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Abstract: The self-propelled swimming of a flexible propulsor is numerically investigated by using
fluid-structure interaction simulations. A distributed active moment mimicking the muscle actuation
in fish is used to drive the self-propulsion. The active moment imposed on the body of the swimmer
takes the form of a traveling wave. The influences of some key parameters, such as the wavenumber,
the amplitude of moment density and the Reynolds number, on the performance of straight-line
swimming are explored. The influence of the ground effect on speed and efficiency is investigated
through the simulation of near-wall swimming. The turning maneuver is also successfully performed
by adopting a simple evolution law for the leading-edge deflection angle. The results of the present
study are expected to be helpful to the design of bio-inspired autonomous underwater vehicles.

Keywords: self-propulsion; flexible propulsor; fluid-structure interaction; active moment; traveling
wave; cruising speed; cost of transport; ground effect; turning maneuver

1. Introduction

Swimming fish are a source of inspiration for the design of bio-inspired autonomous
underwater vehicles (AUVs). The physics of fish swimming involves the interaction of
forces between and the swimmer and the water. For better understanding the physical
mechanism in fish swimming, two distinct (i.e., tethered and self-propelled) conceptual
models have been proposed. The tethered model refers to a propulsor which is either
towed at a known speed or placed in a freestream with a given speed [1]. The self-propelled
model refers to a propulsor which is allowed to swim freely in the water [2,3]. In the latter
scenario, a steady cruising speed is reached only when the thrust and drag forces on the
propulsor balance each other.

Since the model of latter type is of more relevance to the present study, only the
research works that fall into this category are briefly reviewed here. A rigid flapping foil
is the simplest and most popular model. The studies based on such model have shed
some light on understanding flapping-based bio-locomotion [4]. However, recent studies
indicated that flexibility has played an important role in animal locomotion through water
(or air) [5]. Furthermore, with the advancement of new actuation techniques, the design
and development of robotic fish are now shifted to the utilization of flexible structures [6,7].
Thus, more complicated models in which flexibility is taken into account need to be
developed [8].

In some models for a free-swimming flexible body, the actuation (or active flexibility)
is simplified as a prescribed deformation (kinematics), which usually takes the form of a
traveling wave [9]. Subsequently, the fluid force as a result of interacting with the water
generates a ‘solid-body’ motion of the deformed body. However, the passive flexibility,
which is one indispensable part of fish swimming, is not included in such models. In more
elaborate models, the deformation of the flexible body is determined indirectly by solving
a fluid-structure interaction (FSI) problem in which both active and passive flexibilities
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are involved. Among such models, a single-point actuation is the most commonly used
one. The specific types of actuation usually include heaving motion and the combination
of heaving and pitching motions at the leading edge [10–13]. More complex actuation
types have also been proposed. Two such examples include a two-point actuation in a
rigid-flexible composite plate [14] and a periodically varying and uniformly distributed
external force on a flexible plate [15].

One limitation of the aforementioned FSI models is that the self-propulsion is only per-
mitted in the direction of forward swimming, while a constraint is imposed on the motion
in the perpendicular direction [10–15]. Recently, some FSI models were also proposed to
eliminate this limitation. In Ref. [16], a tadpole-like propulsor consisting of a rigid circular
cylinder (head) and an attached flexible fin (tail) was considered. This propulsor was
actuated by a sinusoidal torque on the head and no prescribed motion (or constraint) was
imposed. In [17–19], an active strain approach was adopted to drive the elastic deformation
of a robot prototype, and efficient undulatory swimming was successfully achieved. In [20],
a traveling wave of active tension was used to drive the tail motion of a computational
model of a giant larvacean.

In the present work, we adopt a distributed active bending moment to mimic the
muscle actuation in fish and no constraint is imposed on the self-propelled swimming. We
are aware that this approach has already been proposed in some studies of fish swimming
in different contexts [21–24]. However, the swimming performance by using such a type
of actuation has never been systematically tested in a computational framework. In this
paper, we present such a framework in which FSI simulations are conducted by solving
the Navier–Stokes equations. The swimming performances of a flexible propulsor in
straight-line locomotion, near-wall locomotion and turning maneuver are explored.

The arrangement of the rest of the paper is as follows. The physical model and
governing equations are introduced in Section 2. The numerical method and numerical
settings are presented in Section 3. This is followed by the results and discussion in Section 4.
Finally, some conclusions are drawn in Section 5.

2. Physical Models and Governing Equations
2.1. Physical Models

We consider a thin elastic filament as a prototype of robotic fish performing undulatory
locomotion. The self-propelled swimming of this flexible propulsor is actuated by an
active bending moment which is distributed along the body (see Figure 1). In Figure 1a,
the straight arrow represents is the direction of forward swimming. The curved arrows
represent the distributed active moment. θs=0 denotes the deflection angle at the leading
edge. In Figure 1b, i − 1, i and i + 1 are three consecutive nodes. τ and n are the unit
tangential vector and unit normal vector at node i, respectively.

This model is very different from the one we have in the previous works of our
group [13,25–27], where a single-point actuation is imposed at the leading edge. In the
present model, no heaving motion is imposed at the leading edge, while a pitching motion
can still be prescribed. Imposing a pitching motion here is solely for the purpose of direction
control (in straight-line swimming or steering). This differs significantly from the scenario
in [13], where the pitching motion is an indispensable part of the single-point actuation.

2.2. Governing Equations

The fluid flow is assumed to be laminar and is governed by the incompressible Navier–
Stokes equations, which can be written in a dimensionless form as

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇2u + f ,

∇ · u = 0.
(1)

Here all quantities in Equation (1) are scaled by the body length L and characteristic
time 1/ f , where f is the driving frequency of the actuation. u is the (dimensionless) velocity
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of the fluid and p is the (dimensionless) pressure. f is the (dimensionless) volume force
term, which represents the effect of the propulsor (immersed boundary) on the fluid flow.
Re is the Reynolds number which is defined as L2 f /ν, where ν is the kinematic viscosity
coefficient of the fluid.

The motion of the flexible propulsor is governed by the nonlinear structure equations,
which can be written in a dimensionless form as

β

[
∂2X
∂t2

]
+

[
∂2

∂s2

(
γ

∂2X
∂s2

)]
−
[

∂

∂s

(
ζ

∂X
∂s

)]
= −F +

[
∂2

∂s2 (Ma(s, t))
]

n, (2)

∂X
∂s
· ∂X

∂s
= 1, (3)

where X is the position vector on the flexible body and F is the dimensionless Lagrangian
forcing term which accounts for the interaction between the propulsor and the fluid.
Furthermore, s is the dimensionless Lagrangian coordinate along the arc length. (s = 0 and
s = 1 are the coordinates of the leading edge and trailing edge, respectively.) n is the unit
normal vector on the curved body and is defined as n = z× τ. Here z is the unit normal
vector which points outwards from the plane, and τ is the unit tangential vector which
points towards the direction of increasing s.

Ma(s, t) in Equation (2) represents the active bending moment mimicking the actuation
of muscle. Here the active bending moment is assumed to take the form of a traveling
wave [22–24]. The traveling wave is produced as the result of rhythmically passing neural
wave of muscle activation from head to tail [21]. The (dimensionless) active moment density
ma, which is the first spatial derivative of Ma, is prescribed as

ma(s, t) = A sin(ks− 2πt) · F(s), (4)

where A is the dimensionless amplitude of moment density, k is the dimensionless wavenum-
ber. F(s) is a weighting function which is defined as F(s) = s(1− s)4. The weighting func-
tion is designed such that the values of active moment density are reduced to zero at the
two ends. By definition, the dimensionless frequency of wave propagation in Equation (4)
equals unity. The active moment Ma can be obtained by

Ma =
∫

Γ
ma(s, t)ds = f1(s) · sin(ks− 2πt) + f2(s) · cos(ks− 2πt), (5)

where Γ represents the path from s = 0 to s = 1. The analytical expressions for f1(s) and
f2(s) are:

f1(s) =
A
k6

(
120− 12k2(3− 8s + 5s2) + k4(s− 1)3(5s− 1)

)
,

f2(s) = −
A
k5

(
24(5s− 4)− 4k2(s− 1)2(5s− 2) + k4(s− 1)4s

)
.

(6)

It turns out that the values of active moment are also reduced to zero approximately
at the two ends.

(a) (b)

Figure 1. (a) Schematic diagram of the model problem. (b) Enlarged view of an isolated element
corresponding the one represented by a dashed box in (a).
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Aside from the dimensionless wavenumber k, other dimensionless parameters used
to describe the system are: the dimensionless amplitude of moment density A, the mass
ratio β, the dimensionless tension coefficient ξ and the dimensionless bending rigidity γ.
These dimensionless parameters are defined as

A =
A∗

ρ f (Ure f )2L
, β =

ρs

ρ f L
, ξ =

T∗

ρ f (Ure f )2L
, γ =

B∗

ρ f (Ure f )2L3 , (7)

where Ure f is the characteristic velocity which is defined as f L. ρs is the linear density
of the propulsor and ρ f is the density of the fluid. A∗ is the dimensional amplitude of
moment density. T∗ and B∗ are the dimensional tension coefficient and bending rigidity,
respectively.

The distributions of β and γ along the body can be described by two Gaussian (expo-
nentially decaying) functions as

β(s) = a1e−b1sm
,

γ(s) = a2e−b2sn
,

(8)

where the six coefficients (a1, a2, b1, b2, m, n) are adjusted for obtaining the desirable gait of
a carangiform swimming fish [26]. The values of the six coefficients provided in [26], i.e.,
(1.0, 0.1, 3.0, 9.0, 2, 2), are used throughout this work.

3. Numerical Method and Settings
3.1. Numerical Method

We use the direct-forcing immersed boundary method based on discrete stream function
formulation to solve the incompressible Navier–Stokes equations (i.e., Equation (1)) [28,29]. The
algebraic multigrid method is used to solve the linear systems arising from the discretization.
The computer code is parallelized using the message passing interface (MPI) protocol [30].
The inextensible condition (Equation (3)) is satisfied by solving a Poisson-like equation for the
dimensionless tension coefficient ξ [11]. The finite difference method is used to discretize the
structure equations (including the Poisson-like equation for ξ) on a staggered grid. For per-
forming fluid-structure interaction (FSI) simulation, we use a loosely coupled scheme [25–27].
In this scheme, the fluid equations and structure equations are advanced sequentially by one
step in time. The overall accuracies of the temporal and spacial discretizations in the numerical
method are first order and second order, respectively.

This in-house FSI code has been thoroughly validated by using a variety of benchmark
cases which include the lid-driven cavity flow, the flows over stationary and oscillating
cylinders, a sphere, a low-aspect-ratio flat plate and a flapping flag [28,29]. This code has also
been used to simulate the self-propelled swimming of a flexible fish-like body [11,25–27].

A unit normal vector needs to be defined locally for computing the active force (i.e.,
the last term of Equation (2)). The three steps involved in computing the local unit normal
vector are as follows. First, three consecutive nodes (e.g., i− 1, i and i + 1) on the flexible
propulsor are used to determine a parabola. Second, the unit tangential vector at node i
is determined analytically. Last, the unit normal vector at node i is computed by taking a
cross product.

3.2. Numerical Settings

A rectangular computation domain of [−5L, 5L]× [−3L, 3L] is used in the simulation
(see Figure 2). In solving the fluid equations, the no-slip boundary condition is imposed on
the front and back sides of the computational domain, and the free-slip boundary condition
is imposed on the top side. The free-slip boundary condition is imposed on the bottom side,
in the simulations of the straight-line swimming and the turning maneuver. In the study of
the ground effect, the non-slip boundary condition is imposed on the bottom side. For all
cases, the no-slip boundary condition is also imposed on the surface of the propulsor by
using the direct-forcing immersed boundary method [28]. The initial fluid velocity in the
entire domain is set to zero.
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The boundary conditions for the structure equations can be expressed as

leading edge:


(

∂X
∂s

)
s=0

= [cos(θs=0), sin(θs=0)](
∂3X
∂s3

)
s=0

= 0
,

trailing edge:


(

∂2X
∂s2

)
s=1

= 0(
∂3X
∂s3

)
s=1

= 0
,

(9)

where θs=0 is the deflection angle at the leading edge. θs=0 is set to zero in the case of
straight-line swimming (in an open space or near the ground). θs=0 is prescribed as a
function of time in the case of turning maneuver. In all cases, the trailing edge is treated
as a free end. It is worth noting that the leading edge is free of any constraints on its
linear displacement. This is very different from the scenario in which a heaving motion is
prescribed at the leading edge [13,25,27]. The initial shape of the swimmer is a horizontally
oriented straight line, and the initial velocity of the swimmer is set to zero.

A uniform Cartesian mesh with a grid width of L/200 is used in the simulation. The
total number of cells in the Cartesian mesh is about 2.4 million. The grid width of the
Lagrangian mesh deployed on the propulsor is also L/200. Under such mesh resolution, at
least 20 grid points are employed to resolve the shear layers with large velocity gradient
(in the zone near the surface of the swimmer and in the narrow gap between the swimmer
and the ground). This is sufficient for simulating laminar flows at Reynolds numbers of the
order 102. The time-step used in the simulation is 5× 10−4. To ensure that the solutions are
independent of the mesh, time-step and domain size, numerical tests are conducted and
the results are presented in Appendix A.

Figure 2. Computational domain and boundary conditions used in the simulation.

4. Results and Discussion
4.1. Controls Parameters and Netrics of Performance

The physical parameters in the simulations are listed in Table 1. The ranges of k and A
are determined by trial and error to facilitate efficient locomotion and production of a fish-
like swimming gait. The range of Reynolds number is chosen based on the following facts:
(a) in this range the flow physics is relatively insensitive to Reynolds number, (b) small
Reynolds numbers make the simulation more tractable.
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Table 1. Physical parameters used in the simulations.

k 3π, 3.5π, 3.7π, 3.8π, 3.9π, 4π
A 100, 150, 200, 250, 300
Re 50, 100, 150, 200

Three key dimensionless parameters are used to assess the propulsive performance,
i.e., the cruising speed Uc, the fluid power Ps, and the cost of transport per unit mass COT.
The cruising speed is the time-averaged horizontal velocity at the leading edge. The fluid
power is the time-averaged power required to produce the oscillation and the forward
motion. It can be measured approximately by the time-averaged rate of work done to the
fluid. The cost of transport per unit mass is the energy required for a unit mass to travel a
unit distance. Mathematically, the definitions of the three parameters can be expressed as

Uc =
1
T

∫ Tp

0

(
∂X1

∂t

)
s=0

dt,

Ps =
1
T

∫ Tp

0

∫ 1

0

(
F · ∂X

∂t

)
ds dt,

COT =
1∫ 1

0 β(s)ds
· Ps

Uc
,

(10)

where X1 is the horizontal component of the position vector, T is the dimensionless period
(which has the value of unity). These three parameters are evaluated after a periodically
steady state is reached.

4.2. Straight-Line Swimming

In this section, we investigate into the steady straight-line swimming in an open space.
The parameters used in the simulation are: k = 4π, A = 200, Re = 100. The time histories
of the horizontal and vertical velocities at the leading edge are shown in Figure 3. It is
seen that both velocity components reach a periodic state after a transient phase. The
cruising velocity is 0.33, while the time-averaged vertical velocity is 0.005, which is very
close to zero. This indicates that steady straight-line swimming in the horizontal direction is
achieved. The amplitudes of fluctuation in the horizontal and vertical velocity components
are approximately 0.07 and 0.32, respectively.

The time histories of the horizontal and vertical fluid forces on the swimmer are
shown in Figure 4. Both force components also reach a periodic state after a transient phase.
The time-averaged values of the horizontal and vertical components are 0.036 and 0.009,
respectively, which are also very close to zero. This further provides a supporting evidence
that the state of steady straight-line swimming has been achieved. The slight deviations
from zero in the two force components are due to the influence of the active moment and
the deflection-angle boundary condition that is imposed at the leading edge.

From Figures 3 and 4, it is seen that the horizontal velocity (or force) component
has a frequency which is twice that of the vertical component. This can be explained by
the spatio-temporal symmetry (i.e., reflective symmetry after half of the actuation period)
which exists in the flow field. Figure 5a,b show the vorticity contours and shapes of the
swimmer when the tail reaches its highest and lowest vertical positions, respectively. From
these figures, a reverse Karman vortex street with ‘2S’ wake structure is visible. Here
the term ‘2S’ refers to the situation in which two vortices of opposite signs are shed per
period. This type of wake structure is widely observed in flapping-foil systems, including
self-propelled flexible swimmers driven by other types of actuation [13,26].
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(a) (b)

Figure 3. Time histories of the leading-edge’s horizontal (a) and vertical (b) velocity components in
straight−line swimming.

Figure 4. Time histories of the horizontal and vertical components of fluid force on the propulsor in
straight-line swimming.

(a)

(b)
Figure 5. Vorticity contours and shapes of the swimmer with the trailing edge located at the
highest (a) and lowest (b) vertical positions.
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The swimming gait during one period of actuation is illustrated in Figure 6. This
swimming gait somewhat resembles that of a carangiform swimmer which possesses an
inflexible anterior part and a flexible posterior part. In Ref. [26], a similar swimming gait
has been produced by using a flexible filament with similar distributions of mass ratio and
bending rigidity, but with an imposed leading-edge heaving motion for the actuation. The
only difference between them is that the (passive) leading-edge amplitude achieved here is
much higher than that of the heaving motion prescribed in [26].

Figure 6. Shapes of the propulsor at different time instants within one period. The change of color
from light to dark in the shapes signifies the increase of time. t0 and T are the initial time instant and
the dimensionless period.

Here, the effects of the control parameters on the swimming performance are also
explored. First, the effect of wavenumber is investigated by varying k in the range of 3π
to 4π, while fixing A and Re at 200 and 100, respectively. Figure 7 shows the cruising
speed and the cost of transport as a function of k. It is seen that both Uc and COT decrease
monotonically with increasing k. The explanation on the inverse proportionality between
Uc and k is as follows. The cruising speed Uc is positively correlated with the propagation
speed of the traveling wave in the kinematics (swimming gait), at least within certain
parameter range [13]. It is reasonable to believe that the wavespeed of the traveling wave in
the kinematics is positively correlated with the wavespeed of the active moment. Obviously,
this wavespeed is proportional to the wavelength of the active moment imposed, which is
inversely proportional to k.

To examine the patterns of motion at different k, amplitude envelopes are created
by a superposition of instantaneous body shapes within a period while removing the
horizontal displacements, and the results are shown in Figure 8. The ratio of trailing-edge
amplitude to leading-edge amplitude is an important parameter for characterising the
kinematics. The amplitude ratios at different values of k are listed in Table 2. It is seen that
the amplitude ratio is approximately a constant. From Figure 8, it is also observed that the
equilibrium vertical position differs with varying k. This is because the time courses of
velocity evolution before reaching the ultimate steady state are different.
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Figure 7. Uc and COT as a function of k. The absolute value of Uc is plotted here since the propulsor
is swimming in the negative x-direction.

(a) (b) (c)

Figure 8. Amplitude envelopes at different values of k: (a) 3π, (b) 3.5π, (c) 4π. The fixed parameters
are: A = 200, Re = 100.

Table 2. The amplitude ratios at different wavenumbers.

k Amplitude Ratio

4.0π 0.250
3.5π 0.254
3.0π 0.274

Next, the influence of A on swimming performance is investigated by varying A in
the range of 100–300, while fixing k and Re at 4π and 100, respectively. Figure 9 shows the
variations of Uc and COT as a function of A. It can be seen that both Uc and COT increase
monotonically with increasing A.

The amplitude envelopes at different A are shown in Figure 10, while the amplitude
ratio at different A are listed in Table 3. It is seen that the amplitude ratio is positively
correlated with the value of A. The increase of amplitude ratio is the reason why the
cruising speed increases with increasing A. It is worth noting that the wave speed is not
affected by the variation of A. Similar to Figure 8, it is seen that the equilibrium vertical
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position differs with varying A. The influence A on the equilibrium vertical position can
also be explained by different time courses of velocity evolution at different A.

Figure 9. Uc and COT as a function of A. The absolute value of Uc is plotted here since the propulsor
is swimming in the negative x-direction.

(a) (b)

(c) (d)

Figure 10. Amplitude envelopes at different values of A: (a) 150, (b) 200, (c) 250, (d) 300. The fixed
parameters are: k = 4π, Re = 100.
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Table 3. Amplitude ratios at different values of A.

A Amplitude Ratio

100 0.289
150 0.319
200 0.360
250 0.403
300 0.448

Finally, to explore the influence of Re on swimming performance, four Reynolds
numbers, namely, 50, 100, 150, 200, are selected. The values of k and A are fixed at 4π and
200, respectively. Figure 11 shows the variations of Uc and COT as a function of Re. It
is seen that the cruising speed increases while COT decreases with increasing Reynolds
number. The decreased COT with increasing Re can be attributed to the reduction of
work done to the fluid due to the weakened viscous effect. It is also observed that the
variation of Reynolds number has little influence on the kinematics of the swimmers. (The
amplitude envelopes are not shown here for brevity.) Similar to the influences of k and A,
the equilibrium vertical position is also affected by the variation of Re. Again, this can be
explained by different time courses of velocity evolution at different Re. The time histories
of horizontal velocity at the leading-edge for different values of Re are shown in Figure 12.
It is seen that the larger the value of Re, the longer the time it takes to reach the steady state.

Figure 11. Uc and COT as a function of Re. The absolute value of Uc is plotted since the propulsor is
swimming in the negative x-direction.

4.3. Locomotion Near a Solid Wall

In this section, we investigate the ground effect on the swimming performance by
considering the case of A = 200, k = 4π, Re = 100. The degree of wall proximity is
quantified by the distance between the initial y-position of the leading edge and the solid
wall underneath. The range of dimensionless wall distance D̄ (wall distance scaled by L)
considered here is 0.4–3.0. The trailing edge may touch the solid wall if D̄ < 0.4, while the
ground effect becomes insignificant if D̄ > 3.0.
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Figure 12. Time histories of the leading-edge’s horizontal velocity at different values of Re. The fixed
parameters are: k = 4π, A = 200.

Figure 13 shows the time histories of the leading edge’s horizontal velocity at D̄ = 0.4
and D̄ = 3.0. It is seen that for the case of D̄ = 3.0, the state of steady swimming is
reached approximately after 5T. For the case of D̄ = 0.4, the swimmer keeps accelerating
and the state of steady swimming has not been reached even after 12T. The averaged
speeds computed using the data in time interval 10T–11T are 0.40 and 0.33, for D̄ = 0.4
and D̄ = 3.0, respectively. Moreover, the COTs computed using the data in time interval
10T–11T are 1.087 and 1.290, for D̄ = 0.4 and D̄ = 3.0, respectively. This indicates that the
ground effect enhances both the cruising speed and the energy efficiency.

Figure 13. Time histories of the leading-edge’s horizontal velocity at D̄ = 0.4 and D̄ = 3.0.

From the time history of horizontal velocity at the leading edge for D̄ = 0.4, both
f and 2 f are identified as the dominant frequencies. This is in contrast with the case of
D̄ = 3.0, in which only 2 f is identified as the dominant frequency. This phenomenon is
related to the fact that the ground effect breaks the spatial-temporal symmetry of the flow
field. The instantaneous vorticity contours for the case of D̄ = 0.4 is shown in Figure 14.
It is clearly seen that a reverse Karman vortex street with upward deflection is produced.
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In the narrow gap between the propulsor and the solid wall, high vorticity concentration
is also observed. The vorticity contours shown here share some similarities with those
presented in [25], where the ground effect on a self-propelled flexible swimmer driven by a
single-point actuation was explored.

After further investigation, it is found that for the case of D̄ = 0.4, the tail of the
swimmer eventually touches the ground after 13T. The time history of the leading-edge’s
vertical position is shown in Figure 15. The ‘suction’ induced by the ground effect can be
explained by the asymmetry in the active force (i.e., the last term of Equation (2)). The
averaged y-component of the active force on the swimmer in time interval 10T − 11T is
−0.283 for the case of D̄ = 0.4. This value is much larger than that for the case of D̄ = 3.0
(which is 0.074). The asymmetry in active force is caused by the (slightly) asymmetric
shapes (swimming gaits) (see Figure 16). In this figure, the black and red solid lines denote
the shapes of the propulsor at t0 and t0 + T/2, respectively. The black dashed line denotes
the mirror image of the shape at t0. The cyan lines denote the shapes of the propulsor at
eight uniformly-spaced instants in time interval [t0, t0 + T/2]. It is worth noting that the
time-averaged y-components of the fluid force are almost identical (and close to zero), with
either strong or insignificant ground effect.

Figure 14. Vorticity contours for the case of D̄ = 0.4. The black bold horizontal line is the solid wall.

Figure 15. Time history of the leading-edge’s y-displacement at D̄ = 0.4.

In order to avoid collision during swimming in close proximity to the wall and
eventually reach a periodically steady state, the kinematics of the swimmer needs to be
fine-tuned [31] to counteract the asymmetry aforementioned. This can be achieved through
a slight modification to the form of the imposed active moment, in combination with a
control law for the deflection angle at the leading edge.
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Figure 16. Asymmetry in the shapes (swimming gaits) of the propulsor induced by the strong ground
effect at D̄ = 0.4.

4.4. Turning Maneuver

In this section, we design a strategy for the swimmer to perform a turning maneuver
by treating the leading edge as a ‘rudder’. To this end, the leading-edge deflection angle
θs=0 is assumed to obey the following evolution law:

θs=0(t) = θmax · {− tanh[α(t− t0)]− 1.0]}, (11)

where θmax is the deflection angle after turning, α is a parameter which controls the elapsed
time to complete the turn, t0 is a parameter which controls the start time of the turn-
ing maneuvering. Equation (11) can facilitate a smooth transition of the deflection an-
gle between zero and θmax in a given time interval. The time variation of θs=0 with
θmax = −6◦, α = 10.0, t0 = 8.0 is shown in Figure 17. To ensure a sufficient temporal
resolution in simulating the turning maneuver, the time-step should be much smaller than
the characteristic time of the transition process. This is satisfied since the characteristic time
of transition is of the order of 1, while the time-step used in the simulation is 5× 10−4.

Figure 17. Variation of leading-edge deflection angle as a function of time in the turning maneuver.
A enlarged view of the part of the curve in time interval [7.6, 8.4] is shown in the inset.

The parameters used in performing the simulation of turning maneuver with θmax = −6◦

are: k = 4π, A = 200, Re = 100. Figure 18 shows the time history of the leading-edge’s ver-
tical velocity. In the first seven periods, the time-averaged vertical velocity is approximately
zero. This is indicative of steady straight-line swimming in the horizontal direction. From
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the seventh period to the ninth period, the propulsor starts to make a right turn and the
time-averaged vertical velocity gradually increases from zero to 0.1. After the ninth period,
steady straight-line swimming in a obliquely upward direction is achieved and the turning
maneuver is completed. The instantaneous vorticity contours at 5T, 8T and 14T as shown
in the Figure 19. From this figure, it is clearly seen that the horizontally oriented vortex
street is gradually transited into a downward deflected one after the turning maneuver.

Figure 18. Time history of the leading-edge’s vertical velocity. The blue and red dashed lines denote
the time-averaged velocities before and after the turning maneuver.

(a)

(b)

(c)
Figure 19. Vorticity contours at 5T (a), 8T (b) and 14T (c) in the turning maneuver with θmax = −6◦.
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The turning maneuvers with different values of θmax, namely, −2◦,−4◦,−10◦ are also
simulated. The actual and period-averaged trajectories of the leading edge at different
values of θmax are shown in Figure 20. Here the magnitude of turning is quantified by the
turning angle (θw), which is defined as the angle between the swimming directions before
and after the turning maneuver. Figure 21 shows the relation between θw and θmax. It is
seen that the two angles are (almost) linearly proportional to one another in the parameter
range of this study.

Figure 20. Trajectories of the leading edge for turning maneuvers with different values of θmax.
The dashed lines represent the actual trajectories. The solid lines represent the trajectories after
periodic averaging.

Figure 21. Relation between θmax and θw. The black solid line in the line of best fit.

5. Conclusions

In this paper, we present a computational framework for assessing the swimming
performance of a flexible propulsor driving by a distributed active moment. The immersed
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boundary method is employed to conducted the fluid-structure interaction simulation. To
mimic the muscle actuation, the active moment imposed on the body of the propulsor takes
the form of a traveling wave. Three types of swimming, namely, straight-line swimming in
a open space, near-wall swimming and turning maneuver, are explored.

In the straight-line swimming, the ranges of wavenumber and amplitude of the
moment density are 3π–4π and 100–300, respectively. The Reynolds numbers based on the
actuation frequency and body length are in the range of 50–200. It is found that the cruising
speed and cost of transport are inversely proportional to the wavenumber and proportional
to the amplitude of moment density. The cruising speed is proportional to the Reynolds
number, while the cost of transport is inversely proportional to the Reynolds number.

In the near-wall swimming, the dimensionless wall distances considered are in the
range of 0.4–3.0. It is found that in the case with strong ground effect (D̄ = 0.4), the cruising
speed is enhanced while the cost of transport is reduced simultaneously. It is also found
that for the case of D̄ = 0.4, the tail of the propulsor eventually collides with the ground
after 13 actuation periods. In order to avoid collision when swimming in close proximity to
the wall, the propulsor’s kinematics needs to be fine-tuned.

A simple evolution law for the leading-edge deflection angle is designed to achieve
the turning maneuvers. The deflection angle is allowed to change steeply by an amount
in the range of 2◦ to 10◦ in approximately one actuation period. As a result, the turning
maneuvers with turning angles ranging from 5◦ to 23◦ are completed in approximately two
actuation periods.

In our future work, control strategies will be designed for the swimmer to perform
more complex tasks, such as position keeping in vortical flows, steady near-wall swimming
free of collision, point-to-point navigation and obstacle avoidance maneuvering. The most
promising solution to the challenging problems aforementioned is the artificial intelligence
(AI) control based on deep reinforcement learning (DRL).
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Appendix A. Mesh, Time-Step and Domain Independence Tests

To test the mesh independence of the solutions, three uniform meshes of different
resolutions are generated. The detailed information of the meshes used in the test are
summarized in Table A1. The straight-line swimming with k = 4π, A = 200, Re = 100 is
simulated by using the three meshes. The time histories of the leading-edge’s horizontal
velocity and the horizontal fluid force on the propulsor obtained using the three meshes are
shown in Figure A1. The convergence behavior is clearly seen from the solutions obtained
using the medium and fine meshes.

Similarly, to test the time-step independence of the solutions, simulation is also per-
formed on the medium mesh with a grid width of L/200, by using time-steps of three
different sizes (i.e., 6× 10−4, 5× 10−4, 2.5× 10−4). The time histories of the leading-edge’s
horizontal velocity and the horizontal fluid force on the propulsor obtained with the three
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time-step sizes are shown in Figure A2. It is clearly seen that the three solutions are
almost indistinguishable.

Finally, a domain independence test is conducted on the same case. We generate three
computational domains with different size. The medium mesh and the medium time-step
size are used in the simulation. It turns out that the results obtained with the three domains
are almost indistinguishable (see Figure A3).

To summarize, the solutions that are independent of mesh, time-step and domain size
can be achieved with the spatial resolution of L/200, temporal resolution of 5× 10−4 and
domain size of 10L× 6L.

Table A1. Information of the meshes used in the mesh independence test.

Mesh 1 Points per Chord Length Total Grid Points (Million)

C 101 0.6
M 201 2.4
F 301 5.4

1 C: coarse mesh; M: medium mesh; F: fine mesh.

(a) (b)

Figure A1. Time histories of (a) the leading-edge’s horizontal velocity and (b) horizontal fluid force,
obtained by using three different meshes.

(a) (b)

Figure A2. Time histories of (a) the leading-edge’s horizontal velocity and (b) the horizontal fluid
force, obtained by using three different time−step sizes.
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(a) (b)

Figure A3. Time histories of (a) the leading-edge’s horizontal velocity and (b) the horizontal fluid
force, obtained by using three computational domains with different size.
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