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Abstract: Numerical simulations based on a high-order discontinuous Galerkin solver were per-
formed to investigate two-dimensional flapping foils at moderate Reynolds numbers, moving with
different prescribed harmonic motion laws. A Spalart–Allmaras RANS model with and without
an algebraic local transition modification was employed for the resolution of multiple kinematic
configurations, considering both moderate-frequency large-amplitude flapping and high-frequency
small-amplitude pure heaving. The propulsive performance of the airfoils with the two modelling
approaches were tested by referring to experimental and (scale-resolving) numerical data available in
the literature. The results show an increase in effectiveness in predicting loads when applying the
transition model. This is particularly true at low Strouhal numbers when, after laminar separation
at the leading edge, vorticity dynamics appears to have a strong effect on the forces exerted on the
profile. Specifically, the transition model more accurately predicts the wake topology emerging in the
flow field, which is the primary influence on thrust/drag generation.

Keywords: discontinuous Galerkin; oscillating foil; thrust efficiency; reduced frequency; NACA0012;
SD7003; algebraic transition model; Spalart–Allmaras; moderate Reynolds number

1. Introduction

Starting from the pioneering work of Knoller [1] and Betz [2], the fluid dynamics
aspects of oscillating foils have drawn the attention of researchers such as Burgers and
von Kármán [3], Lighthill [4], and many others, whose endeavours have been extensively
reported in a recent review by Wu et al. [5].

In particular, several experimental and numerical studies [6–12] have been carried
out at moderate Reynolds numbers, for which transitional effects can be relevant. In this
circumstance, the use of the standard, fully turbulent, Reynolds-averaged Navier–Stokes
equations (RANS) approach can be erratic, while scale-resolving simulations, namely large
eddy simulations (LES) and direct numerical simulations (DNS), are still prohibitively
expensive, particularly when a large-scale investigation is required. Hybrid LES-RANS
approaches [13–16] allowed the reduction in the computational cost while retaining large-
scale solution accuracy through a mesh size relaxation at solid boundaries ; despite this,
the required computational resources remain closer to a LES rather than a RANS. A viable
alternative consists of using RANS equipped with a transition model [17–19], which may
require the solution of additional partial differential equations (PDE). Among all the
possibilities, the local algebraic approach is well suited for unstructured solvers, because it
does not increase the computational effort and, at the same time, significantly improves the
prediction capabilities. For instance, when the Reynolds number is of the order of 104 or
105, employing a transition model enables capture of phenomena such as formation of a
laminar separation bubble over an airfoil and more accurate prediction of the onset of the
stall. Despite the availability of results involving transition models applied to airfoils at
moderate Reynolds number, even recently [20], the authors are not aware of studies that
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specifically consider the oscillating motion of airfoils using RANS and a local transition
algebraic model. This is the main subject of this work. Note that in the literature it is
possible to find flapping foils at moderate Reynolds number simulated solving both the
two-dimensional Navier–Stokes (Ashraf et al. [21] at Re = 20,000 and Li et al. [22] at
Re = 40,000) and the fully turbulent RANS governing equations (Young and Lay [23] at
Re = 10,000–80,000 and Wang et al. [24] at Re = 13,800), so the purpose of this article is
also to establish the limits of applicability of the latter approach.

In particular, the analysis proposed here is focused on performance evaluation concern-
ing the prediction of loads, efficiency, and flow structure emerging from the dynamics of
two-dimensional oscillating airfoils given by a Spalart–Allmaras (SA) RANS approach with
and without the contribution of a local algebraic transition model referred to as SA-BCM.
The choice of the SA model relies on its extensive use in aerodynamic applications and its
suitability to simulate turbulent flows past an airfoil, all while having a low computational
expense. Within the subject of oscillating foils, the same model has been adopted in [10]
for comparing numerical results with experimental particle image velocimetry (PIV) data.
Therein, the model performance are considered satisfactory; however, in Section 3 we
will show how the approach presented here can further increase the agreement between
simulations and experimental visualizations for moderate Reynolds numbers. As far as
the transition model is concerned, the implementation considered in this work follows the
mathematical description sketched in [25], which will be explored in more detail in the
dedicated section (Section 2.2). The appeal for algebraic models stems from the absence of
any additional transport equation for the intermittency field, which is instead modelled
through a suitable empirical correlation with local flow quantities and embedded within
the transport equation for an eddy viscosity-like variable. Its effect consists of determining
the activation of the eddy viscosity-like production term corresponding to the regions
exhibiting turbulent features. This algebraic transition approach proved to increase the
accuracy of the solution considerably over a wide range of Reynolds numbers without
significant variation in the computational cost [25–27].

Both models are implemented on top of a discontinuous Galerkin (DG) solver. This
method preserves high-order accuracy independently from the grid characteristics, and
it has been exploited here to ensure the resolution independence of the solutions through
p-refinement. Moreover, as a side result, it is shown that the transition-modified SA model
does not compromise the scheme robustness, despite the well-known stability issues due
to the implementation of RANS equations within high-order frameworks.

As far as the airfoil motion is concerned, two oscillatory configurations have been
considered: (1) a two-dimensional flapping motion, composed of a vertical translation with
a superimposed rotation around a pivotal point and (2) a two-dimensional, high-frequency
small-amplitude vertical oscillation with a constant angle of attack. These two prescribed
motions allowed testing of the models with kinematic configurations producing rather
different effects. Specifically, the flapping motion may be assimilated to the tail movement
of oscillatory swimmers, such as tuna and sharks, and it has been thoroughly investigated
as a propulsive mechanism, whereas high-frequency heaving has been proposed as a
motion strategy aimed at drag reduction and flight stability improvement of air vehicles.

To validate the derived results, enabling the capture of consistent conclusions over the
performance of the two models, suitable reference works have been used as a foundation.
Concerning the flapping motion, the work of Schouveiler, Hover and Triantafyllou [8]
has been taken as a benchmark for the evaluation of hydrodynamic forces and propulsive
efficiency. In order to be able to make comparisons with their experimental results, the
simulations were performed by changing the motion parameters in such a way to simulate
Strouhal numbers in the range 0.1 < St < 0.45 for two different values of maximum angles
of attack, i.e., αmax = 15◦, 30◦. A more detailed description of the parameters will be
outlined in the dedicated section (Section 3.1). For the second motion condition, namely
high-frequency plunging, the work of Visbal [11] and Krais et al. [12] have instead been
used as a reference. In [11], a three-dimensional LES analysis was provided for a plunging
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SD7003 airfoil, considering different values of Reynolds number and motion parameters,
together with validation of the experimental results [10]. The comparison between SA
and SA-BCM models was carried out using the previously reported configurations with a
frequency k = 3.93 at Re = 40,000 and k = 10 at Re = 60,000. A more detailed description
will be given in Section 3.2. The work of Krais et al. [12] provides additional data, once again
derived from scale-resolving simulations (ILES) employing a nodal DG solver adopting
the plunging configuration characterized by k = 3.93 and Re = 40,000 defined in [11] as a
test case.

The overall organization of the manuscript is as follows: in Section 2.1 the parametriza-
tion of the profile motion is reported. This is followed in Section 2.2 by an outline of
the high-order DG method and the implemented turbulence models. In Section 3, the
results obtained from simulating both NACA0012 (Section 3.1) and SD7003 (Section 3.2)
are provided. Finally, in Section 4, the main findings are summarized and discussed.

2. Simulation Setup
2.1. Kinematic Framework

The airfoil motion is fully defined by the following periodic kinematic functions:

θ(t) = α0 + θ0 sin(2π f t)

h(t) = h0 sin(2π f t + ψ) ,
(1)

where α0 is the mean angle of attack; h0 and θ0 are the vertical and angular displacement,
respectively; f is the frequency of oscillation; and ψ is the phase shift between the heaving
and pitching sinusoidal waves. In terms of velocity, the vertical oscillation reads as

ut
2(t) = 2π f h0 cos(2π f t + ψ) = U0 cos(2π f t + ψ) (2)

where U0 = 2π f h0 is the maximum vertical velocity associated with the oscillating motion.
Similarly, the angular pitching velocity is

ωt
3(t) = 2π f θ0 cos(2π f t) . (3)

The effective angle of attack α, according to our sign convention, is related to the other
kinematic quantities through

α(t) = θ(t) + arctan
(

ut
2(t)
U∞

)
. (4)

The maximum value assumed by α during the oscillating cycle is denoted with αmax.
An illustration of the various kinematic variables is given in Figure 1.

h(t)

α (t)

θ (t)

U∞

u2(t)t

x

y

Figure 1. Scheme of the NACA0012 airfoil.
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The amplitude-based Strouhal number of the oscillation (St) and/or the reduced
frequency (k),

St =
U0

πU∞
, k = π

cSt
2h0

, (5)

are the non-dimensional numbers used to characterize the foil motion. In particular, St
represents the ratio between the maximum heave velocity U0 and the free-stream speed
U∞, except for an additional π in the denominator. Finally, the Reynolds number is, as
usual, defined as Re = U∞c/ν, where c is the foil chord and ν is the kinematic viscosity.
Note that c and U∞ are hereafter used as reference scales of length and velocity.

In order to identify the position of the profile during its motion for the different cases
explored, the notation adopted in [10,11] is followed. According to that, the instantaneous
vertical position of the foil is expressed in terms of a parameter Φ, called the motion phase,
which expresses the vertical coordinate as a percentage of the oscillating period. In this
way, the vertical positions of interest will be denoted in the following way: Φ = 0 indicates
the maximum upward displacement, Φ = 0.25 the neutral position during downstroke,
Φ = 0.5 the maximum downward displacement, and Φ = 0.75 the neutral position
during upstroke.

2.2. Numerical Framework

The numerical simulations were performed using a DG solver (see [28–31]). The
advantage of using such a class of methods is related to the ability to provide accurate
high-order solutions on stretched, curved, and unstructured computational grids. In this
work, we consider a two-dimensional incompressible DG code, which is able to deal with a
non-inertial reference frame to account for the foil oscillations. Note that the results here
reported are not DG specific and the high-order accuracy, up to the seventh order, was only
exploited in order to reach the numerical resolution independence. The governing equations
are expressed in terms of the absolute velocity ui, a vector in the inertial frame observed
by the non-inertial frame attached to the foil (see, for example, [32,33]). Consequently,
the inter-frame velocity components are Ui = ut

i(t) + εijkωt
j(t)(xk − x0,k), where x0,k is the

centre of rotation. Note that, for the sake of convenience, in the Ui identity we adopted
the same ut

i(t) notation already used in Equation (2); however, here the heaving velocity
should be interpreted as defined in the rotating frame and not in the inertial one. The
resulting PDE system reads as

∂ui
∂xi

= 0 ,

∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
(ν + νt)

∂ui
∂xj

)
− εijkωt

j uk + Uj
∂ui
∂xj

,

∂ν̃

∂t
+

∂ν̃uj

∂xj
= γBCCb1S̃ν̃ +

Cb2
σ

∂ν̃

∂xj

∂ν̃

∂xj
− Cw1 fw

(
ν̃

d

)2
+

1
σ

∂

∂xj

(
(ν + νt)

∂ν̃

∂xj

)
+ Uj

∂ν̃

∂xj
,

(6)

where p is the pressure divided by the density, νt is the kinematic eddy viscosity, d is the
minimum distance from the wall, and εijk is the Levi-Civita tensor. Note that in Equation (6),
taking advantage of the identity ∂Ui/∂xi = 0 and deviating from the process that is usually
performed in the literature, the divergence of the convective fluxes does not contain the
relative velocity, and all the non-inertial terms are moved to the right-hand side.

Following the standard RANS approach and Boussinesq’s hypothesis, the flow-
governing equations are combined with a closure model for the turbulent Reynolds stresses.
More precisely, the Spalart–Allmaras one-equation model has been used, with the eddy
viscosity-like variable identified by ν̃. The eddy viscosity is computed according to the
equation νt = fv1ν̃, where fv1 = χ3/(χ3 + C3

v1) and χ = ν̃/ν.
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In order to fully define the SA model, the following functions should be also specified:

S̃ = S +
ν̃

k2d2 , r =
ν̃

S̃k2d2
, g = r + cw2

(
r6 − r

)
, fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, (7)

where k = 0.41 is the Von Kármán constant and S = (2ΩijΩij)
1/2 is the magnitude of the

vorticity tensor, Ωij = 1/2(∂ui/∂xj − ∂uj/∂xi). As performed in several SA implementa-
tions, the trip term is ignored in Equation (6). Thus, the base model is fully turbulent.

For the sake of compactness, the model constants, such as Cb1, Cb2, etc., will not
be given in this paper. Interested readers can refer to the original work of Spalart and
Allmaras [34]. In the following, the algebraic transition model proposed in [26] and more
recently modified in [25,27] will be introduced. The latter version solves an issue regarding
the Galilean invariance of the prior version, which is obviously crucial for the type of
application handled here.

For the SA standard, fully turbulent model, the intermittency function γBC is set to 1
in Equation (6), and for the transition model, it is evaluated as

γBC = 1− e−
√

T1−
√

T2 , T1 = max
(

Reθ − Reθc
χ1Reθc

, 0
)

, T2 = max
(

νt

χ2ν
, 0
)

, (8)

where χ1,2 = 0.002, 50 are calibration constants of the model. Thanks to the observation
(see [35]) that the momentum thickness Reynolds number, Reθ , is proportional to the
vorticity Reynolds number, Rev = d2/νS, the former is evaluated as Reθ = Rev/2.193.
Finally, the critical momentum thickness Reynolds number, Reθc, is computed according to
the empirical correlation Reθc = 803.73(Tu∞ + 0.6067)−1.027. Note that the value of Tu∞ is
not assigned to the inflow/far-field boundary conditions, because the SA model does not
consider the turbulent kinetic energy. As explained in [26], the term T1 establishes the onset
of transition, whereas the term T2 propagates high levels of the intermittency function γBC
within the boundary layer.

Moreover, we decided to complement the model with the recent low Reynolds correc-
tion of Spalart and Garbaruk [34], which seems very well suited to deal with transitional
flows. Following the latter approach, the model constant cw2 = 0.3 in Equation (7) is
changed to the function

cw2,LRe = cw4 +
cw5

(χ/40 + 1)2 , (9)

with cw4 = 0.21 and cw5 = 1.5.
The DG discretization can be obtained by expressing the system of Equation (6) in

variational form, decomposing the domain by elements, and defining an appropriate
polynomial space of order q within each element. In this work, the convective numerical
fluxes that are used to couple the solution at the interior faces of the mesh are computed
through the artificial compressibility flux method of [36]. On the other hand, the second
form of the Bassi and Rebay scheme (see [28]) has been used for the viscous terms. The DG
discretized system can be written in the following compact form

M0 dW
dt

= R(W, t), (10)

where W is the global vector of the degrees of freedom (DOF), M0 is a modified mass matrix
with null entries corresponding to the pressure DOF, and R is the vector of residuals. This
system of differential algebraic non-linear equations is integrated in time through a linearly
implicit Rosenbrock-type Runge–Kutta scheme named ROS3P by [37]. The advantage of
this class of schemes is that the non-linear solution process is completely avoided and the
Jacobian matrix ∂R/∂W has to be computed only once for each time step. The resulting
time-discretized equations can be stated as
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Wn+1 = Wn +
s

∑
j=1

mjYj ,

(
M0

γii∆t
− ∂R

∂W
(Wn, tn)

)
Yi = R

(
Wn +

i−1

∑
j=1

aijYj, tn + αi∆t

)
+

+ M0
i−1

∑
j=1

cij

∆t
Yj + γi∆t

∂R
∂t

(Wn, tn) , i = 1, . . . , s

(11)

where the superscript n refers to the marching time step, s = 3 is the number of stages
and mj, γi, γii, aij, αi are the coefficients of the scheme, which can be found in [37]. The last
term of Equation (11) considers that the system is non-autonomous. In fact, due to the non-
inertial frame, the absolute velocity vector ui changes at the non-slip, wall, and free-stream
boundary conditions to follow the airfoil motion. Moreover, in Equation (6), Uj and ωt

j are
not constant in time. At the wall, ν̃ is set to zero, and the free-stream value depends on the
choice of the model. Fully turbulent standard computations are performed with ν̃∞ = 3ν,
and for the transitional simulations this value is set to 0.02ν. These data are consistent
with the recommendations found in the current literature (see, for example, [27,38]). The
requirement to use smaller ν̃∞ boundary data highlights the need of a strategy to prevent
negative (spurious and non-physical) values of ν̃, which may result in the blow up of the
simulations. This stability issue is exacerbated when a high-order scheme is adopted. Our
approach is described in [30], where the details of our SA implementation are given.

The solution of the linear systems arising from Equation (11) were handled using a
flexible generalized minimal residual (GMRES) solver preconditioned by a highly parallel
efficient p-multigrid algorithm, described by [39].

3. Results

In the following section, we present the results obtained for two test cases that in-
clude a symmetric (NACA0012) and an asymmetric (SD7003) airfoil. The numerical grids,
generated using the open-source software GMSH [40], are unstructured, as illustrated in
Figure 2. In both cases, the outer boundary is a circle with a radius equal to 25c. The
boundary layer region is discretized using structured-like quadrangular elements suitably
curved to accurately represent the foil’s curvature. To this end, a piece-wise third-order
polynomial approximation of the faces of the elements is employed. The height of the
first cell, expressed in wall friction units, is at most of the order of y+ = 1 for all the
computations here reported. The NACA0012 grid was significantly refined behind the
airfoil because we paid particular attention (see the following section) to the wake topology.
For this reason, the NACA0012 mesh consists of more elements: 7416 instead of 2875. We
did not perform a classical grid refinement study, but rather we verified the numerical
resolution by raising the polynomial order q of the solution. See Sections 3.1 and 3.2.2
for examples of the solution convergence analysis. If not otherwise stated, the results
here reported are obtained with q = 6, ensuring a seventh-order space accuracy for the
velocity components and the eddy viscosity and sixth-order accuracy for pressure. The
time step size was also carefully verified, and in this work it ranges between 10−3c/U∞
and 10−2c/U∞. In regard to the choice of the value of Tu∞ in the transition model, we did
not find any clear statement in the references available for NACA0012 (e.g., [8]), thus we
arbitrarily decided to use a small value such as 0.2%. For the SD7003 computations, instead,
we used Tu∞ = 0.1%, in agreement with the experimental data reported in [10]. However,
multiple tests showed that the results are quite insensitive to small changes of Tu∞.



Fluids 2023, 8, 23 7 of 23

The forces Fi acting on the airfoil expressed in the inertial frame and the momentum
M3 are non-dimensionalized using the chord c and the free-stream velocity U∞, obtaining
the following drag, lift, and moment coefficients:

CD =
F1

1/2 ρ S U2
∞

, CL =
F2

1/2 ρ S U2
∞

, CM =
M3

1/2ρ cS U2
∞

, (12)

where ρ is the fluid density and S is the reference area, which is the chord c times a unit’s
span-wise length.

(a) (b)

Figure 2. Mesh of NACA0012 (a) and SD7003 (b).

3.1. NACA0012

The first analysis focused on a sinusoidal pitching/plunging, two-dimensional NACA0012
airfoil at Re = 40,000. The motion laws are given by Equation (1), with α0 = 0. The heav-
ing amplitude was fixed at h0 = 0.75c. Meanwhile, the axis of rotation was positioned at
a distance of 1/3 chords from the leading edge. The heaving signal led the pitching har-
monic by a quarter period, so ψ = 90◦, which is known to be the optimal value in terms of
efficiency ([7–9]).

Analysis was conducted through the comparison of propulsive performance and flow
structure for several kinematic configurations. Specifically, we studied propulsive attributes
at αmax = 15◦ and αmax = 30◦ while ranging St from 0.1 to 0.45 with an interval of 0.05. On
the other hand, flow fields were inspected for cases at αmax = 20◦ and αmax = 30◦, both
with St = 0.45. The polynomial degree was adapted to the value of the frequency, with a
minimum of q = 3 for low St and a maximum of q = 6 for high St, because as the Strouhal
number increases, the vortical structures become smaller, requiring a greater spatial res-
olution. Results were then compared with the experiments of Schouveiler et al. [8] for
validation, although the experimental data available in the literature appear to be scattered.

The series of surveys, aiming to perform a direct comparison to the models, are fo-
cused on the examination of propulsive performance sensitivity to St, as heaving/pitching
amplitude and frequency are the main factors influencing the wake topology [41–44]. The
shape of the wake is in fact directly correlated with the thrust that the airfoil is able to
create, as explained in [3]. This means that simulating a broad spectrum of combinations of
θ0 and f constitutes a solid benchmark to test the goodness of the numerical models.

Propulsive performance was assessed in terms of the thrust coefficient CT = −CD and
propulsive efficiency ηp, defined as

ηp =
CT

CP
. (13)
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The terms CT and CP are, respectively, the mean thrust and mean power coefficient,
computed as

CT =
1

ncT

∫ ncT

0
CT dt , CP = − 1

ncT

∫ ncT

0

[
CL

ut
2

U∞
+ CM

cωt
3

U∞

]
dt , (14)

where ut
2 and ωt

3 are defined in Equations (2) and (3), respectively; nc indicates the number
of cycles considered for the average; and T represents the motion period.

Note that the definition of Equation (13) admits negative values of ηp when the
flapping foil experiences drag, whereas it is positive when thrust is generated.

The results are collected in Figure 3.

(a) (b)

Figure 3. Propulsive efficiency and mean thrust coefficient as a function of the Strouhal number for
αmax = 15◦ (a) and αmax = 30◦ (b). Experimental data digitized from [8].

At a high angle of attack, both models seem to perform in a quite similar fashion,
retracing well the experimental data points at medium/high frequencies, especially if we
consider ηp. As f decreases, the gap between simulations and experiments starts to widen.
Indeed, at St = 0.1 we have that ηpexp ≈ −40.7%. Instead, the transition and fully turbulent
models predict efficiencies of −68.3% and −63.0%, respectively. Nonetheless, throughout
the frequency spectrum analysed, SA always provides a moderately higher thrust than
SA-BCM, which translates into a greater efficiency. This is probably attributed to the more
diffusive nature of the fully turbulent model, which postpones separation and contributes
positively to thrust generation. At a small angle of attack, the situation changes drastically,
as the transition and fully turbulent models largely differ at low frequencies. For example,
at St = 0.1, SA estimates a mean thrust coefficient of 0.100, whereas SA-BCM provides a
value of CT = 0.056, which is very close to the experimental value of 0.061. In addition to
this, the efficiency of SA is characterized by ηp = 56.2%, whereas SA-BCM shows a value
of ηp = 26.9%, much closer to the value of 37.1 obtained from the experiments. This seems
to imply a better performance of the transition model, as it is also able to replicate the drop
of the ηp curve at small values of f , unlike the fully turbulent model.

In order to gain insight on this diverse behaviour at a small angle of attack, it is useful
to exploit the phase space (CL, CD) representation composed of the instantaneous lift and
drag coefficient curves, as proposed in [45], coupled with a visualization of the flow fields.

Figure 4 depicts (CL, CD) phase maps at the extremes of our frequency range for
the case αmax = 15◦. As expected, when St = 0.1, the two models trace a completely
different orbit. Instead, when St = 0.45, the curves are more or less overlapped. At high
frequencies, the transition model moves between larger negative and positive values of
the lift coefficient than the fully turbulent model and it is capable of revealing ‘richer’
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dynamics as the airfoils generate resistance (CD > 0), but the overall paths are coincident.
Furthermore, SA-BCM does not hold a perfectly periodic trajectory due to the unsystematic
activation/deactivation of γBC within multiple periods. At small frequencies, the models
follow their own trajectory, with SA-BCM featuring an imperfectly symmetric curve with
respect to CL = 0 and a much longer portion in drag conditions (CD > 0). The reason
why this happens can be sensed by examination of the vorticity fields in Figure 5. It is
evident how the transition model captures flow separation. Meanwhile, the classic Spalart–
Allmaras model only causes a thickening of the boundary layer. At high frequencies, where
just a trailing-edge vortex (TEV) detaches from the profile, this approximation is sufficient
for replication of the wake pattern. At low frequencies, separation is anticipated, and there
is the creation of a LEV that travels along the suction surface, eventually interacting with
the TEV. The lack of this interaction when using SA causes little to no separation and leads
to a streamlined wake. This supports the thesis of Guglielmini et al. [46], which states that
in order to accurately evaluate performances of oscillating foils, flow separation must be
modelled at the leading and trailing edges. Animations showing the physical mechanisms
involved in the arise of flow instabilities are provided as Supplementary Material, although
we will not focus on those aspects as it is beyond the purpose of this work.

(a) (b)

Figure 4. (CL, CD) phase diagram for αmax = 15◦ using transition and fully turbulent model with
St = 0.1 (a) and St = 0.45 (b). The curves cover a total of two time periods; solid circles (•) identify
the starting point of the oscillating cycle and empty circles (◦) indicate the point where vorticity fields
in Figure 5 are depicted.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 5. Contour plot of the instantaneous vorticity field for αmax = 15◦ using the transition and
fully turbulent models. The snapshots are taken at Φ ≈ 0.183 for St = 0.1 and at Φ ≈ 0.385 for
St = 0.45. (a) St = 0.1, SA-BCM; (b) detail I; (c) St = 0.1, SA; (d) detail II; (e) St = 0.45, SA-BCM;
(f) detail III; (g) St = 0.45, SA; (h) detail IV.

The inability of the fully turbulent model to capture flow detachment is confirmed by
Figure 6. At αmax = 20◦ and St = 0.45, the transition model displays swirling structures
forming at the leading edge, as portrayed in Figure 6f, instead in the fully turbulent model
the flow remains attached (see Figure 6h). Despite this clear contrast, the fast dynamics
appears to uniform the flow field at the trailing edge, yielding a good similarity in the wake
topology, which also finds a good agreement with the visual recordings in [8]. This seems
to imply that, for αmax ≤ 20◦, both models perform well if St is high enough, but as soon
as St decreases, SA-BCM becomes much more accurate than SA. That said, Figure 6e,g
still exhibit some minor differences. In particular, adopting the designation introduced by
Williamson and Roshko [41], we have that SA-BCM draws a 2P + 2S wake, with a pair of
corotating vortices (denoted by the letter ‘P’) plus a single vortex (denoted by the letter
‘S’) formed during each half cycle, whereas the wake resulting from SA falls into the 2P
category, because the single vortex becomes embedded into the tail of the paired eddies.
The only configuration where SA also reveals a separated flow upstream the trailing edge is
at a high angle of attack and high frequency (αmax = 30◦, St = 0.45), due to the fact that the
turbulence level is so high that even a standard RANS model is suitable. Indeed, SA-BCM
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and SA both induce a 2P + 2S wake, as shown in Figure 6a,c, which once again manifest a
good resemblance to the visualizations obtained experimentally by Schouveiler et al. [8].
We point out that each wake in Figure 6 evolves in a 2S reverse von Kármán vortex street
after ≈ 10c for αmax = 20◦ and ≈ 7c for αmax = 30◦; hence, they all generate thrust.

(i) (j)

(k) (l)

(m) (n)

(o) (p) Detail IV

Figure 6. Contour plot of the instantaneous vorticity field using transition and fully turbulent model
for St = 0.45. All snapshots are taken at Φ = 0.25. (a) αmax = 30◦, SA-BCM; (b) Detail I; (c) αmax = 30◦,
SA; (d) Detail II; (e) αmax = 20◦, SA-BCM; (f) Detail III; (g) αmax = 20◦, SA; (h) Detail IV.

For completeness, it is worth finally providing an example of the convergence study of
the solutions here reported. Space and time resolution-independence have been guaranteed
through a polynomial refinement of the space discretization q and the choice of the time
step size ∆t. It should be noted that by raising the degree of the polynomial approxima-
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tion, the order of accuracy of the solution increases, although this also corresponds to a
significant growth in the number of degrees of freedom. For instance, moving from q = 3
to q = 6, the total number of variables goes from 296,640 to 830,592. An increase by a
factor almost equal to 3 in the dimension of the numerical problem may be observed as
a result of such a raise in the polynomial-order approximation. The solutions’ accuracy
was verified by examining the behaviour of both the average performance coefficients and
the (CL, CD) phase diagrams. For the sake of conciseness, in the following we only report
the convergence results referring to the particular case with αmax = 20◦ and St = 0.45. Its
stringent requirement for high spatial and temporal resolutions due to the large St makes
it indeed a most challenging scenario. Considering the SA-BCM model, which presents
relatively stricter accuracy constraints compared to the standard SA due to its algebraic
modification, the average drag coefficient and efficiency have been observed to remain
substantially unchanged throughout the performed space–time refinement: moving from
q = 3 and ∆t = 10−2c/U∞ up to q = 6 and ∆t = 2.5× 10−3c/U∞, we have that CD ranges
between −1.016 and −1.017, whereas ηp spans between = 0.548 and 0.551. In Figure 7,
the (CL, CD) phase diagrams for different polynomial approximations are reported over
one cycle. It is easy to notice that for q ≥ 3 the results are almost indistinguishable. When
only adopting SA-BCM, very small differences arise; however, as previously mentioned,
with this model an imperfectly periodic behaviour of the solution is often observed, and
small differences can be seen even between consecutive cycles performed at the same
polynomial order, as will be further shown in Section 3.2.2. Note that another detailed
space convergence study is also presented for the SD7003 profile in Section 3.2.2.

(a) (b)

Figure 7. Single−period (CL, CD) phase diagram at increasing polynomial degree q for the case
with αmax = 20◦ and St = 0.45, using transition (a) and fully turbulent model (b). (i) q = 3,
∆t = 10−2c/U∞; (ii) q = 4, ∆t = 5 · 10−3c/U∞; (iii) q = 5, ∆t = 2.5 · 10−3c/U∞; (iv) q = 6,
∆t = 2.5 · 10−3c/U∞. Solid circles (•) identify the starting point of the oscillating cycle, empty circles
(◦) indicate the point where vorticity fields in Figure 6e–h are depicted.

3.2. SD7003

For the SD7003 airfoil, the turbulence models were investigated by considering a high-
frequency plunging at a constant angle of attack. Two different kinematic parametrizations
have been explored; in both cases, the pitch angle of the profile was kept constant by
switching off its time dependence in Equation (1), placing θ0 = 0.

3.2.1. Case 1

In this configuration, the airfoil was set to describe a plunging motion with reduced
frequency k = 3.93, amplitude h0 = 0.05c, and a constant angle of attack α0 = 4◦ at
Re = 40,000. The corresponding Strouhal number can be easily derived by inserting the
values of k and h0 in Equation (5), giving St = 0.125.
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During the downward motion, the effective angle of attack increases as a consequence
of the vertical velocity of the profile. In particular, substituting ut

2 into Equation (4) leads
to α > 20◦. This high value determines a boundary layer separation at the leading edge
resulting in the formation of several LEVs trailing downstream.

Even though an accurate capture of the LEV dynamics, and thus an overall accurate
flow description, is thought to be fundamental for precise computation of the forces exerted
on the profile, the simulated configuration revealed to be solely dominated by the dynamics
of the profile motion rather than the flow structure itself. Such an observation seems to be
justified by the small difference in the forces predicted by the two models, even though
SA-BCM allowed the derivation of a much more accurate representation of the relevant
flow features with respect to the standard SA, especially when compared with the three-
dimensional results in [11,12]. To demonstrate this, in Table 1 the thrust coefficients derived
from the two models are reported as averages realized over five motion periods together
with the aforementioned experimental and numerical reference values. It is possible to
note that the models employed in the two-dimensional computations present no significant
difference in terms of mean drag coefficient, placing both at a similar distance from the
three-dimensional results.

Table 1. Comparison of the mean drag coefficient CD between the different models, together with
experimental and numerical reference data.

SA SA-BCM Visbal [11] Krais et al. [12]

−0.072 −0.073 −0.083 −0.082

This is further supported by examining the instantaneous behaviour of the hydrody-
namic forces given in Figure 8, where the variations occurring in the phase plane (CL, CD)
are jointly reported with the associated time dynamics over two periods. In these figures, it
is possible to note that the curves related to the two models overlap almost entirely, aside
from a minor offset in the trajectories drawn in the phase plane. Moreover, in Figure 8a,
there is also a fairly good agreement between the CD signal of both models and the scale-
resolving data from [11]. This suggests a substantial model independence in terms of
instantaneous and mean force computations.

On the other hand, significant differences can be found by examining the details of the
vorticity dynamics at the solid surface and the associated vortex development as a result of
boundary-layer instabilities. From the instantaneous contours of the span-wise vorticity
reported in Figures 9 and 10, it can be noted that while the results of the two models in the
aft portion of the profile are fairly congruent, a quite significant deviation is observed at
the fore region close to the leading edge.

(a) (b)

Figure 8. (a) Time behaviour of drag and lift coefficients for SA, SA−BCM, and scale−resolving 3D
model obtained via image digitization of data in [11]. (b) Phase plane representation of drag and lift
coefficients for SA and SA−BCM model.
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Considering the transition model computations, it is possible to see that when the
profile reaches the top position Φ = 0, (Figure 9a,b), two vortices develop over the lower
surface of the profile due to boundary-layer separation, discernible by the regions of
strongly negative vorticity generated by the wall-enforced no-slip condition. On the upper
surface, the boundary layer appears to be fully attached on a relatively large zone past
the leading edge, but a strongly diffused vorticity structure, a remnant of the previous
cycle, travels downstream. Three-dimensional reference data in [11] clearly highlight the
span-wise homogeneous character of the laminar boundary-layer instabilities at the onset
corresponding to the front part of the airfoil. As a consequence, this region exhibits a local
physical behaviour that is purely two-dimensional and is fully captured by the transition
model. Conversely, the standard SA model at the same position presents a much smoother
vorticity distribution over the profile surface (Figure 10a,b). Even though separation at the
lower surface is still visible in the small layer of negative vorticity produced at the wall,
the enhanced diffusivity here induces a coalescence of the two vortices into a single vortex.
Furthermore, a single core of vorticity is again visible on the upper surface, which seems,
however, to remain more closely attached to the solid surface.

As the position Φ = 0.25 is reached, the profile assumes its maximum downward
velocity. By examination of the vorticity contour of the SA-BCM model in Figure 9c,d, it is
possible to note a separation with the subsequent incipient roll-up of the boundary layer in
the region close to the leading edge at the upper surface, resulting in a thinning of the layer
in the immediate vicinity. The two formed vortices, upon their interaction with the solid
surface, generate two visible regions of positive-sign vorticity arising from the boundary.
This region is found to exhibit striking similarities with the field predicted by the three-
dimensional simulation (see [11]), once again justified by the two-dimensional character of
the instabilities at their onset. On the contrary, by examination of Figure 10c,d referring to
the SA model, it is evident that all the aforementioned details of boundary-layer instability
are not adequately captured due to the absence of any modifications accounting for the
transition. In particular, the characteristic ripples of the boundary layer edge are completely
absent, implying that the local flow acceleration toward the solid surfaces resulting from
boundary roll-up is completely sheared out, and the flow almost immediately reattaches at
the boundary without any flow organization in a coherent structure. Similar observations
are also true for the dynamics of the lower surface boundary layer; although the SA-
BCM model predicts the presence of three clockwise-rotating structures, the use of a fully
turbulent SA closure does not seem to be able to capture any vorticity ejection into the fluid
domain. The higher accuracy resulting from the application of a transition model is made
evident upon inspection of the three-dimensional results in [11,12]. The early transition
state at the upper surface, with the presence of span-wise homogeneous vortices, seems to
be exactly captured by the SA-BCM model. In contrast, the scale-resolving results show that
the lower vortex trailing downstream exhibits a significant non-homogeneous spanwise
character, suggesting a less accurate description given by the two-dimensional simulation
due to the absence of three-dimensional mechanisms of vorticity redistribution.

At Φ = 0.5, the profile reached the maximum downward displacement. Considering
again the referenced three-dimensional results [11,12], the presence of two distinct turbulent
regions over the upper surface of the profile separated by a laminar, spanwise homogeneous
zone can be seen. By examination of Figure 9e, it can be seen that, corresponding to those
regions, the SA-BCM model predicts the presence of two large, highly diffused vorticity
regions. The vortex close to the leading edge (see Figure 9f), in particular, arises as a
result of the diffusion-induced coalescence of the previously formed vortex into a single
structure, attributed to the activation of the source term in the model. Behind this single
core region, the boundary layer reattaches laminarly—with the intermittency function
(not displayed for this phase) locally assuming a value of zero—before separating again.
This second separated region, as can be seen by the presence of the positive sign of the
vorticity below the rippled boundary layer edge, gives rise to three spanwise-homogeneous
distinct vortices that have also been observed in [11,12]. By examining the corresponding
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field reported by the SA model in Figure 10e,f, the upper surface single vortex is again
observable. However, in this case, it emerges as a single structure after boundary-layer
separation at the leading edge. Further downstream to such structure, the boundary layer
reattaches and then simply increases its thickness along the downstream direction; no
significant instability phenomena nor further separation region can be appreciated in the
boundary layer by adopting the SA model.

Finally, at Φ = 0.75 the profile reaches the maximum velocity in its upstroke motion.
The three-dimensional results [11,12] show the formation of complex vorticity organization
over a large portion of the upper surface as a consequence of interactions between the profile
and the previously formed vortex structures. In the SA-BCM model, such interactions seem
to be captured in a more adequate manner with respect to the SA model, even though not
exactly due to the two-dimensional nature of the simulation. By examination of Figure 9g,h,
it is possible to observe the single leading-edge vortex being pushed towards the solid
surface by the vertical, motion-induced velocity as it becomes advected downstream. As a
consequence of this wall–vortex interaction, a region of positive-sign vorticity is formed
and subsequently ejected into the fluid domain. The two-dimensional instantaneous
vorticity contours derived via implementation of SA-BCM model appear to be in fairly
good agreement with the planar vorticity distribution reported in [11,12]. On the contrary,
in the SA case, Figure 10g,h, the situation is significantly different: the vorticity distribution
is much smoother with respect to the three-dimensional findings. Moreover, the leading-
edge vortex appears to be much more heavily diffused and stretched in the streamwise
direction with only a small, positive vorticity region confined close to the solid wall.
Further downstream, no visible sign of boundary-layer instability can be identified over
the upper surface. The overall effect of the upward motion in the SA case is a compression
of the boundary layer towards its bounding solid wall without generation of any clearly
detectable instability.

To further demonstrate the improvement brought on by the application of a transition
model over the common RANS approach, another detail of vortex generation due to leading-
edge separation corresponding to the position Φ = 0.35 is reported in Figure 11, and com-
parison is drawn again from the spanwise vorticity distribution provided in [11,12] at the
same position. Once again, striking similarities can be seen between the two-dimensional
SA-BCM results and the fields computed in the three-dimensional simulations reported
in the previously mentioned works. In more detail, at this stage of the motion the profile
is decelerating towards its maximum downward displacement position; three coherent,
clockwise-rotating structures are clearly detectable close to the leading edge, separated
by regions of positive-valued vorticity. The last of these formed at previous stages of
motion become further stretched and are transported away from the solid boundary upon
interaction with the upward-moving fluid of the negative vorticity cores. The interactions
between these counter-clockwise-rotating regions then trigger instability mechanisms in-
volving the spanwise direction, as clearly highlighted in [11], inducing a transition to a
fully turbulent regime characterized by the collapse of the generated structures into smaller
scales. Obviously, such mechanisms cannot be captured by two-dimensional simulations;
however, the implementation of a transition model enables description with a sufficient
degree of accuracy of the onset and the initial evolution of the boundary-layer spanwise
instabilities that eventually evolve into the turbulent structures that are resolved in the
three-dimensional problems.

Figure 11b provides the instantaneous value of the intermittency factor γBC modulat-
ing the activation of the eddy viscosity-like production. As the parameter reaches unitary
value according to the local flow features, it induces a local increase in diffusivity exactly
corresponding to the regions that also appear to develop a fully turbulent behaviour based
on the three-dimensional results. In more detail, the model activates, triggering a local
enhancement of momentum diffusivity corresponding to the region occupied by the three
clockwise-rotating structures close to the leading edge and both on the lower and upper
surface extending from the trailing edge up to half-profile length. It could be speculated
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that the localized increase in diffusivity in the fore region determines the coalescence of
the three structures therein present, in turn determining the emergence of the single vortex
core observed in Figure 9f.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. SA−BCM model. Contour of instantaneous spanwise vorticity. From top to bottom,
the vertical positions are presented in the sequence: (a,b) Φ = 0; (c,d) Φ = 0.25; (e,f) Φ = 0.5;
(g,h) Φ = 0.75. The right column reports the details of the instability developing at leading edge.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. SA model. Contour of instantaneous spanwise vorticity. From top to bottom, the vertical
positions are presented in the sequence: (a,b) Φ = 0; (c,d) Φ = 0.25; (e,f) Φ = 0.5; (g,h) Φ = 0.75. The
right column reports the details of the instability developing at leading edge.
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(a) (b)

Figure 11. SA−BCM model. Vertical position Φ = 0.35. Contour of instantaneous spanwise
vorticity (a) and intermittency function γBC (b).

The implementation of the transition SA-BCM model for this case of the plunging
airfoil at a moderate Reynolds number is found to provide an overall improved flow
structure prediction when compared to the three-dimensional results with respect to the
more commonly used Spalart–Allmaras RANS approach. It should be noted that this comes
without any variation in terms of the magnitude of neither the mean nor instantaneous
force computations.

3.2.2. Case 2

The second explored case for the asymmetric SD7003 profile has been proposed as a
mechanism for stall suppression based on high-frequency small-amplitude oscillations. The
mean angle of attack was increased to α0 = 14◦, the Reynolds number to Re = 60,000, and
the reduced frequency assumed a value of k = 10. The vertical amplitude of the oscillations
has been set to a value equal to 0.5% of the chord length , i.e., h0 = 0.005c. Analogously to
the previous case, the corresponding Strouhal number may be derived upon substitution
of the above parameters into Equation (5), resulting in St = 0.03.

For this configuration, the two models have been firstly tested by considering sta-
tionary simulations in a static stall condition, fixing the profile at the constant angle of
attack reported above. Table 2 collects the values of CD resulting from different polynomial
approximations to provide an example, relative to the steady case, of the space convergence
study. The presence of a plateau in the drag coefficient value suggests that an independence
of the solution with respect to the adopted space discretization is achieved.

Table 2. Steady case. Space convergence shown by means of the trend of the drag coefficient CD at
increasing polynomial degree q.

q SA SA-BCM

1 0.210 0.215
2 0.196 0.204
3 0.194 0.204
4 0.194 0.205
5 0.194 0.205
6 0.194 0.205

Moving to the steady case results, no noticeable difference could be appreciated
between the two models, neither in terms of flow structures nor from the viewpoint of
mean drag coefficient. Such a situation is depicted in Figure 12: due to the large separated
region, the intermittency function of the SA-BCM model is active over a major portion of
the domain such that both cases adopt the same eddy diffusivity equation over a critically
large region, providing a justification for the essentially overlapping results.
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(a) (b)

Figure 12. Stationary case. Contour of streamwise velocity u1. SA−BCM model (a) and SA model (b).

As far as the time-dependent analysis is concerned, the motion prescribed according
to the parametrization given above has been observed to exhibit a significant reduction
in the average dimension of the separated region with a parallel diminishing of the drag
coefficient up to 40% in three-dimensional, scale-resolving simulations [11].

Figure 13 reports the mean streamwise velocity field of the two-dimensional case for
both the SA and the SA-BCM models. The SA-BCM (Figure 13a) shows a significantly
larger reduction in the size of the recirculation region behind the profile when compared
with the corresponding effect given by the SA model in Figure 13b. Indeed, the local
flow reattachment is a result of the interactions between the stall vortex detaching from
the leading edge and the moving surface, so an adequate resolution of such structures
appears to be fundamental for capture of an effective stall reduction. When adopting a fully
turbulent SA model, instabilities are immediately sheared out by the turbulent stresses
so that the mean flow strongly accelerates past the leading edge as a result, exhibiting a
neat separation.

(a) (b)

Figure 13. Time−dependent case. Contour of the mean streamwise velocity u1. SA−BCM model (a)
and SA model (b).

Conversely to the case previously explored in Section 3.2.1, an adequate capture of
stall reduction phenomena seems to be intimately dependent upon an accurate resolution
of the flow structures emerging from leading-edge separation, which is in turn better
guaranteed by the application of a transition modification rather than a standard, globally
diffusive RANS.
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By examining the behaviour of the hydrodynamic forces over multiple cycles in the
(CL, CD) plane (see Figure 14), it is possible to note that whilst the SA curve exhibits a
substantial periodicity, the orbit drawn by the transition model moves within a bounded
area in the phase plane.

(a) (b)

Figure 14. Time−dependent case. Instantaneous phase space representation of hydrodynamic forces
over multiple motion cycles (a) and relative enlargement (b).

In particular, the non-periodic SA-BCM solution is characterized by a low-frequency
variation in the single-period average drag coefficient between two finite values, both
of which are reported in Table 3. Furthermore, it is worth noting that the two CD limits
provided by SA-BCM are significantly smaller than the value predicted by SA and is closer
to the three-dimensional reference data in [11].

Table 3. Comparison of CD between the different models and experiments for the steady (first row)
and high-frequency plunge (second row) cases. The values reported for SA−BCM in the plunging
configuration are the minimum and maximum value of the single-period average drag coefficient.

Case SA SA-BCM Visbal [11]

k = 0, h0/c = 0 0.193 0.205 0.225
k = 10, h0/c = 0.005 0.158 0.133–0.148 0.133

4. Conclusions

In the present work, two-dimensional high-order DG methods have been applied to
the problem of oscillating airfoils at moderate Reynolds numbers, adopting both a standard
SA-RANS approach and its algebra-based, transition modification SA-BCM as closure
models. Two different profiles, namely NACA0012 and SD7003, have been used under
different Strouhal regime and motion conditions to explore the relevant differences between
the two models in terms of flow structure and force prediction capabilities.

As far as NACA0012 is concerned, for which a composed flapping motion was consid-
ered, the transition model seemed to behave adequately in the entire range of kinematic
configurations explored. Moreover, at a low Strouhal number, an overall improved agree-
ment with the experimental results has been observed upon the application of SA-BCM.
The latter, in particular, proved to be able to capture flow separation more accurately on the
surface of the airfoil for low-frequency oscillations. In contrast, the SA succeeded in this task
only when separation was very intense, i.e., for high angles of attack and/or fast dynamics.
Similar considerations can be made for the SD7003 profile. The high-frequency plunging
configurations showed, upon confrontation with the scale-resolving studies [11,12], that the
embedding of a transition model into the standard SA equations guarantees a significant
increase in the accuracy of the flow field close to the solid boundary. In particular, at
k = 10 the reattachment of the mean flow was captured only by the SA-BCM model, whose
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prediction of the mean drag was significantly closer to the three-dimensional references
with respect to the standard SA.

In conclusion, the distinct transitional aspects of the flow induced by oscillating airfoils
at moderate Reynolds numbers, featured by laminar separation followed by turbulent
reattachment, make them suitable candidates to test transition modification of standard
RANS models. The embedding of an intermittency function γBC locally modulating the
magnitude of the production term within the closure eddy viscosity-like equation allows
for an exact resolution of the spanwise-homogeneous region at the leading edge during the
early transition state. This, in turn, enables more accurate assessment of the dynamics of
the coherent structures arising from such instabilities in comparison to the standard SA. For
motion configurations characterized by very low Strouhal numbers, where the interactions
of the LEV with the TEV are crucial for correct evaluation of the hydrodynamic forces,
the application of the SA-BCM provided results more in line with the experimental data.
Contrarily, model performances were found to be almost identical when the dynamics were
characterized by combinations of high frequency and large amplitude, where an abrupt
separation of the boundary layer occurs. In such cases, γBC reaches the unit value in a
considerably large zone, so SA-BCM and SA basically solve an identical set of equations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fluids8010023/s1, Video S1: Time evolution of the vorticity field
in Figure 5a. Video S2: Time evolution of the vorticity field in Figure 5b. Video S3: Time evolution of
the vorticity field in Figure 5c. Video S4: Time evolution of the vorticity field in Figure 5d. Video S5:
Time evolution of the vorticity field in Figure 5e. Video S6: Time evolution of the vorticity field in
Figure 5f. Video S7: Time evolution of the vorticity field in Figure 5g. Video S8: Time evolution of
the vorticity field in Figure 5h. Video S9: Time evolution of the vorticity field for Case 1, SA-BCM
model (Figure 9). Video S10: Time evolution of the vorticity field for Case 1, SA model (Figure 10).
Video S11: Time evolution of the intermittency function field for Case 1 (Figure 11b).
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DNS Direct numerical simulation
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GMRES Generalized minimal residual method
ILES Implicit large eddy simulation
LES Large eddy simulation
LEV Leading-edge vortex
PDE Partial differential equation
PIV Particle image velocimetry
RANS Reynolds-averaged Navier–Stokes
SA Spalart–Allmaras
SA-BCM Spalart–Allmaras—Bas-Cakmakcioglu-Mura
TEV Trailing-edge vortex
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