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Abstract: The size of micro- and nanofluidic devices accounts for their operation in modes that differ
significantly from those for the corresponding macroscopic counterparts. Deep understanding of
gas-dynamic processes occurring in micro- and nanofluidic systems opens new opportunities for the
practical use of molecular transport at the micro- and nanoscale. Models and simulation methods
with high reliability are described. The article also outlines the important flow parameters which must
be considered in the first place to correctly simulate gas-dynamic processes in micro- and nanoflu-
idic systems. The review will be useful as a reference for researchers interested in implementing
preliminary analysis in the development and optimization of micro- and nanofluid devices.
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1. Introduction

According to leading world experts, the industrial revolution in the first quarter of the
21st century was mainly associated with the progress of nanoengineering. Moreover, in
terms of social impact, it is comparable with the revolution of the 20th century caused by the
invention of a transistor, antibiotics, and IT. In the coming years, the development of science,
engineering, and technology related to creation, research, and use of nanoscale objects will
lead to fundamental changes in many fields of human activity, including material science,
power industry, machinery manufacturing, electrical engineering, chemistry, medicine,
agriculture, and ecology.

In recent years, technologies associated with micro- and nanofluidic engineering have
been actively developed for a wide range of applications in various industries, including
microelectronics, aerospace engineering, vacuum technology, nanoscale manufacturing,
etc. [1–6]. Some examples of these devices are shown in Figure 1.

In terms of physical processes, there are no obstacles to miniaturization, the laws of
thermodynamics are invariant with respect to sizes. However, currently, special attention
is not paid to further nano-enabled miniaturization, but to new properties and effects that
nanotechnologies can bring into the design of with micro- and nanoscale devices. To assess
the actual level of the nano-industrial development, one can analyze the proceedings of
one of the conferences related to the nanotechnological development, IEEE MEMS-2021 [7].
There, as many as 108 oral and 149 poster presentations were provided in 19 sections.
Nanoelectromechanical systems (NEMSs) were addressed in 25 presentations (less than
10% of all reports). A significant proportion (about 50%) was accounted for by reports on
microelectromechanical systems (MEMSs). Particular attention should be paid to the share
of reports (about 30%) related to intelligent manufacturing technologies as well as to design
and engineering innovations. The main result of further miniaturization is not the actual
decrease in geometric sizes, but the improvement of quality characteristics based on new
effects provided by small-size technology.

New tasks in the design and engineering of small-size technology are not only as-
sociated with the need of calculating and simulating problems related to circuitry and
logic. There is also a necessity to solve a combination of problems related to engineering
mechanics, heat and mass transfer, gas and hydrodynamics, etc., appearing separately or
simultaneously in the product. Alternatively, carrying out exhaustive natural experiments

Fluids 2023, 8, 24. https://doi.org/10.3390/fluids8010024 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids8010024
https://doi.org/10.3390/fluids8010024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-6146-4883
https://doi.org/10.3390/fluids8010024
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids8010024?type=check_update&version=1


Fluids 2023, 8, 24 2 of 11

during the design and engineering of devices with micro- and nano-sized components is
extremely difficult and economically unprofitable. In fact, it makes it necessary to develop
the control and measuring equipment that is no less complex than the device itself (for
example, for measuring the flows inside micro- and nanofluidic devices). Because the
designing process in this case is often rather empirical, there is a need to develop, verify
and apply new modeling methods in such systems.
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Figure 1. Micro- and nanofluidic devices.

Indeed, the size of micro- and nanofluidic devices accounts for their operation in
modes that differ significantly from those for the corresponding macroscopic counterparts.
An important effect of their small sizes lies in the fact that the traditional description
of the gas flow in these devices as a continuous medium flow with macroscopic state
parameters continuously varying in space and time becomes inadequate. This effect can be
described with the use of the Knudsen number (Kn), which characterizes the gas rarefaction
as the ratio of the mean free path of gas molecules to the characteristic linear size of the
device. For example, under standard room air conditions, the Kn number approximates
0.07 for a typical device measuring 1 micron. Notably, for Kn numbers greater than 0.01,
the assumption of the gas flow being a continuous medium is known to become invalid.
Moreover, this effect increases substantially when the device is operated at high altitudes,
as in aerospace applications, or at low pressures, as in vacuum technology, or has a size
smaller than one micron.

2. Models and Simulation Methods

Classification of rarefied gas flow regimes based on the Knudsen number along with
the applicable governing equations for each regime is shown in Figure 2. Initially, similar
classification was proposed in Ref. [8]. Recall that, according to the Chapman–Enskog
theory, the Euler equations (no viscosity and thermal conductivity in gas) represent a
zero-order approximation of the Boltzmann equation; the Navier–Stokes and the Barnett
equations represent a first-order and a second-order approximation, respectively. Physically,
each subsequent approximation represents a new model of a continuous medium. As
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follows from Figure 2, one possible way to correctly analyze the gas dynamics of micro-
and nanofluidic systems in a wide range of gas rarefaction (Knudsen numbers) is to solve
the Boltzmann integro-differential equation for the distribution function, which is the basic
equation of the kinetic theory of gases.
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In the absence of external forces, the Boltzmann equation reads as

∂ f
∂t

+ v·∂ f
∂r

= Q( f , f∗), (1)

where f ≡ f (t, r, v) is one-particle velocity distribution function, t is time, r is a radius
vector, and v is the molecular velocity vector. The distribution function is defined so as the
quantity f (t, r, v)drdv is the number of particles in the phase volume drdv near the point
(r, v) at the time t. The right side of the Boltzmann equation is the collision integral.

Q( f , f∗) =
∫

K
(
v′, v′∗ → v, v∗

)(
f ′ f ′∗ − f f∗

)
dv′dv′∗dv∗. (2)

The affixes to f correspond to those of their arguments v, in particular f ′ ≡ f (t, r, v′)
and f∗ ≡ f (t, r, v∗). The quantity K(v′, v′∗ → v, v∗) is the probability density that two gas
molecules having the velocities v′ and v′∗ after a collision have the velocities v and v∗,
respectively.

In essence, to determine function K(v′, v′∗ → v, v∗), we must solve a mechanical
problem of two molecules colliding under to a given law. The most common and simplest
law of intermolecular collision known so far is the hard sphere (HS) model. This is a special
case η = ∞ of the repulsive inverse-power-law (IPL) potential U(r) ∼ r−η , where r is
the distance between molecules and η is the power of IPL. According to this model, the
molecular collision process is described by constant total cross-section σt and isotropic
scattering in the center-of-mass frame of reference. The HS model is suitable to simulate
the elastic collision of gas molecules. The relationship between the coefficient of viscosity
and temperature is postulated as µ ∼

√
T.

A good fit to analytical calculations has the model of Maxwell molecules which
represents a special case of the IPL potential where η = 5. Indeed, according to this model,
the molecule collision probability is a constant value, which significantly simplifies both the
theoretical analysis and the DSMC algorithm (the direct simulation Monte Carlo method).

The simplicity and ease of application are important virtues of both the HS and the
Maxwell molecules models. However, none of them is applicable for simulating collisions
in the case of real gas as they appear “too hard” and “too soft” models for the gas molecule–
molecule interaction. The considerable disadvantage of these models is the absence of
cross-section dependence on relative velocity of the colliding particles.

To eliminate this drawback, a model of variable hard spheres (VHS) has been devel-
oped [9]. According to the VHS model, which is defined for the general case of the IPL
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potential, the diameter of colliding molecules d is inversely proportional to the relative
velocity of gas molecules vr to power ω − 1/2, i.e., σt ∼ v−2ω+1

r where ω is a viscosity
index derived from the temperature dependence of the viscosity coefficient. Indeed, both
the IPL potential and the VHS model imply that the dependence of the viscosity coefficient
µ on the temperature is proportional to Tω . Viscosity index ω is related to the power of IPL
η as ω = 2

(η−1) +
1
2 and varies depending on the kind of gas.

The main drawback of the VHS model is that the theory based on this model leads
to the formulas for viscosity σµ and diffusion cross sections σD do not correspond to the
chosen IPL potential. Indeed, according to the VHS model, the Schmidt number (σµ/σD)
is constant and equals 3/2 as it does for the HS model. However, according to the IPL
potential, this ratio should depend on η.

For the VHS model as for the HS model, the isotropic scattering law at molecular
collision remains valid, but it does not appear realistic in general. Koura and Matsumoto
suggested a variable soft spheres (VSS) model which can be used for any type of intermolec-
ular potential with the definite viscosity and diffusion cross sections [10,11]. According
to this model, diameters d of the colliding particles depend on the relative velocity of
molecules as in the VHS model, while the angle of the change in relative velocity direction
(or deflection angle) χ is defined by the scattering law b = d cosα(χ/2), which appears
more realistic than the isotropic law (here b is the impact parameter, and α is an exponent
of cosine of deflection angle). The value of α should be chosen to coordinate values of
diffusion and viscosity cross-section with the chosen interaction potential. Since in the case
of the IPL potential the parameters involved in VSS model can be determined explicitly,
the VSS model is used in practical calculations only for the IPL potential.

However, the IPL potential that considers only repulsion between molecules becomes
incorrect in the low temperatures range where the attraction force becomes dominant. It is
known that, under the condition kT/ε >> 1 the interaction potential can be considered
to be fully repulsive, while in the case of kT/ε << 1 it is attractive; where ε denotes well
depth of the repulsive–attractive interaction potential of colliding particles, and k is the
Boltzmann constant.

In order to take attractive intermolecular forces into account, Hassan and Hash sug-
gested to use the so-called generalized hard sphere (GHS) model of the intermolecular
potential that contains both repulsive and attractive components [12]. In the GHS model,
the post-collision direction of gas molecular relative velocity is the same as in the HS model,
while total cross-section σt is a function of the impact energy of the collision.

Kunc et al. promoted further development of the GHS model for the case of heavy gas
molecules interacting through an attractive-repulsive potential where a strong attraction is
assumed [13]. According to the authors, if intermolecular potential is represented as a sum
of repulsive and attractive potentials U = Uatt+Urep, then specifically for the Lennard–Jones
potential (LJ) with strong attraction Uatt/Urep ∼ (ε/E)1/6, where E is impact energy of the
collision. For instance, for Xe at the temperature of T = 77.4 K the ratio (ε/E)1/6 is 1.15, at T
= 1000 K − 0.75. Thus, attractive intermolecular forces can make a significant contribution
into the gas intermolecular interaction in heavy gas even at rather high temperatures.

A generalized soft sphere (GSS) model introduced by Fan implies that the total cross-
section is the same as in the GHS model while the deflection angle similar to that in the VSS
model [14]. In the case of the LJ potential, a simplifying assumption was employed by fitting
the formula for collision integrals, which allowed to determinate explicitly parameters
involved in the GSS model.

Matsumoto developed a variable sphere (VS) model that provides consistency viscosity
σµ and diffusion cross sections σD with those of any realistic intermolecular potential and
obeys a simple scattering law at collision that is even simpler than isotropic one [15];
however, even the author himself noted that the model should be examined with many
rarefied gas flow problems.

To solve the problems of external and internal gas flow around the surface of a solid
body based on the Boltzmann equation, it is necessary to correctly state the boundary
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conditions. The problem is to express the distribution function of molecules scattered by
the surface as f+ ≡ f (t, r, v) (vn = v·n > 0) through the distribution function of molecules
incident on the surface f− ≡ f (t, r, v′) (v′n = v′·n < 0), where n is the unit vector normal
to the surface, v′ and v are velocities of incident and reflected molecules, respectively.

There is a generally accepted theoretical method used to describe the scattering of
gas molecules by a surface, which is based on the construction of mathematical scattering
kernels [16]. The essence of this method is to calculate the probability density R(v′ → v)
that a molecule would hit the surface with a velocity between v′ and v′+ dv′ at point r at
time t flies out of the same surface element at the same time at a velocity between v and v +
dv. Then, in an integral form the boundary conditions for the Boltzmann equations can be
written as follows

|vn| f+ =
∫

v′n<0

∣∣v′n∣∣R(v′ → v
)

f−dv′. (3)

The mathematical notation of function R(v′ → v) is called the scattering kernel. It
includes all information about the influence of physical and chemical properties of the
gas–solid interface on the gas–surface scattering process.

In order to obtain a scattering kernel, an appropriate physical model of the gas–
surface scattering process had to be developed. It was Maxwell who introduced it for
the first time [17]. According to this model, fraction αM of the incident molecules comes
to equilibrium with the surface and reflects from it diffusely, while the remaining part
(1 − αM) is reflected specularly. The Maxwell model has the following scattering kernel

RM
(
v′ → v; αM

)
= (1− αM)·δ

(
v−

(
v′ − 2v′nn

))
+ αM

m2vn

2π(kTs)
2 exp

(
−mv2

2kTs

)
, (4)

where m is the molecule mass, Ts is the surface temperature, and δ(x) is the delta function.
Obviously, the Maxwell’s scattering kernel is based on the relatively simple physical model
and thus this scattering kernel has a number of inaccuracies when it comes to describing the
gas scattering by the surface. In particular, one parameter αM characterizes the exchange in
both energy and momentum of the gas molecules with the surface. However, it is known
that the transfer rates of energy and momentum during gas–surface collisions are different
from each other, and usually the momentum is lost or acquired more rapidly than the
energy. This is one of the shortcomings of the Maxwell’s scattering kernel.

The Cercignani–Lampis (CL) [18] and Epstein [19] scattering kernels are more physi-
cally sound. In particular, they make it possible to derive the dependence of the gas–surface
scattering process from the ratio between the velocity of gas molecules incident on the sur-
face and the surface temperature. This makes a fundamental distinction from the Maxwell’s
scattering kernel. Indeed, since αM is a constant, the outcome of the gas–surface scattering
(diffuse or specular) does not depend on this ratio. This fact is important for studying
non-isothermal gas flow. To prove that, we were able to show that the simulation based
on CL and Epstein scattering kernels provide a satisfactory description of the gas–surface
scattering under a non-isothermal rarefied gas flow than the commonly used Maxwell’s
kernel [20].

In the case of isotropic gas–surface scattering in the plane tangential to the surface, the
mathematical form of the Cercignani–Lampis scattering kernel can be written as

RCL(v′ → v; αn; ατ) =

= m2vn
2παnατ(2−ατ)(kTs)

2 exp

{
−

m
(

v2
n+(1−αn)v′n

2
)

2αnkTs
− m(vτ−(1−ατ)v′τ)

2

2ατ(2−ατ)kTs

}
× I0

(√
1−αn
αn

mvnv′n
kTs

)
;

(0 ≤ αn ≤ 1; 0 ≤ ατ ≤ 2),

(5)

where I0(x) = (2π)−1 ∫ 2π
0 exp(x cos ϕ)dϕ, vτ is the two-dimensional vector of the tangen-

tial velocity, αn is the accommodation coefficient of the kinetic energy corresponding to the
normal molecular velocity, and ατ is the tangential momentum accommodation coefficient.
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The Epstein scattering kernel is a generalization of the Maxwell one. Epstein suggested
that the kernel parameter αM depends on the velocity of gas molecule incident on the
surface and obtained the following scattering kernel

REp(v′ → v; αM(v′)) =

= (1− αM(v′))·δ(v− (v′ − 2v′nn)) +
vn exp(−mv2/2kTs)αM(v)αM(v′)∫
vn>0 vn exp(−mv2/2kTs)αM(v)dv ,

(6)

where αM(v′) is a function that qualitatively describes the temperature dependence of the
energy accommodation coefficient, and wrote it as

αM
(
v′
)
= exp

(
−mv′2

2kθ1

)
+ C

[
1− exp

(
−mv′2

2kθ2

)]
. (7)

This function includes three parameters: θ1, θ2, and C, where θ1 and θ2 control the
behavior of αM for low and high velocities of the incident molecules, and C is the limit value
αM in the region of high velocities of the incident molecules. Usually, the Epstein kernel
parameters are determined for each specific gas–surface system to provide an acceptable
agreement between analytical expression obtained with the use of this scattering kernel and
appropriate experimental data. Obviously, expression (7) is not the only possible function
αM. The necessary conditions for αM include its evenness and 0 ≤ αM ≤ 1. Another form
of αM was proposed in [21] where it is provided as a function of the kinetic energy of the
motion normal to the surface.

The solution of the Boltzmann equation is a rather complicated computational prob-
lem. Therefore, when using the kinetic approach to solve an array of problems related to the
description of rarefied gas flows, the collision integral is often replaced by a simpler approx-
imate expression that preserves the main properties of the exact collision operator [16]. The
resulting equation is called the model kinetic equation or the Boltzmann equation model.
Undoubtedly, the most common model of the Boltzmann equation is the BGK model [22],
which was developed in the ES and S models [23,24]. The latter two models, unlike BGK,
predict the correct Prandtl number upon transition to the hydrodynamic regime. The
subsequent development of Boltzmann equation models aimed to solve specific problems,
in particular, for rarefied flows of polyatomic gases [25–27] and gas mixtures [28].

To date, a sufficient number of methods for solving the exact Boltzmann equation
and its models have been developed and successfully applied in practice. Classification
of these methods is due to the diversity of problems to be solved, including restrictions,
dimensions, approximations, assumptions, and other requirements, not to mention the own
preferences of the classification author. Indeed, it is not infrequent that a certain method
shows excellent results (in good agreement with the experiment) for one class of problems
but appears to be unsatisfactory or totally unacceptable for another. For example, the
methods of solving the Boltzmann linearized equation models have been tried and verified
in calculating the rarefied gas flow in long channels, where the flow is fully developed.
However, these methods become obviously unapplicable when the flow becomes strongly
non-equilibrium, such as in the case of the gas outflow into a vacuum through slits and
short channels.

Noteworthy is the classification by G. A. Bird, who divided the methods into analytical
and numerical as applied to the transition regime of the rarified gas flow [29]. The first
category includes methods for solving moment and model kinetic equations, most of which
require the involvement of numerical procedures to achieve the final result. The numerical
category is further divided into deterministic and stochastic (probabilistic) simulations,
direct Boltzmann computational fluid dynamics (CFDs) and discretization methods.

In our opinion, if we adhere to a rougher classification without going into details of
the method, then it is appropriate to simply divide the methods into deterministic and
stochastic. The most common deterministic method for solving the Boltzmann equation is
the discrete velocity method proposed by J. E. Broadwell [30]. The essence is to construct a
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discrete analogue of the original equation in the velocity space. For this purpose, a velocity
grid is introduced as fixed set of available gas molecular velocities, and the collision
integral is approximated at the grid nodes of a specially fitted quadrature formula. With
this approach, the determination of the distribution function values at the grid nodes is
reduced to solving a system of ordinary differential equations, in which the molecular
velocities are included as the parameters.

In recent years, the problems related to fluid simulation have been widely approached
by the lattice Boltzmann method (LBM). First introduced by McNamara and Zanetti [31],
this method is based on the numerical solution of the Boltzmann equation, which is discrete
in time, space, and velocity. Notably, the LBM shows stable results when the fluid velocity
is much lower than the sound velocity in the medium, i.e., the lower the velocity, the
better the result [32]. In particular, the LBM version proposed in [33] is applicable at Mach
numbers M < 0.15.

As deterministic, G.A. Bird also classified the molecular dynamics (MDs) method, in
which the temporal evolution of the interacting particle system is tracked by integrating
their motion equations [34]. It should be noted that the MD method is not widely used for
calculations of rarefied gas flows. In our opinion, it is advisable to apply this method in a
hybrid approach, in which the MD method is “responsible” for modeling the interaction of
gas molecules with the surface.

Stochastic approaches to solving the Boltzmann equation began to develop actively
with the development of computer technology. In particular, an algorithm was developed
for solving a system of stochastic equations in the Poisson measure, which represents
the approximate solution of the Boltzmann equation [35]; the Galerkin method [36]; the
collocation method [37]; the weighted particle method [38]; etc. However, the most popular
stochastic approach to solving the Boltzmann equation is, by far, the direct simulation
Monte Carlo method (DSMC) [29]. This is an effective tool for solving problems of rarefied
gas dynamics for any gas flow regime from a continuum to a free molecular flow.

Recall that the DSMC method simulates gas flows using model particles which repre-
sent a large number of real molecules: at each discrete time interval, particle motion and
intermolecular collisions are considered (simulated) as two independent and unrelated
processes. If the time interval is less than the mean free path between collisions, then the
method provides physically realistic results. The method allows taking into account many
factors, such as strong non-equilibrium and complex geometric configuration of the system
being modeled, using various types of boundary conditions (gas–surface scattering laws),
surface structure, and intermolecular potential models.

We have experience in successfully applying the DSMC method to investigate gas-
dynamic processes in specific configurations of micro- and nanofluidic systems, as seen in
our recent works [39–41]. In our studies, we used our own program codes implementing
the DSMC method based on the majorant frequency scheme [42]. We also made use of
non-uniform meshes and special DSMC procedures such as cell division into sub-cells and
weight planes. As a result, we normally received precise values of dependencies of the
mass flow rate and the flow field through channels of various shapes and configurations
from a broad set of defining parameters: gas rarefaction (Knudsen number); reduced length
(length to channel height ratio); pressure ratio (output–input); gas–surface scattering and
gas molecule–molecule interaction parameters. All calculations were performed using
multiprocessor computer hardware. As an example of these calculations, Figure 3 shows
a fragment of the flow field inside and downstream a sudden expansion channel in the
near continuum flow regime [39]. Indeed, in practice the configurations of micro- and
nanofluidic devices often represent channels with complex geometry, particularly those
with sudden expansion or contraction. As can be seen from the figure, the gas flow in
micro- and nanofluidic devices can have a rather complex structure and requires a more
detailed study.
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Figure 3. Dimensionless density n/n1, temperature T/T1, and longitudinal bulk velocity uy/v1 in
the yz-plane inside and downstream a channel (l/h1 = 10) with sudden expansion (h2/h1 = 2) at
rarefaction δ = 103 (the temperature image also displays gas streamlines) [39].

It should be noted, however, that the DSMC method, due to its stochastic nature,
has a drawback of high statistical noise in modeling low-speed flows. In this case, it
is advisable to use deterministic methods, which are deprived of this shortcoming. In
particular, the deterministic discontinuous Galerkin fast spectral (DGFS) method was
recently developed for solving the exact Boltzmann equation [43,44]. It allows arbitrary
unstructured geometries; high order accuracy in physical space time and velocity space;
and arbitrary collision models and provides excellent nearly linear scaling characteristics
on massively parallel architectures. It was shown that the DGFS method reproduces noise-
free smooth results of assessing the flow phenomenon in the thermostress convection
processes in the slip-to-transition flow regime [45]. If we adhere to a detailed classification
of methods, then the spectral methods for solving the Boltzmann equation can also be
classified as a separate category. A detailed classification of methods for solving the
Boltzmann equation can be found in [16,46,47], and specifically deterministic approaches
are reviewed in [48–50].

3. Important Flow Parameters

In addition to correctly selecting the method, one should consider that devices com-
prising micro- and nanocomponents exhibit the phenomena associated with the accommo-
dation properties of gas molecules and the surface structure. Indeed, the actual interaction
of gas flows with the surface of micro- and nanofluidic devices can differ significantly
from the assumption which is used in most engineering calculations, that there is a com-
plete accommodation of the energy and momentum of gas molecules on the surface, with
corresponding accommodation coefficients assumed to be equal to 1. In particular, we
experimentally showed that the tangential momentum accommodation coefficient on an
atomically clean surface can reach 0.7, which increases the gas flow rate through the channel
used in the experiment by 65% compared with the theoretical value under the assumption
of complete accommodation of the tangential momentum [51]. The effects associated with
incomplete energy accommodation can be even more significant: depending on the chemi-
cal composition of the surface, the energy accommodation coefficient can drop dramatically
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to as low as the order of two decimal places [52]. This, without a doubt, can greatly affect
the heat transfer in the device being used.

In some cases, the geometric sizes of the operating elements are such that the structure
of the surface and the interface plays a decisive role in the operation of the respective device.
For example, the surface in micro- and nanofluidic devices can vary from quite smooth, as
in the case of a crystalline silicone surface, to rather rough, as with the technical surface.
The role of surface roughness in a rarefied gas flow inside a channel was demonstrated
in [53–55].

In addition, such a parameter as a surface-to-volume ratio has a tangible effect on heat
transfer processes. Obviously, it is significantly different for micro- and macrodevices.

Thus, the following flow parameters must be taken into account to correctly simulate
gas-dynamic processes in micro- and nanofluidic systems:

• Gas rarefaction (Knudsen number);
• Gas velocity as a whole (Mach number or pressure gradient);
• Temperature non-equilibrium (temperature ratio);
• Gas–surface scattering (scattering kernel parameters or accommodation coefficients);
• Gas molecule–molecule interaction (intermolecular potential parameters);
• Surface roughness (surface structure model parameters);
• System geometry (shape, length-to-height ratio, aspect ratio);
• Surface-to-volume ratio.

Possibly, and very likely, the above list is incomplete, and so can be supplemented
by the reader. However, we brought together the important flow parameters which must
be considered in the first place, in particular to implement preliminary analysis in the
development and optimization of micro- and nanofluid devises, for example, in space
application design and vacuum engineering.

4. Conclusions

We attempted to review an extensive topic of gas dynamics in micro- and nanofluidic
systems. The article discusses models and simulation methods based on the Boltzmann
integro-differential equation for the distribution function. The flow parameters presented
here can be used to correctly simulate gas-dynamic processes in micro- and nanoscale.

We believe that a deep insight into the gas-dynamic processes occurring in micro-
and nanofluidic systems opens up new opportunities for the practical use of molecular
transport at the nano- and microscale. In particular, nano- and microscale technologies
make it possible to achieve a specific output that is unreachable by “macrotechnologies”
(as for microturbines and micropumps); to improve the efficiency of gas mixture separation
with the use of micro- and nanoseparators (which is of key importance for nuclear power
production); to design small-size and high-precision micro total analysis systems (or lab-
on-a-chip); to enhance the performance of microgyroscopes, microsensors, micron heat
pipes, etc.
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