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Abstract: Isothermal turbulent flow around circular cylinders arranged side-by-side was numerically
simulated on a commercial finite-volumes platform, ANSYS® CFX, version 2020 R2. The turbulence
was modeled by using k-ω shear stress transport (k-ω SST). Three different Reynolds numbers were
computed, Red = 200, 1000, and 3000, which were based on the cylinder diameter, d, the free stream
velocity, U∞, and the kinematic viscosity of the fluid, ν. Sided cylinders were spaced apart from
each other, forming a p/d ratio equal to 2, which was kept constant throughout the computations
regardless of changes in the Reynolds number. The drag coefficient, Cd, as well as its time traces, was
evaluated along with the different wake topologies experienced by the cylinders (wide wake WW
and narrow wake NW). The simulations were able to predict the bistable flow over the cylinders and
the Cd changes associated with the wakes. Whenever a new wake topology was identified, the shape
drag changed in accordance with the instantaneous pressure distribution. A laminar simulation was
carried out for the lowest Reynolds number case, showing that the adopted turbulence model did
not affect the dynamic response of the flow. The Red = 3000 case was compared to Afgan’s outcomes,
whose simulations were carried out in a 3-D mesh using LES (Large Eddy Simulation), showing great
agreement with their results.

Keywords: circular cylinders; side-by-side; detached angle; k-ω SST; bistability; turbulent flow

1. Introduction

Due to vast applications in real life, the study of turbulent flow characteristics around
cylinders has been the focus of attention for a long time. Knowledge of the flow field and
its dynamics characteristics over such bodies is applied on a vast scale. Circular cylinders
in pairs (side-by-side or in tandem) or even arranged in banks have been the subject of
research since the very early twentieth century with the outcomes released by Grimison [1]
and Wiemer [2]. A very thorough experimental campaign was carried out by Žukauskas [3],
followed by Žukauskas et al. [4] and Žukauskas and Katinas [5]. In these works, the authors
were very concerned with outlining the basis for heat transfer prediction in bank tubes, for
instance in Žukauskas’s work [3]. It is important to remind the reader that bank tubes or
closed packet rods are the simplest geometries used for research to study the flow field
and the features of its fluctuation over structures arranged in groups. We can easily cite
the case of struts of a biplane wing or the flow past columns of a marine structure in
offshore engineering, transmission lines, and heat exchanger tubes or bundles of risers [6,7].
In contrast to the high Reynolds numbers produced in such applications, low Reynolds
numbers can be seen in the papermaking process [8]. According to the authors, the wood
fibers can be modelled as sided cylindrical structures with dimensions of about 1 mm in
length and 40 µm in diameter.

In recent times, the works [9–14], among others, were concerned with the wake
interactions behind the cylinders when the gap between them changes. Furthermore, they
also try to understand the flow changes in association with the Reynolds numbers, as was
shown very well by Sumner [14].
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Bearman and Wadcok [15] investigated experimentally the flow interaction in a pair
of circular cylinders for a Reynolds number of 2.5 × 104. The work aimed to study the flow
behavior as the p/d ratio changed. The authors observed that for sided circular cylinders
separated from each other by a p/d ratio greater than 2, the wake formed downstream was
similar to the one that takes place in a single cylinder. However, as the p/d ratio decreased,
an asymmetric flow field appeared around the cylinder, also producing some effect on
the vortex-shedding frequency. Furthermore, the authors, in 1973, also they pointed out
that the shedding vortex mode could occur in phase and antiphase synchronization, but
the second mode was seen more often. Years later, Meneghini and co-workers [16] also
reached the same conclusion. At that time, the authors only associated this difference with
the p/d ratio. Later, Zdravkovich and Pridden [7] investigated the wake formation and
its relationship with the p/d ratio, reaching the same conclusions on the asymmetric flow
field whenever the p/d ratio decreased below 2. Their experimental campaign conducted
under subcritical Reynolds numbers (8 × 103 to 1.6 × 105) showed that different drags
were assigned to the cylinders at the same time. Furthermore, the sum of the drags was
less than twice the value of the drag for a single cylinder under the same Reynolds number.

Numerical and experimental works have aimed to study the bistability process in
either a row of cylinders or in a pair of them [16–19]. According to Neumeister [19],
bistable flow is only observed in the situation in which the wakes interact with each
other, giving rise to stable wake topologies that can change randomly over time. Such
a configuration leads to an asymmetric flow, forming dissimilar wakes (narrow wake
NW and wide wake WW) downstream of the cylinders, whose main characteristics rule
the aerodynamic forces on the cylinders’ surfaces and the dynamics of the flow as well.
Asymmetric wake formation was also shown by researchers [20–23]. Vila et al. [24] carried
out an experimental campaign using two hot-wire probes and a single pressure transducer
in a pair of circular cylinders for three different p/d ratios. They evaluated the turbulent
signals of pressure and velocity acquired at the same time. The pressure time trace was
gathered on the circular cylinder’s surface, while the velocity signals were taken in the
viscous wake. The authors performed this study for three different p/d ratios (1.26, 2.00,
and 3.00) under a subcritical regime, Red = 1.78 × 104. The authors identified that both the
stagnation and boundary layer detachment points moved towards the tight gap as the
p/d ratio decreased. Furthermore, with regard to the velocity and pressure time traces,
the signals were seen to present long-term bistable behavior for the lowest p/d ratio. On
the other hand, as the p/d ratio increased, this pattern tended to fade away. Spectral
analysis using both PSD and CWT [18] tools showed energy peaks associated with the
vortex shedding. The Strouhal number was seen to range from 0.22 to 0.24. These values
were slightly higher than that identified in a single cylinder.

The outcomes for two-dimensional flow characteristics over circular cylinders ar-
ranged in pairs were reported by Kang [22]. In his numerical work, the author carried
out simulations for various Reynolds numbers and T/D ratios, comprising 40 ≤ Re ≤ 160
and 0.2 ≤ T/D ≤ 5.0, respectively. Unlike others, the author characterized the narrow
gap space between cylinders as T = p/d – 1. The numerical results of Kang [22] identified
up to six different topologies for wakes, depending on the distance between the centers
of the cylinders and the Reynolds number. The author also stated that, for the studied
Reynolds number range, the frequency of vortex shedding was influenced mainly by the
spacing between the cylinders. For 0.5 < T/D < 1.5, the vortex frequency dropped and was
constantly synchronized with the movement of the wakes. On the other hand, the drag
coefficients depended mainly on the spacing between the cylinders. Finally, the author
concluded that as the T/D ratio increased, for values higher than 3, the flow characteristics
again became significantly dependent on the Reynolds number.

In case of fluid–structure interaction (FSI), recently, Chen and co-authors [25,26]
investigated the wake patterns of two-sided circular cylinders which were free to vibrate.
The authors’ investigations, in both works, aimed to provide an overview of the wake
patterns for different p/d ratios and Reynolds numbers, whose values ranged from 60 up to
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200. In the first paper by Chen [25], the authors simulated the fluid–structure interaction by
using the immersed boundary (IB) method. The gap-spacing ratio (p/d) and the reduced
velocity (Ur) were changed from 2 up to 5 and 0 up to 30, respectively. The authors
identified up to eight wake flow patterns, whose existence was based on the gap spacing
and the reduced velocity. For instance, the biased flow, which produces narrow and wide
wakes, was only observed for a 2.3 < p/d <2.5 and Ur varied between 4.0 and 4.50. Later,
in 2020, Chen [26] and co-authors furthered their numerical experiments by studying the
effects of the p/d ratio and the reduced velocity Ur on the flow dynamics of two-sided
cylinders free to vibrate. The authors concluded that the p/d ratio plays an important role
in the dynamic response of the cylinders. The authors identified St > 0.20 for low Ur and
gap ratios between 2.0 and 2.5.

The present work aimed to numerically investigate the hydrodynamic characteristics
over two-sided cylinders. Three Reynolds numbers were simulated, Red = 200, 1000, and
3000, keeping the p/d ratio constant, equal to 2. In order to verify the quality of the
computations, mean average values such as the stagnation and separation angles, (θEst)
and (δSep), and the drag forces, Cd, were compared to those reported by Afgan et al. [27] for
Red = 3000 and a p/d ratio equal to 2. Finally, special attention was given to the bistability
of the flow and its effect on the aerodynamic forces whenever a new topology was formed
as well as the dynamic response of the flow behind the cylinders through the velocity
time traces.

2. Materials and Methods
2.1. Governing Equations

For incompressible flow, the mass and the momentum conservation are ruled by:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂P
∂xi

+
∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj

∂xi

)]
(2)

In Equations (1) and (2), ui and uj represent the velocity vector components, xi is the
spatial coordinates, P is the thermodynamic pressure, ρ is the fluid density, and ν and νt are
the molecular and turbulent kinematic viscosity, respectively. The additional momentum
diffusivity caused by the closure problem of the turbulence is represented by the turbulent
viscosity, νt, which is approached through Boussinesq’s idea, as follows:

τij = νt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
δijk (3)

τij is the Reynolds tensor, which comes from the decomposition of the nonlinear terms
of the Navier–Stokes equation, and k represents the turbulent kinetic energy. So, additional
equations are needed to model the turbulent kinematic viscosity, which is computed as a
function of the turbulent kinetic energy field, k, and the specific rate of dissipation, ω.

The k-ω SST model is a two-equation turbulence model first introduced by Menter [28].
The model combines the advantages of the k-ε model and the k-ω model through a blending
function that switches whenever it is possible. According to Menter [28], the two-equation
model is ruled by the set of equations in Equation (4):

∂k
∂t + uj
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=
τij
ρ

∂ui
∂xj
− β ∗ωk + ∂
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[
(ν + σωνt)

∂ω
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]
+ 2(1− F1)

σω2
ω

∂k
∂xj

∂ω
∂xj

(4)
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The bending function is F1, which computes how far from the walls the problem is:

F1 = tanh
(
arg4)

arg = min
[
max

( √
k

β∗ωd , 500ν
d2ω

)
, 4ρσω2k

CDkωd2

] (5)

Finally, the turbulent kinematic viscosity is calculated by

νt =
a1k

max(a1ω, ΩF2)
(6)

where Ω is the absolute value of the vorticity and a1 is a closure coefficient that is set to
0.30. For further information, see the complete description of the model in [28].

2.2. Computational Domain, Boundary Conditions, and Mesh Dependence

The rectangular computational domain is based on the work published by Afgan
et al. [27]. Its dimensions were made dimensionless by using the diameter of the circular
cylinder, d, its total length being 25d, and height 22d. From the inlet up to the cylinders’
center, the computational domain is 10d long, whereas downstream of the cylinders, the
flow travels 15d to reach the domain’s outlet. Both cylinders are placed in the center of the
domain. Furthermore, their centers are separated from each other by a distance, p. The
dimensionless number that rules this distance is the p/d ratio, which was kept constant
throughout this work, being equal to 2. The flow comes into the domain through the inlet
with a free stream velocity, U∞, oriented parallel to the x-axis. A prescribed velocity, u = U∞,
v = w = 0, was imposed on the upper and lower faces of the domain (Figure 1a). The free
stream turbulence intensity was set to 1% (in the work by Afgan et al. [27], the authors did
not provide this information). No slip condition was applied to the walls, u = v = 0, and,
finally, the outlet boundary. At the outlet boundary, the pressure difference was set to zero.
A schematic view of the domain, its coordinates, boundaries, and mesh detail are depicted
in Figure 1a. Figure 1b shows a schematic view of the circular cylinders and how they are
oriented. The arrow over the cylinders indicates how the azimuthal positions are taken
into account.

Based on the entrance velocity, three Reynolds numbers were simulated, Red = 200,
1000, and 3000, keeping the domain’s dimensions, p/d ratio, and cylinder diameters un-
changed. The commercial software ANSYS CFX is only able to perform analyses for 3-D
domains. To ensure that the 2-D flow over the cylinders was symmetric, symmetry bound-
ary conditions were applied to the x,y faces, which means that the spanwise derivative
terms of the equations are set to zero.

Downstream of the upper and lower cylinders, two probes, i.e., points in the mesh
where the temporal flow data were stored, were placed at a distance of 0.9d from the
cylinder’s center (Figure 1b). The probes were placed according to the work by De
Paula et al. [18]. Velocity time traces were gathered by the virtual probes.

The mesh was built by splitting the domain into smaller ones, all of which were formed
of smaller hexahedral volumes. Special care was taken near the walls (on the cylinders’
surfaces), where y+ was carefully computed to ensure that the nondimensional distance
from the wall would not exceed unity. The y+ was measured after each stationary run of
a new mesh. Parallel to the z-axis, the mesh was built by splitting the third dimension
into one volume (see the mesh detail in Figure 1a). The domain’s thickness was 10 mm.
Three different meshes were built and tested for Red = 3000. Afgan et al. [27] used the same
configuration and Reynolds number for predicting the turbulent flow over side-by-side
circular cylinders. Their outcomes were used as a benchmark for the present simulations.
In Figure 2, one can see the y+ distribution on the cylinders’ surface. It is possible to see
that any generated mesh achieved the first imposition, that is y+ ≤ 1. Actually, the coarsest
one showed y+ = 1 at about 45◦ on the lower cylinder’s surface. For the reader’s guidance,
in Figure 2, the flow reached the cylinders from left to right.
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As stated above, three different meshes were tested and compared with the results
presented in the work by Afgan et al. [27]. The meshes were named from M3, the finest one,
to M1, the coarsest. The mesh characteristics and results are summarized in Table 1, along
with the stagnation (θEst) and separation angles (δSep) and the results published earlier by
Afgan et al. [2]. From Table 1, it is possible to observe that the results from the meshes are
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quite close to those reported in Afgan’s paper. The stagnation angles (θEst) were seen to be
unchanged, regardless of the mesh.

Table 1. Mesh characteristic. The stagnation, θEst, and separation angles, δSep, for Red = 3000 and p/d
ratio 2.0.

θEst Upper θEst Lower δSep Upper δSep Lower Total Nodes N◦ Divisions on
Cylinders’ Surfaces

Afgan et al., 2011 353.7 8.1 83.8 262.1 99.8 276.3 ———- ———-
Mesh 1 353.6 7.7 87.0 265.7 104.9 278.1 216,000 492
Mesh 2 353.6 7.7 85.5 263.5 101.7 277.3 235,000 504
Mesh 3 353.6 7.7 84.9 262.8 100.2 276.4 241,000 504

Only a very marginal difference of 0.4◦ is seen in comparison with Afgan’s results.
The highest variations were observed for the flow separation angle, δSep. As the mesh
becomes finer, the location where the flow detaches becomes closer to the value predicated
by Afgan and his co-workers in their 3-D numerical simulation. The difference was found
to range from 1% (M3) up to 4.70% (M1). Considering the results and the time-consuming
simulation, the mesh M2 was chosen to carry out all computations. Each transient numerical
simulation case took about 05 days on an i7 3.6 GHz computer with 06 cores and 32 GB
of RAM.

Time-dependent computations were performed for 2900 s, which means seven
flowthroughs for the highest Reynolds number. For the lowest Reynolds number, the total
time was about 105 flowthroughs. The time-step for each Reynolds number was small
enough to achieve a Courant number less than 1, as already carried out in the previous
papers [29,30]. So, for Red = 200, 1000, and 3000, the time-step was set to 0.8, 0.14, and
0.03, respectively. During the numerical simulation, the temporal scheme was second-
order backward Euler, the advective terms were discretized using an upwind second-order
scheme, and the convergence criterion was set as at least 10−6 for each equation. The mean
average data were averaged over the total time of the transient solution.

3. Results and Discussion
3.1. Stagnation (θEst) and Detached (δSep) Angles

In Figure 3, mean average pressure (Figure 3a,b) and skin friction coefficients (Figure 3c,d)
are shown as a function of the azimuthal position around the cylinders’ surfaces. Both the
pressure coefficient, Cp, and the skin friction coefficient, τ*, were computed as shown by
Achenbach [31] and Johansson [18] according to the expressions:

Cp = Pθ−P0
1
2 ρU2

∞

τ∗ = µ ∂u
∂y

∣∣∣
wall

√
Red

ρU2
∞

(7)

Focusing on the pressure distribution, one can see a similar distribution regardless
of the Reynolds number. First, the stagnation point shifted towards the gap on both
cylinders, taking place at about 354◦ and 7.70◦ in the upper and lower cylinders, respectively.
According to the numerical work by Hensan [32], the movement of the stagnation angles
is due to the repelling forces acting over the cylinders when they are close to each other.
Furthermore, the repelling forces, according to the author, become stronger as the cylinders
become closer. As stated before, despite the Reynolds number changing, the stagnation
point location is not affected. Regarding the pressure values, the lowest coefficients occurred
at different angular positions, depending on the cylinder. For the upper one (Figure 3a), the
minima are placed at 75◦ and 285◦ for a Reynolds number of 3000. Moreover, regardless
of the tube position, the pressure distribution fell at 180◦, showing a valley for Red = 3000.
In Figure 3c,d, the main purpose is to know where the boundary layer detaches. Here,
the dissimilarities between the different Reynolds numbers are much more evident. In
both tubes, the angle where the skin coefficient, τ*, is maximal moves downstream as the
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Reynolds number increases and the separation angle, δSep, identified by τ* = 0, seems to be
sensitive to Reynolds number in both cylinders. According to this criterion, the boundary
layers were found to detach soon after 85◦, first for the lowest Reynolds number, followed
by Red = 1000 and 3000, in sequence. For Reynolds numbers of 1000 and 3000, the δSep
difference was found to be marginal. On the lower cylinder’s surface, the τ* distribution
was found to be slightly different on the opposite side of the narrow gap. The skin friction
coefficient was found to be zero at about 250◦ for Red = 200, followed by Red = 1000 and
3000, respectively. It is also interesting to notice that the separation angles are shifted in the
narrow gap in comparison to the position where it takes place on the opposite side. The
points where the boundary layer is detached are indicated by arrows in Figure 3c,d. Table 2
summarizes the stagnation and separation angles for each cylinder.
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the upper cylinder. (d) Skin friction distribution for the upper cylinder. —Red. = 200; +++ Red = 1000
and ◦◦◦ Red = 3000.

Table 2. Stagnation and separation angles for each cylinder as a function of Reynolds number.

Red
θEst

Upper
θEst

Lower
δSep

Upper
δSep

Lower

200 351.20 9.30 82.20 246.50 97.90 252.60
1000 352.50 8.80 84.40 262.30 99.50 263.30
3000 353.60 7.70 85.50 263.50 101.70 277.30

3.2. The Drag Coefficients and the Wake Interactions

The instantaneous time history of the drag coefficients in both cylinders was gathered
for every Reynolds number simulated. The drag coefficient is computed based on the
following expression:

Cd =
Fd

1
2 ρU2

∞dl
(8)

where Cd is the drag coefficient and Fd is the total drag forces that are parallel to the x-axis.
The circular cylinder diameter is d and l is the thickness of the domain (dimension parallel
to the z-axis). The time, t*, was made dimensionless by using the entrance velocity, U∞,
and the cylinder’s diameter as t∗ = tU∞

d .
Figure 4a–c show the instantaneous drag time-trace, Cd, for each cylinder at Red =

200, 1000, and 3000, respectively. The mean average drag can be computed from each time
history signal.
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Vu et al. [33] suggested that the mean average drag coefficient should be computed as
an equivalent drag, C∗d .

C∗d =
Cd
∣∣
upper + Cd

∣∣
lower

2Cd0
(9)

The computation would be based on each cylinder and compared to a single circu-
lar cylinder under the same Reynolds number, Cd0, remembering that the time average
processes were carried out over the total transient simulation.

Following Equation (9), the equivalent C∗d was found to be 1.20, 1.33, and 2.16 for the
Reynolds numbers 200, 1000, and 3000, respectively. These results are in good agreement
with the results from Vu et al. [33], mainly for the cases at Red = 200 and 1000. In their paper,
the authors simulated 2D flow around circular cylinders in pairs under the same Reynolds
numbers and p/d ratio. The equivalent drag, C∗d , was found to differ from ours by only 0.6%
under Red = 200 and no difference was found under Red = 1000. Unfortunately, the same
computation methodology could not be applied to Afgan’s results in order to compare the
outcomes for Red = 3000, since the authors evaluated the Cd based on the wakes’ topologies.
However, Afgan et al. [27] state that the sum of the drag coefficients of the two cylinders,
separately, is slightly comparable to twice the drag found in a single circular cylinder for
1.25 ≤ p/d ≤ 5.0. By carefully observing the data published by the authors, the total drag
was found to be 2.80. Applying this methodology using Cd = Cd

∣∣
upper + Cd

∣∣
lower yielded a

value of 2.89, which differs by only 3.2% from Afgan’s results [2].
The bistable flow process was also a target of our research. The bistability phenomenon

takes place when the wakes are near enough to interact to each other. This interaction yields
stable modes of wake topologies that change randomly over time. During the processes,
a narrow and wide wake is formed behind each cylinder. In the first moment, a wide
wake behind the lower cylinder moves out behind the upper cylinder, whose wake is
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narrow at first. This switching occurs over time and each mode lasts for a certain period of
time [18,19]. Stable modes are observed in all cases. However, in the third case, Red = 3000,
the observation is straightforward. Figure 4d shows the instantaneous streamlines over the
cylinders corresponding to the times t* = 15 and t* = 50 for the case of Red = 3000. From the
picture, it is possible to observe that the wake topology is stable for a certain period of time
behind each cylinder (see the rectangles in Figure 4c). As previously stated, the direction of
the central jet determines which cylinder will experience either the narrow wake (NW) or
the wide one (WW), thus ruling the drag coefficient on each cylinder.

In fact, by observing the drag time-traces in each cylinder, higher and lower drag coef-
ficients are assigned to different wakes’ topologies. See the first stable mode at 15 ≤ t* ≤ 25
in Figure 4c. In this moment, we can identify that the lower cylinder, C2, experiences a
higher value of drag and, at once, the viscous wake behind it is classified as a narrow wake
(NW; Figure 4d). On the other hand, when the new topology takes place, from t* ~ 45 to
55, the drag value in the upper cylinder is higher than that found in the lower one. Again,
Figure 4d identifies the narrow wake (NW) downstream of the upper cylinder, leading to a
high drag value. The dependence of the drag force on the stable wake topologies has been
pointed out by several authors [14,20,33]. During the time that the lower cylinder experi-
ences the narrow wake, the mean average drag is computed differently; Cd

∣∣
lower is 1.60 and

Cd
∣∣
upper is 1.30. According to Alam et al. [20], the drag coefficient difference between the

narrow wake and the wider one is due to the pressure recovery behind each wake.
The instantaneous pressure distribution, Cp

′, around each cylinder was also inves-
tigated. Figure 5a,b intend to show the instantaneous pressure distribution around the
same cylinders in each stable mode. This information may help us to understand how the
drag coefficient is associated with the wake topology, since in blunt bodies, the pressure (or
shape) drag is expected to play a major role in the total drag [34].
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Figure 5. Instantaneous pressure coefficient around the cylinders at Red = 3000. (a) Upper cylinder
(C1) experiencing two different modes. (b) Lower cylinder (C2) experiencing two different modes.

In both pictures, the same cylinder is seen to experience almost the same pressure
distribution at the very beginning, regardless of the wake topology behind them. After
some angular positions, towards the rear part of the cylinders, the curves reveal different
pressures. This behavior is seen to happen for the upper cylinder from θ ~ 40◦ to 270◦, while
on the lower cylinder’s surface, the same behavior appears soon after θ = 120◦ up to 320◦.
However, the most important part of the graph is the middle part. The reader can easily
see that the pressure recovery is different for the same cylinder under the different modes
(wake topologies). The upper cylinder, under the wide wake (WW), experiences higher
levels of pressure in its front and rear part as well. On the other hand, when the mode
switches and, therefore, the same cylinder is under the narrow wake (NW), the pressure is
lowered in the same position in comparison with what would be under the other mode
(Figure 5a). The same analogy can be employed for the lower cylinder, C2. In this case,
the differences between the levels of pressure are even larger. Furthermore, we can also
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easily observe the pressure recovery behind the cylinder subject to the wide wake (WW),
indicating that the instantaneous shape drag should be lowered in comparison with the
same cylinder in NW mode (Figure 5b).

Velocity time-traces were gathered at the monitoring point (Figure 1b), at once. The
time, t*, was made dimensionless, as mentioned before, and the velocity component
received the same treatment by using the free stream velocity, U∞, as follows:

u∗ =
u(t)

U∞
; v∗ =

v(t)
U∞

(10)

where u and v are the axial and transversal instantaneous velocities. We also carried out
numerical simulations for the lowest Red case without any turbulence model (laminar
flow). In this case, we want to investigate whether the employed turbulence model affects
somehow the spectral response of the flow field. The fast Fourier transform (FFT) employed
here was performed using 2N data point for each velocity time-trace signal (N is the
number of data on each signal). Before performing the FFT computations, the signals
were windowed by a Hanning function. The FFT coefficients were scaled by the highest
one. By observing the velocity signals in the wakes, one can see that the flow exhibits
almost periodic patterns, mainly for higher Reynolds numbers. The Fourier transform
coefficients of each signal are plotted along with the velocity time-traces (Figure 6b,d,f,h).
The frequency was then made dimensionless through the Strouhal number as follows:

St =
f d
U∞

(11)

where f is the main frequency in the spectrum in Hz.
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Figure 6. Time-traces of velocity components in the wake for upper and lower cylinders, along with
the spectral computation of the flow velocity signal. — Upper cylinder. - - - Lower cylinder.

The dynamics of the flow were found to be in fair agreement with Bearman’s find-
ings [15]. As predicted by the authors [15], the cylinders are far enough apart to maintain a
fundamental frequency very close to what one would expect in a single cylinder. In fact, the
spectral analysis has shown that the fundamental frequency peak appears at about St ~ 0.20.
A slight displacement towards higher frequencies is seen as the Reynolds number increases.
Moreover, both velocity components presented the same frequencies. It should also be
pointed out that the spectral response of the flow seems to be unaffected by the turbulence
model. Both spectra for laminar and turbulent flow at Red = 200 showed almost the same
fundamental peak at St ~ 0.20. Several peaks, besides the fundamental one, appear for each
Reynolds number simulated, indicating that the biased flow deflection, i.e., the bistable
flow, exists and possesses its very own signature in terms of spectral response. Indeed,
such a feature was successfully seen in the Cd time-traces (Figure 4a–c).

Afgan and his co-workers [27] investigated the power spectral response of the flow
dynamics for several p/d ratios under the same Reynolds number, 3000. For p/d < 2.0,
the authors identified different peaks in the spectra; however, as the gap increased, the
additional peaks vanished. In the same year, similar results were released by Verna
and Verna and Govardhan [35], who investigated 2-D flow over side-by-side circular
cylinders. Both works from 2011 [27,35] connect the secondary frequencies to different
wake topologies, and lower frequency was assigned to the wide wake (WW); on the other
hand, the higher one was related to the narrow wake (NW). Afgan and co-workers [27]
associated the Strouhal numbers St ~ 0.11 and 0.39 to the wide wake (WW) and narrow
wake (NW), respectively, for a p/d ratio 1.50; on the other hand, according to the authors, for
p/d = 2.0, the peaks in the spectra were seen to be very close. Sided peaks, at distinguished
frequencies, were also reported by Pang et al. [36] and Alam et al. [20]. In the former work,
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the authors studied the dynamical response of the flow field in a 2D domain under the
Reynolds number 60,000 for several p/d ratios. The authors [36] associated a Strouhal
number of 0.10 to the wide wake (WW) and the narrow wake (NW) was assigned to
the Strouhal 0.3. Furthermore, intermediated frequencies, at St ~0.2, were found for
1.1≤ p/d ≤ 2.6.

In Figure 6h, the reader can see that the Strouhal numbers are about 0.06 and 0.43,
indicating dimensionless frequencies for different wake topologies. Higher frequency was
associated with the narrow wake (NW) and vice versa.

In order to promote a better understanding of the wakes’ characteristic frequency,
the spectral response of the Cd signal, at Red = 3000, was analysed. Since we have very
distinctive patterns of Cd, assigned to different wakes’ topologies, the drag signal was
split into Cd–narrow wake and Cd–wide wake. Figure 7a,b show both the Cd time-trace
and the fast Fourier transform of those signals. From Figure 7b, one can observe that the
spectral response of each wake topology is different. The wide wake (WW) stresses lower
frequencies in comparison with the narrow wake (NW). The WW exhibits its main Fourier
coefficients at St = 0.06 and 0.39, whereas for the NW, the most important coefficients are
assigned to the fundamental frequency at about St = 0.47.

Fluids 2022, 7, x FOR PEER REVIEW 13 of 15 
 

ated the Strouhal numbers St ~ 0.11 and 0.39 to the wide wake (WW) and narrow wake 
(NW), respectively, for a p/d ratio 1.50; on the other hand, according to the authors, for p/d 
= 2.0, the peaks in the spectra were seen to be very close. Sided peaks, at distinguished 
frequencies, were also reported by Pang et al. [36] and Alam et al. [20]. In the former 
work, the authors studied the dynamical response of the flow field in a 2D domain under 
the Reynolds number 60,000 for several p/d ratios. The authors [36] associated a Strouhal 
number of 0.10 to the wide wake (WW) and the narrow wake (NW) was assigned to the 
Strouhal 0.3. Furthermore, intermediated frequencies, at St ~0.2, were found for 1.1≤ p/d ≤ 
2.6. 

In Figure 6h, the reader can see that the Strouhal numbers are about 0.06 and 0.43, 
indicating dimensionless frequencies for different wake topologies. Higher frequency 
was associated with the narrow wake (NW) and vice versa. 

In order to promote a better understanding of the wakes’ characteristic frequency, 
the spectral response of the Cd signal, at Red = 3000, was analysed. Since we have very 
distinctive patterns of Cd, assigned to different wakes’ topologies, the drag signal was 
split into Cd–narrow wake and Cd–wide wake. Figure 7a,b show both the Cd time-trace 
and the fast Fourier transform of those signals. From Figure 7b, one can observe that the 
spectral response of each wake topology is different. The wide wake (WW) stresses lower 
frequencies in comparison with the narrow wake (NW). The WW exhibits its main Fou-
rier coefficients at St = 0.06 and 0.39, whereas for the NW, the most important coefficients 
are assigned to the fundamental frequency at about St = 0.47. 

  

(a) (b) 

Figure 7. (a) Cd time-traces for different wakes. (b) spectral computation of the flow Cd signal. ___ 
wide wake (WW). - - - narrow wake (NW). 

4. Concluding Remarks 
Isothermal, 2-D, and incompressible turbulent flow over a pair of circular cylinders 

arranged side-by-side was investigated by numerical simulation in this work. The main 
dimensionless number that qualified the simulation was the pitch–diameter ratio, p/d, 
which was kept constant at 2 throughout the work. In order to quantify the Reynolds ef-
fects, three Reynolds numbers were also simulated by varying the entrance velocity. The 
computations were carried out on a finite-volumes platform using Unsteady RANS-k-ω 
SST to overcome the closure problem of the turbulence. 

The stagnation and detachment angles of the boundary layer were measured. The 
simulations were in quite good agreement when compared with the results reported by 
other authors. The Reynolds numbers were found to play a more important role in the 
stagnation angle, θEST, than the detached one, δSEP, for any case simulated. 

300 330 390 450 510 570

time - s

1.2

1.4

1.6

1.8

2

2.2

C
d

wide wake - WW

narrow wake - NW

0 0.20 0.4 0.6 0.8 1 1.2 1.4

St

0

0.5

1

FF
T 

- C
d'

wide wake - WW

narrow wake - NW0.47

0.39

0.06

Figure 7. (a) Cd time-traces for different wakes. (b) spectral computation of the flow Cd signal.
___ wide wake (WW). - - - narrow wake (NW).

4. Concluding Remarks

Isothermal, 2-D, and incompressible turbulent flow over a pair of circular cylinders
arranged side-by-side was investigated by numerical simulation in this work. The main
dimensionless number that qualified the simulation was the pitch–diameter ratio, p/d,
which was kept constant at 2 throughout the work. In order to quantify the Reynolds
effects, three Reynolds numbers were also simulated by varying the entrance velocity. The
computations were carried out on a finite-volumes platform using Unsteady RANS-k-ω
SST to overcome the closure problem of the turbulence.

The stagnation and detachment angles of the boundary layer were measured. The
simulations were in quite good agreement when compared with the results reported by
other authors. The Reynolds numbers were found to play a more important role in the
stagnation angle, θEST, than the detached one, δSEP, for any case simulated.

The mean and time history drag coefficients were also gathered. Asymmetric and
irregular behavior of the drag coefficients was observed regardless of the Reynolds number.
Furthermore, different wake topologies were formed behind the cylinders, causing the
cylinders to experience different drag forces. The instantaneous drag force was seen as a
function of the type of wake topology formed behind each one. Higher drag was assigned
to narrow wakes (NW) and lower drags were seen to be related to wide wakes (WW).
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Furthermore, the instantaneous Cp
′ around the cylinder, under different wake topologies,

showed that the pressure recovers behind them when they are in the wide wake mode
(WW); otherwise, the pressure is lowered, enhancing the drag force for the narrow wake
mode (NW).

The Reynolds number seems to work in order to delay the changes between the wake
topologies. As the Reynolds number increases, each wake topology lasts longer. In other
words, as the Reynolds number increases, the number of changes experienced by each
cylinder seems to decrease.

The spectral-flow response was also analyzed through the velocity time-traces behind
the structures. A very well-distinguished peak was found in the spectrum at St ~ 0.20, which
is in fair agreement with other research. A slight displacement towards higher frequencies
could be seen as the Reynolds number increased, but it was marginal. Secondary peaks
located on either of the main peaks in the spectrum were also observed, mainly for Reynolds
numbers of 200 and 3000. The marginal peaks are associated with the different wake
topologies behind the cylinders. The lower and higher frequency could be very well
associated with the wakes through the spectral response of the Cd time-traces. In the
narrow wake mode, which produced a higher Cd yield, high Fourier coefficients placed
at higher frequencies, whereas for the wide wake, the higher Fourier coefficients were
assigned to the lower frequencies.

The laminar simulations, Red = 200 (without any turbulence model), did not show
any difference in the dynamics of the fluctuant flow field. This result shows that the
employed turbulence model neither affects nor fosters the bistable flow mode in the pair of
cylinders studied.
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