPNv
, (37)

where Tn
N , Tn

P—temperature value in adjacent cells centers at the n iteration, dPN—P and

Nv cells’ center-to-center vector (Figure 6), and ∇Tn−1
f v = λ f v∇Tn−1

P + (1− λ f v)∇Tn−1
Nv

—
interpolated temperature gradient value on the virtual face fv, obtained at the previous
iteration.

The temperature gradient value ∇TP in the cell center P, positioned on an unmatched
interface (Figure 6), is calculated by the Green–Gauss algorithm:

∇TP =
1

VP

 ∑
f= f ace(Pinner ,Pbound)

Tf S f + ∑
f= f ace(Pinter f ace)

Tav
f S f

, (38)

where Tav
f =

∑
v

Tf v S f v

∑
v

S f v
—averaged temperature value on the interface face f.

For the cell Nv, which is positioned on an unmatched interface (Figure 6), the tempera-
ture gradient value ∇TNv is found by analogy with (38).

As a result of the above transformations of diffusive components into discrete analogs
(7) and (8), the terms, considering the connection of adjacent cells over virtual faces, are
added to each cell, which is positioned on an unmatched interface (Figure 6).
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In general, for a grid model consisting of two unmatched calculated subareas F and
S (Figure 7), SLAE (39) is formed, which can be solved by one of the methods specified
in [20,27,28].

aF1 · · · 0 aF1,S1 aF1,S2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · aFN 0 0 · · · aFN ,SM−1 aFN ,SM

aF1,S1 · · · 0 aS1 · · · · · · 0 0
aF1,S2 · · · 0 · · · aS2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · aFN ,SM−1 0 0 · · · aSM−1 0
0 · · · aFN ,SM 0 0 · · · 0 aSM


(T) = (b), (39)

where aFi , i∈[1. . .N]—diagonal coefficients of cells in subarea F, aSj , j∈[1. . .M]—diagonal
coefficients of cells in subarea S, aFiSj —off-diagonal coefficients determining the connection
between cells Fi and Sj over virtual faces, (T)—vector of sought temperatures in the cells’
centers, and (b)—the right-side vector.
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boundary.

For simplification purposes, a system of Equations (39) does not show off-diagonal
coefficients, determining the connection of cells over internal faces. Next, we write the form
of matrix SLAE (39) coefficients at the n-th iteration of the current time step, disregarding
boundary conditions.

The form of SLAE (39) diagonal coefficients for cells of subarea F is:

aFi =
ρFCF

∆t
VFi + ainner

Fi
+ ainter f ace

Fi
, (40)

Term ainner
Fi

in (40) is formed due to cell Fi being adjacent to cells of subarea F over

internal faces f, similarly to (19). Term ainter f ace
Fi

is formed due to cell Fi being adjacent to
cells of subarea S over virtual faces fv:

ainter f ace
Fi

= ∑
f= f ace(Finter f ace)

∑
v

(
−k f v

S f v

n f · dFiSj

)
. (41)
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The form of SLAE (39) diagonal coefficients for cells of subarea S is:

aSi =
ρSCS

∆t
VSi + ainner

Si
+ ainter f ace

Si
. (42)

Term ainner
Si

in (42) is formed due to cell Si being adjacent to cells of subarea S over

internal faces f, similarly to (22). Term ainter f ace
Si

is formed due to cell Si being adjacent to
cells of subarea F over virtual faces fv:

ainter f ace
Si

= ∑
f= f ace(Sinter f ace)

∑
v

(
−k f v

S f v

n f · dSi Fj

)
. (43)

SLAE (39) off-diagonal coefficients aFi Fj , determining the connection between cells
in subarea F over internal faces f, are formed by analogy with (24). The form of SLAE
(39) off-diagonal coefficients, determining the connection of cells in subarea F with cells in
subarea S over virtual faces fv, is the following:

aFiSj = aSi Fj = ∑
f= f ace(Finter f ace)

∑
v

(
k f v

S f v

n f v · dFiSj

)
. (44)

SLAE (39) off-diagonal coefficients, determining the connection between cells in sub-
area S over internal faces f, are formed by analogy with (26).

The form of SLAE (39) right-hand side coefficients for cells of subarea F is:

bFi =
ρFCF

∆t
VFi + binner

Fi
+ binter f ace

Fi
, (45)

where term binner
Fi

is formed by analogy with (28), while term binter f ace
Fi

is written as:

binter f ace
Fi

= ∑
f= f ace(Finter f ace)

∑
v

k f v S f v

[
∇Tf v · n f −

∇Tf v · dFiSj

n f · dFiSj

]n−1

. (46)

The form of SLAE (39) right-hand side coefficients for cells of subarea S is:

bSi =
ρSCS

∆t
VSi + binner

Si
+ binter f ace

Si
, (47)

where term binner
Si

is formed by analogy with (31), while term binter f ace
Si

is written as:

binter f ace
Si

= ∑
f= f ace(Sinter f ace)

∑
v

k f v S f v

[
∇Tf v · n f −

∇Tf v · dSi Fj

n f · dSi Fj

]n−1

. (48)

The described direct coupling method allows for the simultaneous discretization of
heat transfer equations for fluid and solid body subareas as well as building a uniform
“coupled” SLAE relative to the temperature variable on grid models, containing unmatched
boundaries in the fluid and solid body coupling area. The resulting virtual interface
provides conservatism and conserves the total energy across planar and curved interfaces,
because the heat flux flowing out of one side of the interface will always be equal to
the heat flux flowing in from the opposite side of the interface. Curvilinear interfaces
can affect the accuracy of the calculation of the effective area, which affects the heat
transfer coefficient and is most pronounced in non-stationary problems. The method
does not require the initial grid modification and allows for matching thermal flows on
unmatched interface boundaries, considering the adjacent cells’ connection over the set of
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virtual faces, thus forming additional terms in the SLAE calculation model. The method
application considerably enhances the ability to calculate conjugate heat transfer industrial-
type problems, their grid models consisting of a set of unmatched segments containing
fluid flow and solid body subareas.

The described method was realized on the basis of the national software suite LOGOS,
aimed at modeling 3D problems of computational hydrodynamics, aerodynamics and heat
transfer [30–32]. The method efficiency is shown by examples of the numerical simulation of
conjugate heat transfer problems [33,34], their grid models built of unstructured, unmatched
segments.

3. Numerical Experiments
3.1. Solid Blocks’ Cooling in a Flat Channel

The method implementation is shown by the example of the numerical simulation
of cooling six solid blocks with a volumetric heat source, which are mounted in a flat
rectangular channel, by a laminar flow of incompressible fluid under forced convection [33].
Previously, we presented this problem’s numerical simulation results on a matched grid
model in the LOGOS software suite [18], which showed good agreement of the results
obtained with the results listed in [33].

Computational region geometry is outlined in Figure 8.
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Figure 8. Flat channel computational region geometry outline.

A flat rectangular channel has a height H = 1 m and a length L = 20H. Six identical solid
blocks of a length H and a height h = 0.25H are located inside the channel directly against
the lower wall. The first block left bound is located at a distance of 5.6H from the input.
The gaps between the blocks are identical and equal to H. Each block is heated by a volume
heat source with a Q = 71.4 W/m3 specific capacity. The channel walls are immovable,
impermeable, and thermally insulated. A no-slip boundary condition is set for upper and
lower walls, and a symmetry condition is set for front and back walls. On the left side of
the channel, an input flow is set with a zero temperature and a unit velocity vector, directed
along the X axis. On the right boundary, the pressure boundary condition is set. When
calculating, the media physical parameters were set in such a way as to make the values of
the non-dimensional quantities listed in [33] equal to: Re = 100 and Pr = 0.7. The aim of this
numerical experiment is to compare the results obtained on four grid models, built with
the gradual refinement of the grid in the solid blocks’ region (Figure 9). One of the grid
models has matched grids on adjacent fluid and solid blocks’ boundaries (Figure 9a); the
rest of the grid models are unmatched.

The problems were calculated in parallel mode on 12 processors. The boundary
coupling of adjacent subarea boundaries of fluid and solid blocks was carried out by the
interface, realized according to the above method. Figure 10 shows the calculated profiles
of the temperature distribution along the channel at the y = 0.275 m level (in the fluid region
above the solid blocks) for grids shown in Figure 9.
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Figure 10. Temperature profiles along the channel for various meshes. Profiles indiscriminatingly
overlap.

Figure 11 shows the profiles of the absolute values of design temperature deviations
on unmatched grids (Figure 9b–d) relative to the design temperatures on the matched grid
(Figure 9a).

The design temperature profiles and profiles of temperature deviations shown in
Figures 10 and 11, which were obtained by the above coupling method, demonstrate that
unmatched grids on the fluid and solid blocks’ boundary do not have any considerable
impact on the temperature field pattern.
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3.2. Mixed Convection in a Square Cavity

The method efficiency is considered by the example of the numerical simulation of a
mixed convection problem in a square cavity with a solid block [34]. The computational
region geometry is outlined in Figure 12.
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In the selected calculation model, the square cavity side length is L = 1 m. The cavity
contains a solid block with a side length d = 0.6 m, placed in the center, as well as an inlet
and outlet w = 0.1 m in size.

The constant dimensionless temperature Tw = 1 is set on the right vertical cavity wall,
the other walls being thermally insulated. At the cavity input, the temperature T = 0 is
set and the input flow velocity U = 1 m/s is directed along the X axis. Viscous laminar
incompressible flow disregarding viscous dissipation is considered in the problem. When
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calculating, the media physical parameters were set in such a way as to make the values of
the non-dimensional quantities listed in [33] equal to: Re = 100 and Pr = 0.71.

The calculations were made on four grid models, built with the gradual refinement
of the grid in the solid blocks’ region. The computational grid segments are shown in
Figure 13. The grid model, shown in Figure 13a, has matched grids on adjacent fluid
and solid blocks’ boundaries; the rest of the grid models, shown in Figure 13b–d, are
unmatched.
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Figure 13. Computational grid segments for square cavity in the solid block region. Matched (a) and
unmatched grids (b–d) with gradual refinement.

The problems were calculated in parallel mode on 12 processors. The boundary
coupling of adjacent subarea boundaries of fluid and solid blocks was carried out by
the interface, realized according to the above method. Figure 14 shows the calculated
distribution of temperature isolines, obtained on computational grids, which are shown in
Figure 13, as well as the distribution of the temperature isolines obtained in [34].

The obtained temperature isolines distribution (Figure 14), found as a result of nu-
merical simulation using the above method on unmatched grid models (diagrams b, c, d,
Figure 14), demonstrates good agreement with the results obtained on the matched grid
model (diagram a, Figure 14), as well as with the results listed in [34].
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4. Conclusions

This paper presents a description of a numerical method that takes into account the
features of the discretization of the heat transfer equation by the finite volume method
when solving conjugate heat transfer problems containing arbitrary unmatched grids at
the interface between liquid and solids. The method does not require modification of
the original grid in the interface area and allows for combining adjacent, inconsistent
fragments of the unstructured grid into a single computational area using virtual interfaces
that take into account the connections of neighboring cells through virtual faces. The
discretization of the heat transfer equation takes into account the different scales of the cells
and the sharply different thermophysical properties of liquid and solid media. A unified
approach to the matching of mass (presented in previous works) and heat fluxes in the
area of conjugation of inconsistent grid subdomains has been worked out. The algorithm
of the method was implemented as part of the LOGOS software package in terms of the
hydrodynamics solver, with the help of test calculations that were carried out. The results
of the modeling test problems of conjugate heat transfer using this method on grid models
containing unstructured inconsistent grids in the area of conjugation of a liquid and a
solid showed good agreement with the results obtained on a consistent grid model. The
implementations of the numerical scheme presented in this paper may be of interest to a
wide range of CFD code developers and researchers in the field of conjugate heat transfer.
The further development of the method will make it possible to use it in solving problems
with partial intersection in the conjugation region, as well as problems with moving bodies
and sliding meshes.
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