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Abstract: Rational solutions of nonlinear evolution equations are considered in the literature as a
mathematical image of rogue waves, which are anomalously large waves that occur for a short time.
In this work, bounded rational solutions of Gardner-type equations (the extended Korteweg-de
Vries equation), when a nonlinear term can be represented as a sum of several terms with arbitrary
powers (not necessarily integer ones), are found. It is shown that such solutions describe first-order
algebraic solitons, kinks, and pyramidal and table-top solitons. Analytical solutions are obtained for
the Gardner equation with two nonlinear terms, the powers of which differ by a factor of 2. In other
cases, the solutions are obtained numerically. Gardner-type equations occur in the description of
nonlinear wave dynamics in a fluid layer with continuous or multilayer stratification, as well as in
multicomponent plasma, and their solutions are used for the interpretation of rogue waves.

Keywords: soliton; rational solution; Gardner equation

1. Introduction

Nowadays, there is great interest in rational solutions of nonlinear evolutionary
equations, which are associated with mathematical models of rogue waves. Thus, for many
years, the well-known Peregrine breather, obtained in the framework of the nonlinear
Schrödinger equation [1–4], has been considered as a reference example of a rogue wave
on the sea surface, since its amplitude is three times larger than the amplitude of the
background waves. Then it was possible to show that within the same equation, there are
multiparameter rational solutions of higher orders, in which the maximum wave amplitude
can be much higher [5–8]. Such solutions became known as super rogue waves. It should
especially be noted that the Peregrine breather, as well as super rogue waves, are observed
in laboratory wave tanks and optical fibers [9–13], demonstrating the stability and physical
importance of rational solitons/breathers.

Similar rational solutions are also found in the framework of other evolutionary
equations solved exactly by the methods of the inverse scattering problem, such as the
Benjamin-Ono equation [14,15], the Kadomtsev-Petviashvili equation [16,17], the Hirota
equation [18], Ablowitz-Ladik equation [19], and others. Let us focus on the papers [20–24],
which consider rational solutions in KdV-like systems, in particular, within the framework
of the Korteweg-de Vries equation and its modified version. In some cases, these rational
solutions are singular and have no physical meaning [25,26]. In other cases, they are
bounded, but exist on a pedestal, which also leads to unlimited mass and energy of such
solutions. Meanwhile, when the nonlinearity in KdV-like systems is composite, that is, it
includes quadratic and cubic nonlinearity (such an equation is called the Gardner equation),
then its rational solution is an algebraic soliton [27,28].
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The Gardner equation is one of the main equations in the theory of nonlinear internal
waves in oceans stratified by density and shear current; it is actively used in the interpreta-
tion of in situ measurement data [29]. If the ocean stratification is complex (multilayer flow
or continuous stratification), the quadratic and cubic nonlinearity coefficients can be small,
so that higher-order effects have to be included. In particular, with the so-called symmetric
stratification in the form of a three-layer flow, the evolution equation includes nonlinearity
of the third and fifth orders [30]. In the case of stratification close to exponential (constant
buoyancy frequency), a larger number of nonlinear terms may appear in the evolution
equation [31,32]. It is important to note that internal waves in the ocean can reach very
large amplitudes, leading to the destruction of oil and gas platforms in the sea. They
affect the propagation of acoustic signals over long distances, masking the underwater
environment [29–32].

Similar equations have been obtained in plasma theory [33–35], Fermi-Pasta-Ulam
chains [36], and even compacton theory [37]. High-order Gardner-like equations are not
integrable, and there is no efficient way to find a set of rational solutions such as super
rogue waves. This was the main stimulus for this study and ensures its novelty. In this
paper, we focus on the analysis of rational solutions of the first kind, found both analytically
and numerically. In Section 2, a general approach to finding rational bounded solutions
(solitons) is discussed. Analytically, such solutions are found in the case of a nonlinearity
of the uq − u2q type for any q > 1 (Section 3). Numerically, algebraic solitons are found for a
nonlinearity of u − uq type (Section 4). For certain coefficients of polynomial nonlinearity,
rational solutions are obtained in the form of a kink, i.e., a jump between two constant
values (Section 5). If the nonlinearity is described by a high-order polynomial, then a
rational soliton can be a table-top or pyramidal soliton (Section 6). The results obtained are
summarized in the Conclusions.

2. General Approach to Obtaining Rational Solutions of the First Order

Let us consider KdV-type equations with arbitrary nonlinearity:

∂u
∂t

+ f (u)
∂u
∂x

+ δ
∂3u
∂x3 = 0. (1)

It is convenient to set δ equal to 1 in this equation and rewrite (1) as

∂u
∂t

+
∂F(u)

∂x
+

∂3u
∂x3 = 0, f (u) = dF/du, (2)

assuming that F(0) = 0. We will look for bounded rational solutions of Equation (2) with
tails falling to infinity on the entire x axis. It was already noted in [38] that in the framework
of KdV-like models, rational (algebraic) solutions are obtained at zero wave propagation
velocity (in the framework of the original equations, this is the propagation velocity of long
waves), so that rational solutions are found from the ordinary differential equation

d2u
dx2 + F(u) = 0, (3)

where the constant of integration is chosen to be zero, ensuring the damping of the solutions
at infinity.

If in the lowest order a nonlinear function is a power function F(u) = aub with
constant coefficients a and b, then the tails of a possible rational soliton have an algebraic
asymptotic behavior:

u(x → ±∞) ≈
[
− 2(1 + b)

a(b− 1)2

] 1
b−1

|x|−
2

b−1 . (4)
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From here, it is clear that b > 1. Already from this simple estimate, it follows that if
the nonlinearity in the KdV-like equation is simple, i.e., Equation (1) contains only one
nonlinear term, then all rational solutions are singular and have no physical meaning. Thus,
for the existence of bounded rational solutions, a composite nonlinearity is needed, where
the subsequent term is a higher-order nonlinearity that will make a large contribution at
the top of the soliton.

The general approach to finding rational solutions follows from (3) after a single
integration:

1
2

(
du
dx

)2
+ Π(u) = 0, F(u) = dΠ/du. (5)

Moreover, the integration constant is again chosen to be zero, ensuring the decreasing
of the solution at infinity. If a rational solution exists, then its amplitude is uniquely found
as the minimum nonzero root of the algebraic equation

Π(A) = 0, (6)

and the solution itself is expressed through the integral

x = ±
A∫

u

dv√
−2Π(v)

. (7)

Since there are no free parameters in Equation (7), the rational solution is uniquely
determined.

Although formally the technology for finding rational solutions is quite simple, it
describes a wide class of algebraic solitons that are of great practical importance.

3. Analytical Rational Solitons

It was already mentioned that the algebraic soliton in the framework of the classical
Gardner equation (with the nonlinearity u − u2) has been known for a long time [27]. Here
we present a class of non-integrable Gardner-like equations that have solutions in the form
of rational functions. For this we use the following ansatz,

u(x) =
A

(1 + B2x2)
p (8)

with non-vanishing arbitrary parameters A, B and p (p > 0), and substitute it into (5). After
trivial calculations, we obtain the following expression for the function Π(x):

Π(u) = −2p2 A2B2
[( u

A

)2+1/p
−
( u

A

)2+2/p
]

. (9)

Differentiating this function twice, we find the nonlinear function in (1):

f (u) = −2p2B2
[
(2 + 1/p)(1 + 1/p)

A1/p u1/p − (2 + 2/p)(1 + 2/p)
A2/p u2/p

]
. (10)

Denoting the coefficients as

α = 2p2B2 (2 + 1/p)(1 + 1/p)
A1/p , (11)

β = 2p2B2 (2 + 2/p)(1 + 2/p)
A2/p , (12)
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We reduce Equation (1) to a Gardner-type equation with positive coefficients:

∂u
∂t
−
(

αu1/p − βu2/p
)∂u

∂x
+

∂3u
∂x3 = 0. (13)

The parameters of a rational soliton are uniquely found from (11) and (12) by the given
coefficients of Equation (13):

A =

[
α

β

(2p + 4)
(2p + 1)

]p
, (14)

B =

√
α2

β

(2 + p)

(p + 1)(2p + 1)2 . (15)

We present here a family of Gardner-type equations that admit an analytical descrip-
tion of rational solitons.

The Equation (13) turns out to be the classic Gardner equation when p = 1:

∂u
∂t
−
(

αu− βu2
)∂u

∂x
+

∂3u
∂x3 = 0, (16)

u(x) =
2α/β

1 + α2

6β x2
. (17)

This solution, as noted in the Introduction, was obtained in [27].
In case of p = 1/2 , the (2 + 4) Korteweg-de Vries equation was obtained in [30]:

∂u
∂t
−
(

αu2 − βu4
)∂u

∂x
+

∂3u
∂x3 = 0, (18)

u(x) = ±
√

5α/2β√
1 + 5α2

12β x2
. (19)

Finally, the higher-order Gardner equation takes the following form (p = 1/3):

∂u
∂t
−
(

αu3 − βu6
)∂u

∂x
+

∂3u
∂x3 = 0, (20)

u(x) =

 14α/5β

1 + 63α2

100β x2

1/3

. (21)

Modular nonlinearities arise in a number of plasma problems; see for example the
Schamel equation [39,40]. In this case, the Gardner generalization of the Schamel equation
has the following form (p = 2):

∂u
∂t
−
(

α|u|1/2 − βu
)∂u

∂x
+

∂3u
∂x3 = 0, (22)

and its rational solution is written as

u(x) =
(

120α

75β + 4α2x2

)2
. (23)

A comparison of the shapes of various rational solitons in dimensionless coordinates
(u/A, Bx) is shown in Figure 1. As we can see, with an increase in the degree of nonlinear
terms in the Gardner equation (1/p), the rational algebraic soliton broadens, and its tails
decrease more slowly at infinity.
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4. Rational Solitons in the Korteweg-de Vries Equation with Added High-Order
Nonlinearity—Numerical Results

Analytical rational solutions, as shown in Section 3, are found within the framework
of the Gardner Equation (13) when the ratio between the powers of the nonlinear terms is
equal to 2. Here we consider another form of the Gardner equation,

∂u
∂t
−
(

u− (q + 1)(q + 2)
6

uq
)

∂u
∂x

+
∂3u
∂x3 = 0, (24)

in which there is only one free parameter q > 1. The coefficient in front of the highest
derivative is chosen so that the amplitude of the rational soliton is A = 1. In this case, the
function Π(u) in Formula (5) is equal to

Π(u) = −u3 − uq+2

6
. (25)

From the analysis that is given in Section 2, it follows that the power asymptotics of
a rational soliton at infinity do not depend on q and are determined only by a quadratic
nonlinearity. However, the waveform depends on q, since the function Π(u) depends on
this parameter. Qualitatively, the graphs of the function Π(u) for different q are similar to
each other (Figure 2); therefore, rational solitons are also similar to each other. They are
found numerically by direct integration of Equation (7) with function (25), and their shape
is shown in Figure 3.

As can be seen from Figure 3, with an increase in the degree q, the shape of the solitons
becomes almost the same. The latter is obvious, since at large values of q the leading
nonlinear term in Equation (24) becomes small at u < 1, and the slopes of the wave tend to
the universal algebraic function that follows from (4) at b = 2,

u(x) ≈ 12
x2 , (26)

and the influence of the nonlinear term with q appears only at the top of the soliton.
Qualitatively, the same solutions can be obtained in the case when the first nonlinear

term in Equation (24) has any degree, not necessarily quadratic and integer.
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5. Kinks

In all the cases considered above, the form of a rational soliton was a one-parameter
bell-shaped function, which is essentially due to the “one-humpness” of the function
Π(u), as in Figure 2. In all these cases, the curve Π(u) approaches the point A = 1 (soliton
amplitude) with a nonzero derivative. A different situation will be realized when the
tangency at the point A = 1 will occur with a zero derivative. For analysis, it suffices to
modify the function Π(u) as follows:

Π(u) = −Wud(1− u)r, (27)

where coefficients d ≥ 3 (in the lowest order, the nonlinearity is quadratic or higher order),
r > 1, and W is a positive constant. In this case, dΠ

du (u = 1) = 0 (see Figure 4), and the
function u(x) will slowly change in the vicinity of the soliton top, as can be seen from
Equation (7).
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An analytical example arises in the case when

Π(u) = −1
2

u4(1− u)2; (28)

then the solution is written explicitly (Figure 5) as

± x = ln
u

1− u
− 1

u
. (29)Fluids 2022, 7, x FOR PEER REVIEW 8 of 12 
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It defines a kink—the jump between two constant values (with a plus sign, this jump
is from zero to one). At the left end, the asymptotics of the kink is algebraic u ∼ x−1, and
at the right end, it is exponential. We give here an explicit expression for the modified
Gardner equation with a solution in the form of a kink (29):

∂u
∂t
− 6u2

[
1− 10

3
u +

5
2

u2
]

∂u
∂x

+
∂3u
∂x3 = 0. (30)
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Thus, for the existence of a kink, there must be several nonlinear terms (at least
three). Naturally, kinks qualitatively similar to (29) also arise in the case of a more complex
nonlinearity, but only when the condition dΠ

du (u = 1) = 0 is fulfilled at one of the ends.

6. Pyramidal Rational Solitons

A more complex form of a rational soliton occurs when the function Π(u) has several
(at least three) extremes within the interval, as shown in Figure 6. For analysis, we choose
this function in the form

Π = Wu3
[
(u− u1)

2 + ε2
]
(u− A), (31)

assuming that u1 < A is an “intermediate” root, where the curve approaches the u axis
in Figure 6 (here we chose W = 1, A = 1, and u1= 0.5). A small value of epsilons allows
controlling the shape of a rational soliton. In this case, the solution in the region (0–0.5)
will resemble the superposition of the kinks described above, and above it—an “ordinary”
soliton, so that in general we get a pyramidal rational soliton. It is solved numerically and
is shown in Figure 7 for different values of the small epsilon parameter.

If, moreover, u1 tends to A, then the soliton top becomes flat, and its becomes a
“table-top” soliton, and its width tends to be a constant value (Figure 8).

We present here the generalized Gardner equation, the solution of which are pyramidal
and table-top solitons (W = 1):

∂u
∂t
−
[
6(u2

1 + ε2)u− 12(u2
1 + ε2 + 2Au1)u2 + 20(2u1 + A)u3 − 30u4

]∂u
∂x

+
∂3u
∂x3 = 0. (32)

That is, the nonlinearity here is described by a polynomial of the fifth degree. At higher
degrees, more complex pyramidal structures may occur. If the polynomial has a lower degree,
then there are no rational solutions in the form of pyramidal and table-top solitons.
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Figure 7. Shape of a pyramidal soliton for various epsilon values.
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7. Conclusions

In this paper, we study rational bounded solutions of the generalized Gardner equation
that describe the so-called algebraic solitons, since their tails are described by power
functions. Equations of this type are encountered in the theory of wave motions of stratified
flows. An analytical family of rational solitons for the Gardner equation, in which there are
two nonlinear terms, where the degrees differ by a factor of 2, is found. For an arbitrary
ratio of the powers of these terms, rational solutions are obtained numerically. If the
number of nonlinear terms is more than 2, then new types of rational solutions arise, which
are kinks, pyramidal, or table-top solitons. Some solutions here are obtained analytically,
and the others numerically.
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Being a mathematical representation of large-amplitude waves, rational solutions are
known to play an important role in the problem of rogue waves. They are studied mainly in
the framework of integrable evolution equations. It is shown here that they can exist in the
framework of non-integrable systems. Their stability with respect to external disturbances
and noise fields is yet to be investigated.

The practical significance of the study is related to the problem of rogue waves in
a fluid stratified by density and shear flow. In the ocean, internal waves can reach very
large amplitudes up to 100 m, and they appear for a short time and unexpectedly. With
a complex structure of stratification in the evolution equations, complex combinations of
nonlinear terms arise, which can be modeled by the Gardner-type equation considered in
this paper. The rational solutions found in our article are the prototype of rogue waves in a
stratified fluid.
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